Factors Affecting Nesting Ecology of Apalone spinifera in a Northwestern Great Plains River of the United States

Factors Affecting Nesting Ecology of Apalone spinifera in a Northwestern Great Plains River of... AbstractThe nesting ecology of Apalone spinifera in large North American rivers is largely unknown despite the wide distribution of the species in these naturally dynamic ecosystems. We describe the nesting locations, timing, behavior, and habitat of A. spinifera in relation to natural and anthropogenic factors in the Missouri River. Nesting followed annual peak river stage, mostly occurred in the afternoon when air temperatures were 2530C, and did not occur when human activity was nearby. Apalone spinifera nested in June in a year with average discharge (2012), but nested 20 d later in a year with a large flood event (2011). During the average discharge year, 90 of nests were found on islands, but similar proportions of nests were found on island and mainland habitats during the flood year because many islands were inundated. Nests were mostly in mixed-gravel substrates where vegetation cover was sparse or absent. Depredation occurred only after the emergence of hatchlings (60 d after nesting) and more often on nests on the mainland than on islands. Emergence rates were 1.5 times higher in the average year than the flood year, and emergence rates were higher in mixed-gravel nests than in pure-sand nests in 2011. In artificial nests, incubation temperatures averaged 4.3C higher in mixed-gravel than in sand substrates, and freezing temperatures in winter penetrated to depths greater than the mean egg chamber depth (7.5 cm) for up to 3 wks. Therefore, incubation might be accelerated in mixed-gravel substrates. Accelerated incubation would enhance reproductive success because freezing temperatures preclude hatchlings from overwintering in nests in our study area. Mountain snowmelt-driven hydrology, coupled with the onset of freezing temperatures in autumn, might create a temporal runoff-freeze squeeze that limits the successful reproduction of A. spinifera in some years. However, high runoff also scoured vegetation from shorelines where A. spinifera nested in subsequent years. Natural variation in annual discharge might therefore be crucial to conservation of A. spinifera in large rivers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Chelonian Conservation and Biology Allen Press

Factors Affecting Nesting Ecology of Apalone spinifera in a Northwestern Great Plains River of the United States

Loading next page...
 
/lp/allen_press/factors-affecting-nesting-ecology-of-apalone-spinifera-in-a-XEciUkSQLf
Publisher
Chelonian Research Foundation Terms and Conditions
Copyright
2018 Chelonian Research Foundation
ISSN
1071-8443
D.O.I.
10.2744/CCB-1298.1
Publisher site
See Article on Publisher Site

Abstract

AbstractThe nesting ecology of Apalone spinifera in large North American rivers is largely unknown despite the wide distribution of the species in these naturally dynamic ecosystems. We describe the nesting locations, timing, behavior, and habitat of A. spinifera in relation to natural and anthropogenic factors in the Missouri River. Nesting followed annual peak river stage, mostly occurred in the afternoon when air temperatures were 2530C, and did not occur when human activity was nearby. Apalone spinifera nested in June in a year with average discharge (2012), but nested 20 d later in a year with a large flood event (2011). During the average discharge year, 90 of nests were found on islands, but similar proportions of nests were found on island and mainland habitats during the flood year because many islands were inundated. Nests were mostly in mixed-gravel substrates where vegetation cover was sparse or absent. Depredation occurred only after the emergence of hatchlings (60 d after nesting) and more often on nests on the mainland than on islands. Emergence rates were 1.5 times higher in the average year than the flood year, and emergence rates were higher in mixed-gravel nests than in pure-sand nests in 2011. In artificial nests, incubation temperatures averaged 4.3C higher in mixed-gravel than in sand substrates, and freezing temperatures in winter penetrated to depths greater than the mean egg chamber depth (7.5 cm) for up to 3 wks. Therefore, incubation might be accelerated in mixed-gravel substrates. Accelerated incubation would enhance reproductive success because freezing temperatures preclude hatchlings from overwintering in nests in our study area. Mountain snowmelt-driven hydrology, coupled with the onset of freezing temperatures in autumn, might create a temporal runoff-freeze squeeze that limits the successful reproduction of A. spinifera in some years. However, high runoff also scoured vegetation from shorelines where A. spinifera nested in subsequent years. Natural variation in annual discharge might therefore be crucial to conservation of A. spinifera in large rivers.

Journal

Chelonian Conservation and BiologyAllen Press

Published: Jun 21, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off