Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
The purpose of this study is to examine wearable medical sensor devices, machine and deep learning algorithms, and Internet of Things-based healthcare systems in COVID-19 patient screening, diagnosis, monitoring, and treatment. In this article, I cumulate previous research findings indicating that artificial intelligence tools can predict COVID-19 transmission patterns, assess disease severity, and predict mortality rate. I contribute to the literature on mobile medical applications and technologies by showing that Internet of Medical Things can save COVID- 19 diagnosis time and optimize physiological patient data collection by medical sensor devices. Throughout January 2022, I performed a quantitative literature review of the Web of Science, Scopus, and ProQuest databases, with search terms including “COVID-19” + “wearable medical sensor devices,” “machine and deep learning algorithms,” and “Internet of Things-based healthcare systems.” As I inspected research published between 2019 and 2022, only 144 articles satisfied the eligibility criteria. By eliminating controversial findings, outcomes unsubstantiated by replication, too imprecise material, or having similar titles, I decided upon 28, generally empirical, sources. Data visualization tools: Dimensions (bibliometric mapping) and VOSviewer (layout algorithms). Reporting quality assessment tool: PRISMA. Methodological quality assessment tools include: AXIS, Dedoose, MMAT, and SRDR. Keywords: Internet of Things; wearable medical sensor device; COVID-19
American Journal of Medical Research – Addleton Academic Publishers
Published: Jan 1, 2022
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.