TY - JOUR AU1 - MATSUMOTO, Kenji AU2 - WATANABE, Yutaka AU3 - YOKOYAMA, Shin-ichiro AB - Abstract We examined the effect of okara on the prevention of obesity in mice. A modified AIN-76 diet with a high fat content (14.1% of crude fat) was used as a basal diet. Male ICR mice were fed ad libitum with the basal diet or a dried okara-supplemented basal diet (10, 20, or 40%) for 10 weeks. The okara intake dose-dependently suppressed the development of body weight and epididymal white adipose tissue (EWAT), and prevented an increase of plasma lipids, including total cholesterol, LDL cholesterol, and non-esterified fatty acid. The okara intake also prevented steatosis in the liver. Real-time RT-PCR revealed that the okara intake induced down-regulation of the fatty acid synthetase gene and up-regulation of the cholesterol 7 alpha-hydroxylase (CYP7A1) gene in the liver. We also found that the okara intake caused a marked reduction in the expression of leptin and TNF-alpha genes in EWAT. Our results suggest that okara is beneficial in preventing obesity. okara, soybean residue, obesity, hepatocyte steatosis, lipid disorder Reference 1) Bhathena, S. J., and Velasquez, M. T., Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr., 76, 1191–1201 (2002). 2) Merritt, J. C., Metabolic syndrome: soybean foods and serum lipids. J. Natl. Med. Assoc., 96, 1032–1041 (2004). 3) Banz, W. J., Davis, J., Peterson, R., and Iqbal, M. J., Gene expression and adiposity are modified by soy protein in male Zucker diabetic fatty rats. Obes. Res., 12, 1907–1913 (2004). 4) Tovar, A. R., Torre-Villalvazo, I., Ochoa, M., Elias, A. L., Ortiz, V., Aguilar-Salinas, C. A., and Torres, N., Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese Zucker fa/fa rats. J. Lipid Res., 46, 1823–1832 (2005). 5) Torres, N., Torre-Villalvazo, I., and Tovar, A. R., Regulation of lipid metabolism by soy protein and its implication in diseases mediated by lipid disorders. J. Nutr. Biochem., 17, 365–373 (2006). 6) O’ Toole, D. K., Characteristics and use of okara, the soybean residue from soy milk production—a review. J. Agric. Food Chem., 47, 363–371 (1999). 7) Matsuo, M., In vivo antioxidant activity of Okara Koji, a fermented okara, by Aspergillus oryzae. Biosci. Biotechnol. Biochem., 61, 1968–1972 (1997). 8) Jiang, W. Z., Kitamura, Y., and Li, B., Improving acidogenic performance in anaerobic degradation of solid organic waste using a rotational drum fermentation system. Biores. Technol., 96, 1537–1543 (2005). 9) Mizumoto, S., Hirai, M., and Shoda, M., Production of lipopeptide antibiotic iturin A using soybean curd residue cultivated with Bacillus subtilis in solid-state fermentation. Appl. Microbiol. Biotechnol., 72, 869–875 (2006). 10) Quitain, A. T., Oro, K., Katoh, S., and Moriyoshi, T., Recovery of oil components of okara by ethanol-modified supercritical carbon dioxide extraction. Biores. Technol., 97, 1509–1514 (2006). 11) Kasai, N., Murata, A., Inui, H., Sakamoto, T., and Kahn, R. I., Enzymatic high digestion of soybean milk residue (okara). J. Agric. Food Chem., 52, 5709–5716 (2004). 12) Visscher, T. L., Kromhout, D., and Seidell, J. C., Long-term and recent time trends in the prevalence of obesity among Dutch men and women. Int. J. Obes. Relat. Metab. Disord., 26, 1218–1224 (2002). 13) Mokdad, A. H., Ford, E. S., Bowman, B. A., Dietz, W. H., Vinicor, F., Bales, V. S., and Marks, J. S., Prevalence of obesity, diabetes, and obesity-related health risk factors. JAMA, 289, 76–79 (2003). 14) Bendixen, H., Holst, C., Sorensen, T. I., Raben, A., Bartels, E. M., and Astrup, A., Major increase in prevalence of overweight and obesity between 1987 and 2001 among Danish adults. Obes. Res., 12, 1464–1472 (2004). 15) Monteiro, C. A., D’A Benicio, M. H., Conde, W. L., and Popkin, B. M., Shifting obesity trends in Brazil. Eur. J. Clin. Nutr., 54, 342–346 (2000). 16) Salazar-Martinez, E., Allen, B., Fernandez-Ortega, C., Torres-Mejia, G., Galal, O., and Lazcano-Ponce, E., Overweight and obesity status among adolescents from Mexico and Egypt. Arch. Med. Res., 37, 535–542 (2006). 17) Willett, W. C., Dietz, W. H., and Colditz, G. A., Guidelines for healthy weight. N. Engl. J. Med., 341, 427–434 (1999). 18) Fontaine, K. R., Redden, D. T., Wang, C., Westfall, A. O., and Allison, D. B., Years of life lost due to obesity. JAMA, 289, 187–193 (2003). 19) Roberts, S. B., McCrory, M. A., and Saltzman, E., The influence of dietary composition on energy intake and body weight. J. Am. Coll. Nutr., 21, 140S–145S (2002). 20) Slavin, J. L., Dietary fiber and body weight. Nutrition, 21, 411–418 (2005). 21) Council for International Organizations of Medical Sciences, International Guiding Principles for Biomedical Research Involving Animals, Geneva, Switzerland (1985). 22) Matsumoto, K., Kwon, O. Y., Kim, H., and Akao, Y., Expression of rck/p54, a DEAD-box RNA helicase, in gametogenesis and early embryogenesis of mice. Dev. Dyn., 233, 1149–1156 (2005). 23) Matsumoto, K., Hiraiwa, N., Yoshiki, A., Ohnishi, M., and Kusakabe, M., PDGF receptor-alpha deficiency in glomerular mesangial cells of tenascin-C knockout mice. Biochem. Biophys. Res. Commun., 290, 1220–1227 (2002). 24) Haimovici, R., Gantz, D. L., Rumelt, S., Freddo, T. F., and Small, D. M., The lipid composition of drusen, Bruch’s membrane, and sclera by hot stage polarizing light microscopy. Invest. Ophthalmol. Vis. Sci., 42, 1592–1599 (2001). 25) Paulauskis, J. D., and Sul, H. S., Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J. Biol. Chem., 263, 7049–7054 (1988). 26) Kleemann, R., and Kooistra, T., HMG-CoA reductase inhibitors: effects on chronic subacute inflammation and onset of atherosclerosis induced by dietary cholesterol. Curr. Drug Targets Cardiovasc. Haematol. Disord., 5, 441–453 (2005). 27) Cheema, S. K., Cikaluk, D., and Agellon, L. B., Dietary fats modulate the regulatory potential of dietary cholesterol on cholesterol 7α-hydroxylase gene expression. J. Lipid Res., 38, 315–323 (1997). 28) Matsuzawa, Y., White adipose tissue and cardiovascular disease. Best Pract. Res. Clin. Endocrinol. Metab., 19, 637–647 (2005). 29) Koerner, A., Kratzsch, J., and Kiess, W., Adipocytokines: leptin—the classical, resistin—the controversial, adiponectin—the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab., 19, 525–546 (2005). 30) Housa, D., Housova, J., Vernerova, Z., and Haluzik, M., Adipocytokines and cancer. Physiol. Res., 55, 233–244 (2006). 31) Zimmet, P., Magliano, D., Matsuzawa, Y., Alberti, G., and Shaw, J., The metabolic syndrome: a global public health problem and a new definition. J. Atheroscler. Thromb., 12, 295–300 (2005). 32) Ascencio, C., Torres, N., Isoard-Acosta, F., Gomez-Perez, F. J., Hernandez-Pando, R., and Tovar, A. R., Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. J. Nutr., 134, 522–529 (2004). 33) Tovar, A. R., Torre-Villalvazo, I., Ochoa, M., Elias, A. L., Ortiz, V., Aguilar-Salinas, C. A., and Torres, N., Soy protein reduces hepatic lipotoxicity in hyperinsulinemic obese Zucker fa/fa rats. J. Lipid Res., 46, 1823–1832 (2005). 34) Andersson, M., Ellegard, L., and Andersson, H., Oat bran stimulates bile acid synthesis within 8 h as measured by 7alpha-hydroxy-4-cholesten-3-one. Am. J. Clin. Nutr., 76, 1111–1116 (2002). 35) Chau, C. F., and Huang, Y. L., Effects of the insoluble fiber derived from Passiflora edulis seed on plasma and hepatic lipids and fecal output. Mol. Nutr. Food Res., 49, 786–790 (2005). 36) van Bennekum, A. M., Nguyen, D. V., Schulthess, G., Hauser, H., and Phillips, M. C., Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. Br. J. Nutr., 94, 331–337 (2005). 37) Afman, L., and Muller, M., Nutrigenomics: from molecular nutrition to prevention of disease. J. Am. Diet. Assoc., 106, 569–576 (2006). 38) Osei-Hyiaman, D., DePetrillo, M., Pacher, P., Liu, J., Radaeva, S., Batkai, S., Harvey-White, J., Mackie, K., Offertaler, L., Wang, L., and Kunos, G., Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J. Clin. Invest., 115, 1298–1305 (2005). 39) Pietilainen, K. H., Kannisto, K., Korsheninnikova, E., Rissanen, A., Kaprio, J., Ehrenborg, E., Hamsten, A., and Yki-Jarvinen, H., Acquired obesity increases CD68 and TNF-α and decreases adiponectin gene expression in adipose tissue. A study in monozygotic twins. J. Clin. Endocrinol. Metab., 91, 2776–2781 (2006). PDF This content is only available as a PDF. © Japan Society for Bioscience, Biotechnology, and Agrochemistry 2007 This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) © Japan Society for Bioscience, Biotechnology, and Agrochemistry 2007 TI - Okara, Soybean Residue, Prevents Obesity in a Diet-Induced Murine Obesity Model JF - Bioscience Biotechnology and Biochemistry DO - 10.1271/bbb.60563 DA - 2007-03-23 UR - https://www.deepdyve.com/lp/oxford-university-press/okara-soybean-residue-prevents-obesity-in-a-diet-induced-murine-yLh0SPIRlc SP - 720 EP - 727 VL - 71 IS - 3 DP - DeepDyve ER -