TY - JOUR AU - Waring, George O. AB - Abstract • We created a computerized mathematical model of the eye for the simulation of refractive surgery. This model used a slightly prolate shape for a moderately myopic eye and an idealized aspheric profile for the cornea. The finite element method and the nonlinear Mooney-Rivelin law were used to analyze stress-strain relationships. Radial keratotomy changes stress distribution in the cornea and the anterior sclera, with major changes at the paracentral and peripheral ends of the incisions. The model predicted that there would be a flattening of the central cornea with a posterior displacement, which increased with an increase in intraocular pressure. A change in the length of the incision of 0.5 mm produced a significant change in correction. For small clear zones (3 to 4 mm), incisions of equal length produced comparable changes in refraction. We found that the effect of the corneal radius of curvature on the amount of refractive change was negligible. We studied the effect of elasticity coefficients and corneal anisotropia. References 1. Lynn MJ, Waring GO, Sperduto RD, et al. Factors affecting outcome and predictability of radial keratotomy . Arch Ophthalmol . 1987;105:42-51.Crossref 2. Collins R, Van der Werff TJ. Mathematical Model of the Dynamics of the Human Eye . New York, NY: Springer-Verlag NY Inc; 1980. 3. Kobayashi AS. Mechanics and analysis of tonometry procedures by finite element modeling of the cornea-scleral shell . In: Ghista DN, ed. Biomechanics of Medical Devices . New York, NY: Marcel Dekker Inc; 1981. 4. Schachar R, Black T, Huang T. A Physicist's View of Radial Keratotomy With Practical Surgical Implications . Denison, Tex: LAL Publishing; 1980:195-219. 5. Hofmann RF. The surgical correction of idiopathic astigmatism . In: Sanders DR, Hofmann RF, Salz JJ, eds. Refractive Corneal Surgery . Thorofare, NJ: Slack Inc; 1985:250-258. 6. Bercovier M, Hanna K, Jouve F. An analysis of refractive surgery by the finite element method . Comput Mechan . 1986;4:143-148. 7. Ciarlet PG. Elasticite Tridimensionelle . New York, NY: Masson Publishers, USA Inc; 1986. 8. Southall JPC. Introduction of Physiological Optics . Mineola, NY: Dover; 1961. 9. Duke-Elder S, Abrams D. Ophthalmic optics and refraction . In: Duke-Elder, S, ed. System of Ophthalmology . London, England: Kimpton; 1970;5. 10. Green PR. Mechanical considerations in myopia . Am J Optom Physiol Opt . 1980;57:902-914.Crossref 11. Sorsby A. Biology of the eye as an optical system . In: Duane TD, ed. Clinical Ophthalmology . New York, NY: Harper & Row Publishers Inc; 1986;1:7. 12. Lotmar W. Theoretical eye model with aspherics . J Opt Soc Am . 1971;61:1522-1529.Crossref 13. Battaglioli JL, Kamm RD. Measurements of the compressive properties of the scleral tissue . Invest Ophthalmol Vis Sci . 1984;25:59-65. 14. Chuong CHJ, Fund YC. Compressibility and constitutive equation of arterial wall in radial compression experiments . J Biomech . 1984;17:35-40.Crossref 15. Woo SL, Kobayashi AS, Schlegel WA. Nonlinear material properties of intact cornea and sclera . Exp Eye Res . 1982;14:29-39.Crossref 16. Woo SL. Structural Analysis of a Cornea-Scleral Shell. Seattle, Wash: University of Washington; 1971. Thesis. 17. McPhee THJ, Bourne WM, Brubaker RF. Location of stress-bearing layers of the cornea . Invest Ophthalmol Vis Sci . 1985;26:869-872. 18. Zienkiewicz OC. The Finite Element Method . New York, NY: McGraw-Hill International Book Co; 1977. 19. Gullstrand A. Helmholtz's Treatise on Physiological Optics . New York, NY: Optical Society of America; 1924;1. 20. St Helen R, McEwen WK. Rheology of the human sclera: anelastic behavior . Am J Ophthalmol . 1961;5:539-548. 21. Fung YC. Mechanical properties of living tissues . In: Biomechanics . New York, NY: Springer-Verlag NY Inc; 1981. 22. Meek KM, Blamires T, Elliott FG, Gyi TJ, Nave C. The organization of collagen fibrils in human corneal stroma . Curr Eye Res . 1987;6:841-846.Crossref 23. Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea . J Biomech . 1986;19:847-853.Crossref TI - Preliminary Computer Simulation of the Effects of Radial Keratotomy JF - Archives of Ophthalmology DO - 10.1001/archopht.1989.01070010933044 DA - 1989-06-01 UR - https://www.deepdyve.com/lp/american-medical-association/preliminary-computer-simulation-of-the-effects-of-radial-keratotomy-uypJ0yTeIc SP - 911 EP - 918 VL - 107 IS - 6 DP - DeepDyve ER -