Access the full text.
Sign up today, get DeepDyve free for 14 days.
MR spectroscopy represents one of the most suitable in vivo tool to assess neurochemical dysfunction in several brain disorders, including attention deficit/hyperactivity disorder. This is the most common neuropsychiatric disorder in childhood and adolescence, which persists into adulthood (in approximately 30%–50% of cases). In past years, many studies have applied different MR spectroscopy techniques to investigate the pathogenesis and effect of conventional treatments. In this article, we review the most recent clinical and preclinical MR spectroscopy results on subjects with attention deficit/hyperactivity disorder and animal models, from childhood to adulthood. We found that the most investigated brain regions were the (pre)frontal lobes and striatum, both involved in the frontostriatal circuits and networks that are known to be impaired in this pathology. Neurometabolite alterations were detected in several regions: the NAA, choline, and glutamatergic compounds. The creatine pool was also altered when an absolute quantitative protocol was adopted. In particular, glutamate was increased in children with attention deficit/hyperactivity disorder, and this can apparently be reversed by methylphenidate treatment. The main difficulties in reviewing MR spectroscopy studies were in the nonhomogeneity of the analyzed subjects, the variety of the investigated brain regions, and also the use of different MR spectroscopy techniques. As for possible improvements in future studies, we recommend the use of standardized protocols and the analysis of other brain regions of particular interest for attention deficit hyperactivity disorder, like the hippocampus, limbic structures, thalamus, and cerebellum. ABBREVIATIONS: ACC anterior cingulate cortex ADHD attention deficit/hyperactivity disorder Cho total choline (phosphorylcholine + glycerol-phosphorylcholine) GABA γ-aminobutyric acid PFC prefrontal cortex PRESS point-resolved spectroscopy sequence tCr total creatine (creatine + phosphorylcreatine)
American Journal of Neuroradiology – American Journal of Neuroradiology
Published: Jun 1, 2014
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.