TY - JOUR AU - Soliman, Tarek Ahmed AB - Background: There are very few studies in literature concerning the bonding between 3D-printed resin posts and the core build-up material. This study aimed to evaluate and compare the adhesion of 3D-printed and milled resin posts to composite resin core build-up material following different surface treatments. Methods: Three types of resin posts were utilized in this study: ready-made glass-reinforced fiber post (3M ESPE, Germany), milled PEEK POST (Bredent, Germany), and 3D-printed resin post (CROWNTEC, Saremco Dental AG, Switzerland). Each type of post was categorized into three groups based on surface treatments: C: untreated surfaces; SB: Air abrasion with 50 μm aluminum oxide particles was applied to the posts’ surfaces.; HO: the posts’ surfaces were immersed in 30% H2O2 for 5 min. A dual-cured composite resin (Grandio DC; VOCO) was utilized for core build-up in each group to evaluate adhesion through the push-out bond strength test. The modes of failure were analyzed, and the surface morphology of the post was characterized using SEM. Data were analyzed using a two-way analysis of variance (ANOVA) along with Tukey’s test. Results: The two-way ANOVA indicated a significant effect for surface treatment (F = 583.54, p < 001), post type (F = 79.96, p < 0.001), and their interactions (F = 265.74, p < 0.001). Regarding 3D-printed resin post, 30% H2O2 for 5 min recorded the highest statistically significant bond strength value (13.11 ± 1.61) compared to other groups. Regarding the milled PEEK post, the air particle abrasion recorded the highest statistically significant value (23.88 ± 1.66) compared to other groups. Adhesive failure was the predominant failure type, with an occurrence rate of 70.35%. Mixed failure was noted in 24.07% of the cases, with a significant prevalence in the PEEK post within the air particle abrasion group (58.3%). Cohesive failure was noted in 5.54% of cases, with a significant prevalence in the air particle abrasion group, occurring at rates of 16.6% in the resin fiber post group and 33.3% in PEEK posts. Conclusions: Air particle abrasion significantly improved the push-out bond strength of milled PEEK posts, but it did not have a similar effect on the 3D-printed resin posts. The application of 30% H2O2 for 5 min to 3D-printed resin post enhanced the adhesion to core build-up material. The manufacturing method of posts, the surface treatments utilized, and their interactions affect the interfacial bond strength between posts and the composite resin core build-up material. TI - Adhesion of 3D-Printed Versus Milled Resin Posts to Composite Resin Core Build-Up Material: Influence of Surface Treatments JO - Polymers DO - 10.3390/polym17121711 DA - 2025-06-19 UR - https://www.deepdyve.com/lp/pubmed-central/adhesion-of-3d-printed-versus-milled-resin-posts-to-composite-resin-uas2M54ebd VL - 17 IS - 12 DP - DeepDyve ER -