TY - JOUR AU1 - Kamal, Preet AU2 - Ahuja, Sachin AB - The purpose of this paper is to develop a prediction model to study the factors affecting the academic performance of students pursuing an undergraduate professional course (BCA). For this purpose, the ensemble model of decision tree, gradient boost algorithm and Naïve Bayes techniques is created to achieve best and accurate results. Monitoring the academic performance of students has emerged as an essential field as it plays a vital role in the accurate development and growth of students’ critical and cognitive thinking. If the academic performance of students during the initial years of the graduation can be predicted, different stakeholders, i.e. government, policymakers, academicians, can be helped to make significant remedial strategies. This comprehensible practice can go a long way in shaping the ideologies of young minds, enhancing pedagogical practices and reframing of curriculum. This study aims to develop positive steps that can be taken to enhance future endeavours in the field of education.Design/methodology/approachA questionnaire was prepared specifically to find out influential factors affecting the academic performance of the students. Its specific area of investigation was demographic, social, academic and behavioural factors that influence the performance of the students. Then, an ensemble model was built using three techniques based on accuracy rate. A 10-fold cross-validation technique was applied to access the fitness of results obtained from proposed ensemble model.FindingsThe result obtained from ensemble model provides efficient and accurate prediction of student performance and helps identify the students that are at risk of failing or being a drop-out. The effect of previous semester’s academic performance shows a significant impact on current academic performance along with other factors (such as number of siblings and distance of university from residence). Any major mishap during past one year also affects the academic performance along with habit-based behavioural factors such as consumption of alcohol and tobacco.Research limitations/implicationsThough the existing model considers aspects related to a student’s family income and academic indicators, it tends to ignore major factors such as influence of peer pressure, self-study habits and time devoted to study after college hours. An attempt is made in this paper to examine the above cited factors in predicting the academic performance of the students. The need of the hour is to develop innovative models to assess and make advancements in the present educational set-up. The ensemble model is best suited to study all factors needed to accomplish a robust and reliable model.Originality\valueThe present model is developed using classification and regression algorithms. The model is able to achieve 99 per cent accuracy with the existing data set and is able to identify the influential factors affecting the academic performance. As early detection of at-risk students is possible with the proposed model, preventive and corrective measures can be proposed for improving the overall academic performance of the students. TI - An ensemble-based model for prediction of academic performance of students in undergrad professional course JF - Journal of Engineering Design and Technology DO - 10.1108/jedt-11-2018-0204 DA - 2019-08-05 UR - https://www.deepdyve.com/lp/emerald-publishing/an-ensemble-based-model-for-prediction-of-academic-performance-of-ux4g0aF5OF SP - 769 EP - 781 VL - 17 IS - 4 DP - DeepDyve ER -