TY - JOUR AU - Hao, Yue AB - Transient memristors are prospective candidates for both secure memory systems and biointegrated electronics, which are capable to physically disappear at a programmed time with a triggered operation. However, the sneak current issue has been a considerable obstacle to achieve high‐density transient crossbar array of memristors. To solve this problem, it is necessary to develop a transient switch device to turn the memory device on and off controllably. Here, a dissolvable and flexible threshold switching (TS) device with a vertically crossed structure is introduced, which exhibits a high selectivity of 107, steep turn‐on slope of <8 mV dec−1, and fast ON/OFF switch speed within 50/25 ns. Triggered failure could be achieved after soaking the device in deionized water for 8 min at room temperature. Furthermore, a water‐assisted transfer printing method is used to fabricate flexible and transient TS device arrays for bioresorbable systems, in which none of any significant degradation is observed under a bending radius of 2 mm. Integrating the selector with a transient memristor is capable of 107 Gb memory implementation, indicating that the transient TS device could provide great opportunities to achieve highly integrated transient memory arrays. TI - Physically Transient Threshold Switching Device Based on Magnesium Oxide for Security Application JO - Small DO - 10.1002/smll.201800945 DA - 2018-01-01 UR - https://www.deepdyve.com/lp/wiley/physically-transient-threshold-switching-device-based-on-magnesium-yDh64XBWki SP - n/a EP - n/a VL - 14 IS - 27 DP - DeepDyve ER -