TY - JOUR AU - Chandrasekaran, Natarajan AB - The increasing load of nanoplastic pollution in the environment has become a major concern toward human and environmental safety. The current investigation mainly focused on assessing the toxic behavior of nanoplastics (polystyrene nano-spheres (PNS)) toward blood cells and marine crustacean. The study also investigated the temporal stability of PNS under different water matrices and its size-dependent sedimentation behavior in the sea water dispersion. The nano-dispersion showed mean particle size of 561.4 ± 0.80 and 613.7 ± 0.11 nm for PNS 1 and 781.4 ± 0.80 and 913.7 ± 0.11 nm for PNS 2 in lake and seawater, respectively after 48-h incubation, which is ~ 8-fold increase from its original size. The LC50 value against Artemia salina and lymphocytes were found to be 4.82 and 8.79 μg/mL, and 75 μg/mL, respectively for PNS 1 and PNS 2. The genotoxic study reveals that around 50% of lymphocytes were affected by both PNS at 50 μg/mL concentration, whereas the cytotoxic studies on RBC and lymphocytes showed 50% toxicity only at 100 μg/mL concentration. The genotoxic study displayed numerous tri- and multi-nucleated cells. The biochemical profile of A. salina exposed to lethal concentration demonstrated a significant decrease in the total protein, reduced glutathione, and catalase activity and increase in lipid peroxidation activity as a result of PNS permeation to tissues. In conclusion, the present study demonstrated that the polystyrene nano-spheres are emerging pollutant in the environment and are hazardous to humans. TI - Distinctive impact of polystyrene nano-spherules as an emergent pollutant toward the environment JO - Environmental Science and Pollution Research DO - 10.1007/s11356-018-3698-z DA - 2018-11-15 UR - https://www.deepdyve.com/lp/springer-journals/distinctive-impact-of-polystyrene-nano-spherules-as-an-emergent-tEvcpP5JAp SP - 1537 EP - 1547 VL - 26 IS - 2 DP - DeepDyve ER -