TY - JOUR AU - Sullivan, Lori S. AB - Exceptional progress has been made during the past two decades in identifying genes causing inherited retinal diseases such as retinitis pigmentosa. An inescapable consequence is that the relationship between genes, mutations, and clinical findings has become very complex. Success in identifying the causes of inherited retinal diseases has many implications, including a better understanding of the biological basis of vision and insights into the processes involved in retinal pathology. From a clinical point of view, there are two important questions arising from these developments: where do we stand today in finding disease-causing mutations in affected individuals, and what are the implications of this information for clinical practice? This perspective addresses these questions specifically for retinitis pigmentosa, but the observations apply generally to other forms of inherited eye disease.The goal of this perspective is to summarize the current state of the molecular diagnosis of retinitis pigmentosa (RP) and its relevance to clinical practice. The comments are limited largely to nonsyndromic, nonsystemic forms of RP, using autosomal dominant RP (adRP) as an example. It is important to recognize, though, that what is true for simple RP is true in general for most other forms of inherited retinal degeneration. There has been rapid progress in identifying genes and mutations causing all forms of retinal disease, including multifactorial diseases such as age-related macular degeneration. Of course, the specific genes are different and the clinical findings are distinct, but the implications for clinical practice are similar. For example, what is true for RP alone is also true for Usher syndrome, Bardet-Biedl syndrome, and familial macular degeneration. That is, many genes and mutations are also known for these diseases and have relevance to clinical practice. A list of genes causing RP and other retinopathies can be found at the RetNet Web site.A number of recent reviews address the biological bases of RP.Retinitis pigmentosa encompasses many different diseases with many distinct causes and diverse biological pathways but with overlapping symptoms and similar consequences.It is no more a single disease than is “fever of unknown origin.” If one word more than any other comes to mind in describing RP, it is complicated. There are dominant, recessive, and X-linked forms of inheritance in addition to rare mitochondrial and digenic forms. Retinitis pigmentosa may occur alone or as part of a more complex syndrome. Even simple RP is strikingly complicated. Each genetic type is caused by mutations in several or many different genes. For most genes, many different mutations with similar consequences are known, yet other mutations in the same gene may cause different diseases. Perhaps most surprisingly, the same mutation in different individuals may cause distinctly different symptoms, even among individuals within the same family.Ironically, the great success in identifying genes and mutations causing RP during the past 2 decades has revealed the extent of the complexity but also offers hope of taming it—by defining RP at a molecular level rather than clinically. Still, in spite of the progress in genetics, a careful clinical description is and will be an essential prerequisite for molecular diagnosis. Further, the molecular description of RP is intrinsically complicated. Molecular diagnosis alone will therefore neither replace clinical testing nor fully resolve the complexity. Nonetheless, clinical testing coupled with molecular diagnosis of RP is a powerful combination of approaches for diagnosing patients and families and will eventually lead to treatment and prevention.SUMMARY OF GENES AND MUTATIONS CAUSING RPRetinitis pigmentosa is a class of diseases involving progressive degeneration