The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria)

The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the... Abstract: Raphidiopsis and Cylindrospermopsis are planktic, freshwater bloom-forming cyanobacteria of great concern to human health due to the production of potent cyanotoxins. The presence (in Cylindrospermopsis) or absence (in Raphidiopsis) of heterocytes is the traditional character used to distinguish them. This has led to misidentifications and to questions about the validity of the genus Raphidiopsis. We studied two strains of R. mediterranea isolated from Argentinean shallow lakes using a polyphasic approach that included the morphological description of the natural populations and their ultrastructural, physiological and molecular characterisation. Heterocyte differentiation was not observed in the field or in cultures of R. mediterranea submitted to nitrogen deprivation. These results support the occurrence of stable native populations of R. mediterranea without heterocytes, which would not be a part of the Cylindrospermopsis complex life cycle. Based on 16S rRNA, 16S23S ITS, and cpcBA-IGS sequences, these two genera are virtually identical. Thus, strains of Raphidiopsis and Cylindrospermopsis make up a monophyletic lineage in all phylogenetic reconstructions. Furthermore, the 16S23S ITS secondary structure provided further evidence that these two genera cannot be separated. The intermixed position in the trees points to several losses of heterocytes during the evolution of these cyanobacteria. We conclude that these two genera should not be regarded as separate and distinct generic units and propose their unification under the name Raphidiopsis, respecting the principle of priority. Accordingly, we revisited and emended the description of Raphidiopsis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Phycologia Allen Press

The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria)

Loading next page...
 
/lp/allen_press/the-polyphasic-analysis-of-two-native-raphidiopsis-isolates-supports-xdcUmuZBN0
Publisher
The International Phycological Society
Copyright
2018 International Phycological Society
ISSN
0031-8884
D.O.I.
10.2216/17-2.1
Publisher site
See Article on Publisher Site

Abstract

Abstract: Raphidiopsis and Cylindrospermopsis are planktic, freshwater bloom-forming cyanobacteria of great concern to human health due to the production of potent cyanotoxins. The presence (in Cylindrospermopsis) or absence (in Raphidiopsis) of heterocytes is the traditional character used to distinguish them. This has led to misidentifications and to questions about the validity of the genus Raphidiopsis. We studied two strains of R. mediterranea isolated from Argentinean shallow lakes using a polyphasic approach that included the morphological description of the natural populations and their ultrastructural, physiological and molecular characterisation. Heterocyte differentiation was not observed in the field or in cultures of R. mediterranea submitted to nitrogen deprivation. These results support the occurrence of stable native populations of R. mediterranea without heterocytes, which would not be a part of the Cylindrospermopsis complex life cycle. Based on 16S rRNA, 16S23S ITS, and cpcBA-IGS sequences, these two genera are virtually identical. Thus, strains of Raphidiopsis and Cylindrospermopsis make up a monophyletic lineage in all phylogenetic reconstructions. Furthermore, the 16S23S ITS secondary structure provided further evidence that these two genera cannot be separated. The intermixed position in the trees points to several losses of heterocytes during the evolution of these cyanobacteria. We conclude that these two genera should not be regarded as separate and distinct generic units and propose their unification under the name Raphidiopsis, respecting the principle of priority. Accordingly, we revisited and emended the description of Raphidiopsis.

Journal

PhycologiaAllen Press

Published: Mar 11, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial