Origin and Structure of a Large Aggregation of Suwannee Cooters (Pseudemys concinna suwanniensis) in a Florida Spring

Origin and Structure of a Large Aggregation of Suwannee Cooters (Pseudemys concinna suwanniensis)... AbstractAnimals aggregate to reduce predation risk, facilitate mating, and access resources with patchy distributions. During a long-term study of turtle populations in the Santa Fe River (SFR) ecosystem in northern Florida, we observed a large aggregation of turtles at Gilchrist Blue Springs Park (GBSP) in AugustOctober 2013 and again in MarchMay 2014. On 8 September 2013, we hand-captured 496 turtles of 5 species in GBSP. The Suwannee cooter (Pseudemys concinna suwanniensis) was the most abundant species in the sample, with 477 individuals representing all demographic groups. Density of this species was 530 turtles/ha and biomass was 2242 kg/ha. We hypothesize that hydrological changes in the SFR basin contributed to the temporary turtle aggregations at GBSP. The 113-km SFR originates as a tannin-stained blackwater stream, but receives input of clear water from 45 artesian springs in its lower 37 km. Heavy rainfall in the upper SFR basin from Tropical Storm Debby in June 2012 resulted in a large influx of tannic water that overwhelmed the capacity of the springs to dilute the river water. This storm in combination with additional episodes of heavy rainfall and declining spring flows led to an unusually long (34-mo) tannic period in the typically clear lower 37 km of the SFR. The resulting loss of most submerged aquatic macrophytes in the river due to insufficient sunlight may have been the stimulus that led the herbivorous P. c. suwanniensis to seek food in one of the few locations that had abundant submerged aquatic vegetation in 2013 and 2014. Turtles previously marked upriver (to 16 km) and downriver (to 4.6 km) from GBSP were in the aggregation, suggesting the individuals gathered at GBSP represented a large portion of the SFR P. c. suwanniensis population. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chelonian Conservation and Biology Allen Press

Origin and Structure of a Large Aggregation of Suwannee Cooters (Pseudemys concinna suwanniensis) in a Florida Spring

Loading next page...
 
/lp/allen_press/origin-and-structure-of-a-large-aggregation-of-suwannee-cooters-kqxCZ6LatJ
Publisher
Chelonian Research Foundation Terms and Conditions
Copyright
2018 Chelonian Research Foundation
ISSN
1071-8443
D.O.I.
10.2744/CCB-1290.1
Publisher site
See Article on Publisher Site

Abstract

AbstractAnimals aggregate to reduce predation risk, facilitate mating, and access resources with patchy distributions. During a long-term study of turtle populations in the Santa Fe River (SFR) ecosystem in northern Florida, we observed a large aggregation of turtles at Gilchrist Blue Springs Park (GBSP) in AugustOctober 2013 and again in MarchMay 2014. On 8 September 2013, we hand-captured 496 turtles of 5 species in GBSP. The Suwannee cooter (Pseudemys concinna suwanniensis) was the most abundant species in the sample, with 477 individuals representing all demographic groups. Density of this species was 530 turtles/ha and biomass was 2242 kg/ha. We hypothesize that hydrological changes in the SFR basin contributed to the temporary turtle aggregations at GBSP. The 113-km SFR originates as a tannin-stained blackwater stream, but receives input of clear water from 45 artesian springs in its lower 37 km. Heavy rainfall in the upper SFR basin from Tropical Storm Debby in June 2012 resulted in a large influx of tannic water that overwhelmed the capacity of the springs to dilute the river water. This storm in combination with additional episodes of heavy rainfall and declining spring flows led to an unusually long (34-mo) tannic period in the typically clear lower 37 km of the SFR. The resulting loss of most submerged aquatic macrophytes in the river due to insufficient sunlight may have been the stimulus that led the herbivorous P. c. suwanniensis to seek food in one of the few locations that had abundant submerged aquatic vegetation in 2013 and 2014. Turtles previously marked upriver (to 16 km) and downriver (to 4.6 km) from GBSP were in the aggregation, suggesting the individuals gathered at GBSP represented a large portion of the SFR P. c. suwanniensis population.

Journal

Chelonian Conservation and BiologyAllen Press

Published: Jun 21, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off