of the retina, typically starting in the midperiphery and advancing toward the macula and fovea.Typical symptoms include night blindness followed by decreasing visual fields, leading to tunnel vision and eventually legal blindness or, in many cases, complete blindness. Clinical hallmarks are an abnormal fundus with bone-spicule deposits and attenuated retinal vessels; abnormal, diminished, or absent electroretinographic findings; and reduced visual fields. Symptoms typically start in the early teenage years, and severe visual impairment occurs by ages 40 to 50 years. However, there are early-onset forms of RP (the earliest is indistinguishable from Leber congenital amaurosis [LCA]) and other late-onset or even nonpenetrant forms. The underlying genetic cause is a useful predictor of severity in some cases, but the inverse is usually not true: the phenotype alone is not a good predictor of the gene or mutation.In addition to simple forms of RP, there are syndromic forms involving multiple organs and pleiotropic effects as well as systemic forms wherein the retinal disease is secondary to a systemwide pathology (although the distinction is more historic than biological). The most frequent form of syndromic RP is Usher syndrome, which manifests as early-onset or congenital hearing impairment followed by development of RP by the early teenage years.The second most common syndromic form is Bardet-Biedl syndrome, which includes RP, polydactyly, obesity, renal abnormalities, and mental retardation.In addition, many other complex, pleiotropic conditions include RP as a component.Table 1shows the overall prevalence of RP and the proportions of the most common genetic subtypes. Retinitis pigmentosa, broadly defined to include simple, syndromic, and systemic disease, has a worldwide prevalence of 1 case per 3000 persons to 1 case per 7000 persons.This is a relatively narrow range of estimates given the inherent difficulty of counting RP cases in large populations. In contrast, estimates of the fractions of the various genetic subtypes vary 10-fold between studies (summarized by Haim). Part of the reason is that definitions and clinical criteria differ significantly between surveys. However, there are also substantial differences between populations in the prevalence of specific mutations and, hence, in the proportion of specific genetic types. Therefore, the proportions in Table 1should be taken with a grain of salt.Table 1. Prevalence of Retinitis Pigmentosa and Estimated Percentages of Retinitis Pigmentosa TypesCategoryType% of Total*Nonsyndromic RPAutosomal dominant RP20Autosomal recessive RP13X-linked RP8Isolated or unknown RP20Leber congenital amaurosis4Subtotal65Syndromic and systemic RPUsher syndrome10Bardet-Biedl syndrome5Other10Subtotal25Other or unknown types of RP10Total100 Abbreviation: RP, retinitis pigmentosa. *The total prevalence is 1 case per 3100 persons (range, 1 case per 3000 persons to 1 case per 7000 persons), or 32.2 cases per 100000 persons.Nonsyndromic, nonsystemic RP encompasses 65% of all cases, or about 65 000 people in the United States. Of the total number of nonsyndromic, nonsystemic cases, roughly 30% are adRP, 20% are autosomal recessive RP, 15% are X-linked RP, and 5% are early-onset forms of RP that are typically diagnosed as recessive LCA. The remaining cases, at least 30%, are isolated or simplex cases. The simplex cases are likely to include many individuals with recessive mutations, but dominant-acting de novo mutations are also found in these individuals.In the past few decades, rapid progress has been made in finding genes and mutations causing inherited retinal diseases. The Figureshows the progress in gene identification since 1980.Genes and the underlying mutations within these genes have been identified by a number of methods. Many genes were first localized to a chromosomal site by linkage