TY - JOUR AU - Mavi, Ahmet AB - This study presented a novel breast cancer therapy model that uses magnetic field-controlled heating to trigger gene expression in cancer cells. We created silica- and amine-modified superparamagnetic nanoparticles (MSNP-NH2) to carry genes and release heat under an alternating current (AC) magnetic field. The heat-inducible expression plasmid (pHSP-Azu) was designed to encode anti-cancer azurin and was delivered by magnetofection. MCF-7 cells demonstrated over 93% cell viability and 12% transfection efficiency when exposed to 75 µg/ml of MSNP-NH2, 3 µg of DNA, and PEI at a 0.75 PEI/DNA ratio (w: w), unlike non-tumorigenic cells (MCF-10 A). Magnetic hyperthermia (MHT) increased azurin expression by heat induction, leading to cell death in dual ways. The combination of MHT and heat-regulated azurin expression induced cell death, specifically in cancer cells, while having negligible effects on MCF-10 A cells. The proposed strategy clearly shows that simultaneous use of MHT and MHT-induced azurin gene expression may selectively target and kill cancer cells, offering a promising direction for cancer therapy. TI - Combination of magnetic hyperthermia and gene therapy for breast cancer JF - APOPTOSIS DO - 10.1007/s10495-024-02026-4 DA - 2025-02-01 UR - https://www.deepdyve.com/lp/springer-journals/combination-of-magnetic-hyperthermia-and-gene-therapy-for-breast-oCdfyVN86K SP - 99 EP - 116 VL - 30 IS - 1 DP - DeepDyve ER -