TY - JOUR AU1 - Wang, Jiong-Rong AU2 - Pan, Bi-Cai AB - The thermal conductivity of plasma-facing materials (PFM) exposed to intense radiation is a critical concern for the reliable usage of materials in fusion reactors. However, limited research has been performed regarding the thermal conductivity of structures that rapidly change in a short time during collision cascade processes under irradiation. In this study, we employed the tight-binding (TB) method to investigate the electronic thermal conductivity (κe\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa _{\text {e}}$$\end{document}) of tungsten-based systems during various cascading processes. We found that κe\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa _{\text {e}}$$\end{document} values sharply decrease within the initial 0.3 picoseconds and then partially recover at a slow pace; this is closely linked to the evolution of defects and microstructural distortions. The increase in the initial kinetic energy of the primary knock-on atom and the presence of a high concentration of hydrogen atoms further decrease the κe\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa _{\text {e}}$$\end{document} values. Conversely, higher temperatures have a significant positive effect on κe\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa _{\text {e}}$$\end{document}. Furthermore, the presence of a grain boundary ∑5001130\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\sum 5\left[ 001 \right] \left( 130 \right)$$\end{document} substantially reduces κe\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa _{\text {e}}$$\end{document}, whereas the absorption effect of point defects by the grain boundary has little influence on κe\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\kappa _{\text {e}}$$\end{document} during cascades. Our findings provide a theoretical basis for evaluating changes in the thermal conductivity performance of PFMs during their usage in nuclear fusion reactors. TI - Electronic thermal conductivity of tungsten-based systems during collision cascade processes JF - Nuclear Science and Techniques DO - 10.1007/s41365-025-01653-z DA - 2025-05-01 UR - https://www.deepdyve.com/lp/springer-journals/electronic-thermal-conductivity-of-tungsten-based-systems-during-pPn2MQQWV8 VL - 36 IS - 5 DP - DeepDyve ER -