mapping in families or, more recently, by homozygosity mapping.Once mapped, the underlying gene can be found by various targeted sequencing strategies. Other disease genes were identified by sequencing candidate genes in selected patient populations. A retinal gene may be a disease candidate because of its functional properties, because it is similar to a gene known to cause retinal disease, or because it is the cause of retinal disease in an animal model.Figure.Number of mapped and identified retinal disease genes from 1980 to 2006.To date, 181 genes causing inherited retinal diseases have been mapped to a specific chromosomal site, and 129 of these have been identified at a sequence level. Also, at least 5 additional genes are known to contribute to the lifetime risk of multifactorial diseases such as age-related macular degeneration.What is true for retinal disease genes in general is especially true for RP. Currently, mutations in 17 different genes are known to cause adRP, mutations in 25 genes cause recessive RP, mutations in 13 genes cause recessive LCA, mutations in 2 genes cause dominant LCA, and mutations in 6 genes cause X-linked RP.Table 2lists the genes that are currently known to cause nonsyndromic, nonsystemic RP. However, a simple listing of genes in each category is misleading because many genes can cause more than 1 form of disease. For example, although rhodopsin mutations usually cause dominant RP, other rare rhodopsin mutations cause recessive RP. Mutations in NRLcan also be either dominant or recessive acting. Further, mutations in some genes, such as RDS, can cause dominant RP, dominant macular degeneration, or other distinct forms of retinopathy. Therefore, Table 2also lists the alternate phenotypes that can arise for mutations in RP genes and lists some genes in more than 1 section.Table 2. Genes and Mapped Loci Causing Nonsyndromic, Nonsystemic Retinitis Pigmentosa*SymbolLocationProteinOther DiseasesAutosomal Dominant RPCA417q23.2Carbonic anhydrase IVNoneCRX19q13.32Cone-rod homeoboxRecessive LCA, dominant LCA, dominant CORDFSCN217q25.3Fascin homolog 2, actin-bundling protein, retinalNoneGUCA1B6p21.1Guanylate cyclase activator 1B (retina)Dominant MDIMPDH17q32.1IMP (inosine monophosphate) dehydrogenase 1Dominant LCANRL14q11.2Neural retina leucine zipperRecessive RPPRPF31q21.2PRP3 pre-mRNA processing factor 3 homolog (Saccharomyces cerevisiae)NonePRPF817p13.3PRP8 pre-mRNA processing factor 8 homolog (S cerevisiae)NonePRPF3119q13.42PRP31 pre-mRNA processing factor 31 homolog (S cerevisiae)NoneRDS6p21.2Retinal degeneration, slow (peripherin 2)Digenic RP with retinal outer segment membrane protein 1, dominant MDRHO3q22.1RhodopsinRecessive RP, dominant CSNBROM111q12.3Retinal outer segment membrane protein 1Digenic RP with retinal degeneration, slowRP18q12.1RP-1 proteinRecessive RPRP97p14.3RP-9 (autosomal dominant)NoneRP319p22-p13UnknownNoneRP332cen-q12.1UnknownNoneSEMA4A1q22Sema domain, immunoglobulin domain (Ig), transmembrane domain (TM), and short cytoplasmic domain (semiphorin) 4ADominant CORDAutosomal Recessive RPABCA41p22.1ATP-binding cassette, subfamily A (ABC1), member 4Recessive MD, recessive CORDCERKL2q31.3Ceramide kinase–like proteinNoneCNGA14p12Cyclic nucleotide gated channel α1NoneCNGB116q13Cyclic nucleotide gated channel β1NoneCRB11q31.3Crumbs homolog 1Recessive LCALRAT4q32.1Lecithin retinol acyltransferaseRecessive LCAMERTK2q13C-mer proto-oncogene tyrosine kinaseNoneNR2E315q23Nuclear receptor subfamily 2, group E, member 3Recessive enhanced S-cone syndromeNRL14q11.2Neural retina leucine zipperDominant RPPRCD17q25.1Progressive rod-cone degeneration geneNonePDE6A5q33.1Phosphodiesterase 6A, cGMP-specific, rod, αNonePDE6B4p16.3Phosphodiesterase 6B, cGMP-specific, rod, βDominant CSNBRGR10q23.1Retinal G protein–coupled receptorDominant choroidal sclerosisRHO3q22.1RhodopsinDominant