Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

EFFECT OF CYP3A5 POLYMORPHISM ON TACROLIMUS METABOLIC CLEARANCE IN VITRO

EFFECT OF CYP3A5 POLYMORPHISM ON TACROLIMUS METABOLIC CLEARANCE IN VITRO Abstract Previous investigations of solid organ transplant patients treated with tacrolimus showed that individuals carrying a CYP3A5*1 allele have lower dose-adjusted trough blood concentrations compared with homozygous CYP3A5*3 individuals. The objective of this investigation was to quantify the contribution of CYP3A5 to the hepatic and renal metabolic clearance of tacrolimus. Four primary tacrolimus metabolites, 13- O -desmethyl tacrolimus (13-DMT) (major), 15- O -desmethyl tacrolimus, 31- O -desmethyl tacrolimus (31-DMT), and 12-hydroxy tacrolimus (12-HT), were generated by human liver microsomes and heterologously expressed CYP3A4 and CYP3A5. The unbound tacrolimus concentration was low (4–15%) under all incubation conditions. For CYP3A4 and CYP3A5, V max was 8.0 and 17.0 nmol/min/nmol enzyme and K m,u was 0.21 and 0.21 μM, respectively. The intrinsic clearance of CYP3A5 was twice that of CYP3A4. The formation rates of 13-DMT, 31-DMT, and 12-HT were ≥1.7-fold higher, on average, in human liver microsomes with a CYP3A5*1/*3 genotype compared with those with a homozygous CYP3A5*3/*3 genotype. Tacrolimus disappearance clearances were 15.9 ± 9.8 ml/min/mg protein and 6.1 ± 3.6 ml/min/mg protein, respectively, for the two genotypes. In vitro to in vivo scaling using both liver microsomes and recombinant enzymes yielded higher predicted in vivo tacrolimus clearances for patients with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. In addition, formation of 13-DMT was 13.5-fold higher in human kidney microsomes with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. These data suggest that CYP3A5 contributes significantly to the metabolic clearance of tacrolimus in the liver and kidney. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Drug Metabolism and Disposition Am. Soc for Pharma & Experimental Therapeutics

EFFECT OF CYP3A5 POLYMORPHISM ON TACROLIMUS METABOLIC CLEARANCE IN VITRO

EFFECT OF CYP3A5 POLYMORPHISM ON TACROLIMUS METABOLIC CLEARANCE IN VITRO

Drug Metabolism and Disposition , Volume 34 (5): 836 – May 1, 2006

Abstract

Abstract Previous investigations of solid organ transplant patients treated with tacrolimus showed that individuals carrying a CYP3A5*1 allele have lower dose-adjusted trough blood concentrations compared with homozygous CYP3A5*3 individuals. The objective of this investigation was to quantify the contribution of CYP3A5 to the hepatic and renal metabolic clearance of tacrolimus. Four primary tacrolimus metabolites, 13- O -desmethyl tacrolimus (13-DMT) (major), 15- O -desmethyl tacrolimus, 31- O -desmethyl tacrolimus (31-DMT), and 12-hydroxy tacrolimus (12-HT), were generated by human liver microsomes and heterologously expressed CYP3A4 and CYP3A5. The unbound tacrolimus concentration was low (4–15%) under all incubation conditions. For CYP3A4 and CYP3A5, V max was 8.0 and 17.0 nmol/min/nmol enzyme and K m,u was 0.21 and 0.21 μM, respectively. The intrinsic clearance of CYP3A5 was twice that of CYP3A4. The formation rates of 13-DMT, 31-DMT, and 12-HT were ≥1.7-fold higher, on average, in human liver microsomes with a CYP3A5*1/*3 genotype compared with those with a homozygous CYP3A5*3/*3 genotype. Tacrolimus disappearance clearances were 15.9 ± 9.8 ml/min/mg protein and 6.1 ± 3.6 ml/min/mg protein, respectively, for the two genotypes. In vitro to in vivo scaling using both liver microsomes and recombinant enzymes yielded higher predicted in vivo tacrolimus clearances for patients with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. In addition, formation of 13-DMT was 13.5-fold higher in human kidney microsomes with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. These data suggest that CYP3A5 contributes significantly to the metabolic clearance of tacrolimus in the liver and kidney.

Loading next page...
 
/lp/am-soc-for-pharma-experimental-therapeutics/effect-of-cyp3a5-polymorphism-on-tacrolimus-metabolic-clearance-in-lEtsoN4SqC

References (43)

Publisher
Am. Soc for Pharma & Experimental Therapeutics
Copyright
Copyright © Drug Metabolism and Disposition
ISSN
0090-9556
eISSN
1521-009X
DOI
10.1124/dmd.105.008680
pmid
16501005
Publisher site
See Article on Publisher Site

Abstract

Abstract Previous investigations of solid organ transplant patients treated with tacrolimus showed that individuals carrying a CYP3A5*1 allele have lower dose-adjusted trough blood concentrations compared with homozygous CYP3A5*3 individuals. The objective of this investigation was to quantify the contribution of CYP3A5 to the hepatic and renal metabolic clearance of tacrolimus. Four primary tacrolimus metabolites, 13- O -desmethyl tacrolimus (13-DMT) (major), 15- O -desmethyl tacrolimus, 31- O -desmethyl tacrolimus (31-DMT), and 12-hydroxy tacrolimus (12-HT), were generated by human liver microsomes and heterologously expressed CYP3A4 and CYP3A5. The unbound tacrolimus concentration was low (4–15%) under all incubation conditions. For CYP3A4 and CYP3A5, V max was 8.0 and 17.0 nmol/min/nmol enzyme and K m,u was 0.21 and 0.21 μM, respectively. The intrinsic clearance of CYP3A5 was twice that of CYP3A4. The formation rates of 13-DMT, 31-DMT, and 12-HT were ≥1.7-fold higher, on average, in human liver microsomes with a CYP3A5*1/*3 genotype compared with those with a homozygous CYP3A5*3/*3 genotype. Tacrolimus disappearance clearances were 15.9 ± 9.8 ml/min/mg protein and 6.1 ± 3.6 ml/min/mg protein, respectively, for the two genotypes. In vitro to in vivo scaling using both liver microsomes and recombinant enzymes yielded higher predicted in vivo tacrolimus clearances for patients with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. In addition, formation of 13-DMT was 13.5-fold higher in human kidney microsomes with a CYP3A5*1/*3 genotype compared with those with a CYP3A5*3/*3 genotype. These data suggest that CYP3A5 contributes significantly to the metabolic clearance of tacrolimus in the liver and kidney.

Journal

Drug Metabolism and DispositionAm. Soc for Pharma & Experimental Therapeutics

Published: May 1, 2006

There are no references for this article.