Access the full text.
Sign up today, get DeepDyve free for 14 days.
This paper analyzes the outcomes of an exploratory review of the current research on intelligent vehicular networks, deep learning-based sensing technologies, and big data-driven algorithmic decision-making in smart transportation systems. The data used for this study was obtained and replicated from previous research conducted by AAA, Abraham et al. (2017), Accenture, AUVSI, CarGurus, Deloitte, eMarketer, Kennedys, Morning Consult, Perkins Coie, Pew Research Center, SAE, and Schoettle and Sivak (2014). We performed analyses and made estimates regarding how smart transportation technologies can leverage driving data to improve car safety and mobility in addition to road traffic and infrastructure, thus increasing autonomous vehicle adoption intentions by use of instantaneous motion planning and object detection and tracking algorithms to reduce traffic congestions and collisions. Data collected from 6,800 respondents are tested against the research model. Descriptive statistics of compiled data from the completed surveys were calculated when appropriate. Keywords: algorithmic decision-making; smart transportation; deep learning; intelligent vehicular network; big data; sensing technologies
Contemporary Readings in Law and Social Justice – Addleton Academic Publishers
Published: Jan 1, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.