Double well potentials with a quantum moat barrier or a quantum wall barrier give rise to similar entangled wave functions

Double well potentials with a quantum moat barrier or a quantum wall barrier give rise to similar... The solution to a problem in quantum mechanics is generally a linear superposition of states. The solutions for double well potentials epitomize this property, and go even further than this: they can often be described by an effective model whose low energy features can be described by two states—one in which the particle is on one side of the barrier, and a second where the particle is on the other side. Then the ground state remains a linear superposition of these two macroscopic-like states. In this paper, we illustrate that this property is achieved similarly with an attractive potential that separates two regions of space, as opposed to the traditionally repulsive one. In explaining how this comes about we revisit the concept of “orthogonalized plane waves,” first discussed in 1940 to understand electronic band structure in solids, along with the accompanying concept of a pseudopotential. We show how these ideas manifest themselves in a simple double well potential, whose “barrier” consists of a moat instead of the conventional wall. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png American Journal of Physics American Association of Physics Teachers

Double well potentials with a quantum moat barrier or a quantum wall barrier give rise to similar entangled wave functions

Loading next page...
 
/lp/aapt/double-well-potentials-with-a-quantum-moat-barrier-or-a-quantum-wall-SJdSZ5VNfx
Publisher
American Association of Physics Teachers
Copyright
© 2018 American Association of Physics Teachers.
ISSN
0002-9505
D.O.I.
10.1119/1.5019166
Publisher site
See Article on Publisher Site

Abstract

The solution to a problem in quantum mechanics is generally a linear superposition of states. The solutions for double well potentials epitomize this property, and go even further than this: they can often be described by an effective model whose low energy features can be described by two states—one in which the particle is on one side of the barrier, and a second where the particle is on the other side. Then the ground state remains a linear superposition of these two macroscopic-like states. In this paper, we illustrate that this property is achieved similarly with an attractive potential that separates two regions of space, as opposed to the traditionally repulsive one. In explaining how this comes about we revisit the concept of “orthogonalized plane waves,” first discussed in 1940 to understand electronic band structure in solids, along with the accompanying concept of a pseudopotential. We show how these ideas manifest themselves in a simple double well potential, whose “barrier” consists of a moat instead of the conventional wall.

Journal

American Journal of PhysicsAmerican Association of Physics Teachers

Published: Mar 8, 2018

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial