TY - JOUR AU - Shen, Li AB - Let G be the group of the fractional linear transformations generated by $$T(\tau ) = \tau + \lambda ,S(\tau ) = \frac{{\tau \cos \frac{\pi }{n} + \sin \frac{\pi }{n}}}{{ - \tau \sin \frac{\pi }{n} + \cos \frac{\pi }{n}}};$$ T ( τ ) = τ + λ , S ( τ ) = τ cos π n + sin π n − τ sin π n + cos π n ; where $$\lambda = 2\frac{{\cos \frac{\pi }{m} + \cos \frac{\pi }{n}}}{{\sin \frac{\pi }{n}}};$$ λ = 2 cos π m + cos π n sin π n ; m, n is a pair of integers with either n ≥ 2,m ≥ 3 or n ≥ 3,m ≥ 2; τ lies in the upper half plane H. TI - On Schwarzian Triangle Functions, Automorphic Forms and a Generalization of Ramanujan’s Triple Differential Equations JF - Acta Mathematica Sinica, English Series DO - 10.1007/s10114-018-6389-2 DA - 2018-05-07 UR - https://www.deepdyve.com/lp/springer-journals/on-schwarzian-triangle-functions-automorphic-forms-and-a-vps7saSKZH SP - 1648 EP - 1662 VL - 34 IS - 11 DP - DeepDyve ER -