Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

The Pipeline Embolization Device for the Intracranial Treatment of Aneurysms Trial

The Pipeline Embolization Device for the Intracranial Treatment of Aneurysms Trial BACKGROUND AND PURPOSE: Endoluminal reconstruction with flow diverting devices represents a novel constructive technique for the treatment of cerebral aneurysms. We present the results of the first prospective multicenter trial of a flow-diverting construct for the treatment of intracranial aneurysms. MATERIALS AND METHODS: Patients with unruptured aneurysms that were wide-necked (>4 mm), had unfavorable dome/neck ratios (<1.5), or had failed previous therapy were enrolled in the PITA trial between January and May 2007 at 4 (3 European and 1 South American) centers. Aneurysms were treated with the PED with or without adjunctive coil embolization. All patients underwent clinical evaluation at 30 and 180 days and conventional angiography 180 days after treatment. Angiographic results were adjudicated by an experienced neuroradiologist at a nonparticipating site. RESULTS: Thirty-one patients with 31 intracranial aneurysms (6 men; 42–76 years of age; average age, 54.6 years) were treated during the study period. Twenty-eight aneurysms arose from the ICA (5 cavernous, 15 parophthalmic, 4 superior hypophyseal, and 4 posterior communicating segments), 1 from the MCA, 1 from the vertebral artery, and 1 from the vertebrobasilar junction. Mean aneurysm size was 11.5 mm, and mean neck size was 5.8 mm. Twelve (38.7%) aneurysms had failed (or recurred after) a previous endovascular treatment. PED placement was technically successful in 30 of 31 patients (96.8%). Most aneurysms were treated with either 1 ( n = 18) or 2 ( n = 11) PEDs. Fifteen aneurysms (48.4%) were treated with a PED alone, while 16 were treated with both PED and embolization coils. Two patients experienced major periprocedural stroke. Follow-up angiography demonstrated complete aneurysm occlusion in 28 (93.3%) of the 30 patients who underwent angiographic follow-up. No significant in-construct stenosis (≥50%) was identified at follow-up angiography. CONCLUSIONS: Intracranial aneurysm treatment with the PED is technically feasible and can be achieved with a safety profile analogous to that reported for stent-supported coil embolization. PED treatment elicited a very high rate (93%) of complete angiographic occlusion at 6 months in a population of the most challenging anatomic subtypes of cerebral aneurysms. Abbreviations IA intracranial aneurysm ICA internal carotid artery ID internal diameter LICA left ICA MCA middle cerebral artery PED Pipeline Embolization Device PICA posterior inferior cerebellar artery PITA Pipeline for the Intracranial Treatment of Aneurysms SES self-expanding stent http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Neuroradiology American Journal of Neuroradiology

The Pipeline Embolization Device for the Intracranial Treatment of Aneurysms Trial

Loading next page...
 
/lp/american-journal-of-neuroradiology/the-pipeline-embolization-device-for-the-intracranial-treatment-of-HqjErrjAba
Publisher
American Journal of Neuroradiology
Copyright
Copyright © 2011 by the American Society of Neuroradiology.
ISSN
0195-6108
eISSN
1936-959X
DOI
10.3174/ajnr.A2421
pmid
21148256
Publisher site
See Article on Publisher Site

Abstract

BACKGROUND AND PURPOSE: Endoluminal reconstruction with flow diverting devices represents a novel constructive technique for the treatment of cerebral aneurysms. We present the results of the first prospective multicenter trial of a flow-diverting construct for the treatment of intracranial aneurysms. MATERIALS AND METHODS: Patients with unruptured aneurysms that were wide-necked (>4 mm), had unfavorable dome/neck ratios (<1.5), or had failed previous therapy were enrolled in the PITA trial between January and May 2007 at 4 (3 European and 1 South American) centers. Aneurysms were treated with the PED with or without adjunctive coil embolization. All patients underwent clinical evaluation at 30 and 180 days and conventional angiography 180 days after treatment. Angiographic results were adjudicated by an experienced neuroradiologist at a nonparticipating site. RESULTS: Thirty-one patients with 31 intracranial aneurysms (6 men; 42–76 years of age; average age, 54.6 years) were treated during the study period. Twenty-eight aneurysms arose from the ICA (5 cavernous, 15 parophthalmic, 4 superior hypophyseal, and 4 posterior communicating segments), 1 from the MCA, 1 from the vertebral artery, and 1 from the vertebrobasilar junction. Mean aneurysm size was 11.5 mm, and mean neck size was 5.8 mm. Twelve (38.7%) aneurysms had failed (or recurred after) a previous endovascular treatment. PED placement was technically successful in 30 of 31 patients (96.8%). Most aneurysms were treated with either 1 ( n = 18) or 2 ( n = 11) PEDs. Fifteen aneurysms (48.4%) were treated with a PED alone, while 16 were treated with both PED and embolization coils. Two patients experienced major periprocedural stroke. Follow-up angiography demonstrated complete aneurysm occlusion in 28 (93.3%) of the 30 patients who underwent angiographic follow-up. No significant in-construct stenosis (≥50%) was identified at follow-up angiography. CONCLUSIONS: Intracranial aneurysm treatment with the PED is technically feasible and can be achieved with a safety profile analogous to that reported for stent-supported coil embolization. PED treatment elicited a very high rate (93%) of complete angiographic occlusion at 6 months in a population of the most challenging anatomic subtypes of cerebral aneurysms. Abbreviations IA intracranial aneurysm ICA internal carotid artery ID internal diameter LICA left ICA MCA middle cerebral artery PED Pipeline Embolization Device PICA posterior inferior cerebellar artery PITA Pipeline for the Intracranial Treatment of Aneurysms SES self-expanding stent

Journal

American Journal of NeuroradiologyAmerican Journal of Neuroradiology

Published: Jan 1, 2011

There are no references for this article.