RPRLBP115q26.1Retinaldehyde-binding protein 1Recessive Bothnia dystrophyRP18q12.1RP-1 proteinDominant RPRP2216p12.3-p12.1UnknownNoneRP256cen-q15UnknownNoneRP282p16-p11UnknownNoneRP294q32-q34UnknownNoneRP321p34.3-p13.3UnknownNoneRPE651p31.2RPE-specific 65-kd proteinRecessive LCASAG2q37.1S-antigen; retina and pineal gland (arrestin)Recessive Oguchi diseaseTULP16p21.31Tubby-like protein 1Recessive LCAUSH2A1q41Usher syndrome 2ARecessive Usher syndromeAutosomal Recessive LCAAIPL117p13.2Arylhydrocarbon-interacting receptor protein-like 1Dominant CORDCEP29012q21.32Centrosomal 290-kd proteinRecessive Senior-Loken syndrome, recessive Joubert syndromeCRB11q31.3Crumbs homolog 1Recessive RPCRX19q13.32Cone-rod homeoboxDominant CORD, dominant LCA, dominant RPGUCY2D17p13.1Guanylate cyclase 2D, membrane (retina-specific)Dominant CORDLRAT4q32.1Lecithin retinol acyltransferaseRecessive RPLCA314q24UnknownNoneLCA56q11-q16UnknownNoneLCA91p36UnknownNoneRDH1214q24.1Retinol dehydrogenase 12NoneRPE651p31.2RPE-specific 65-kd proteinRecessive RPRPGRIP114q11.2RP GTPase regulator interacting protein 1NoneTULP16p21.31Tubby-like protein 1Recessive RPAutosomal Dominant LCACRX19q13.32Cone-rod homeoboxDominant CORD, recessive LCA, dominant RPIMPDH17q32.1IMP (inosine monophosphate) dehydrogenase 1Dominant RPX-Linked RPRP2Xp11.23RP-2 proteinNoneRP6Xp21.3-p21.2UnknownNoneRP23Xp22UnknownNoneRP24Xq26-q27UnknownNoneRP34Xq28-qterUnknownNoneRPGRXp11.4RP GTPase regulatorX-linked COD, X-linked CSNB Abbreviations: ATP, adenosine triphosphate; cGMP, cyclic guanosine monophosphate; COD, cone dystrophy; CORD, cone-rod dystrophy; CSNB, congenital stationary night blindness; GTPase, guanosine triphosphatase; LCA, Leber congenital amaurosis; MD, macular dystrophy; mRNA, messenger RNA; RP, retinitis pigmentosa; RPE, retinal pigment epithelium. *References are in RetNet (http://www.sph.uth.tmc.edu/RetNet/).In total, mutations in 53 genes are known to cause nonsyndromic, nonsystemic RP or LCA (counting each gene once only, even if it causes more than 1 type of retinopathy). As stunning as this number may be, a question more important than the number of genes is the total fraction of patients in whom disease-causing mutations can be detected. In other words, how close are we to knowing all of the RP genes?One way to answer this question is to summarize the fraction of mutations detected in each gene based on surveys of appropriate patient populations. Table 3is a compilation of the percentage of patients with detectable mutations in each major RP gene as reported in representative surveys. A gene is “major” if it accounts for at least 1% of cases. In summary, with a number of simplifying assumptions, it is now possible to detect disease-causing mutations in 56% of patients with adRP, roughly 30% of patients with recessive RP, more than 70% of patients with recessive LCA, and nearly 90% of patients with X-linked RP. This is a remarkable achievement given that the first gene known to cause RP, the rhodopsin gene, was described only 17 years ago.Table 3. Mutations in Genes That Cause an Appreciable Fraction of Retinitis Pigmentosa CasesSymbol% of All Cases in Disease CategorySourceAutosomal Dominant RPCRX1.0Sullivan et al,2006IMPDH12.5Sullivan et al,2006PRPF31.0Sullivan et al,2006PRPF83.0Sullivan et al,2006PRPF318.0Sullivan et al,2006;  Sullivan et al,2006RDS9.5*Sullivan et al,2006RHO26.5Sullivan et al,2006RP13.5Sullivan et al,2006RPGR1.0Sullivan et al,2006Total56.0Autosomal Recessive RPABCA42.9Klevering et al,2004CNGA12.3Dryja et al,1995CRB16.5†Bernal et al,2003CRX1.0Rivolta et al,2001PDE6A4.0Dryja et al,1999PDE6B4.0McLaughlin et al,1995RPE652.0Morimura et al,1998USH2A10.0Seyedahmadi et al,2004Total32.7Autosomal Recessive LCAAIPL13.4Hanein et al,2004CEP29021.0den Hollander et al,2006CRB110.0Hanein et al,2004GUCY2D21.2Hanein et al,2004RDH124.1Perrault et al,2004RPE656.1Hanein et al,2004RPGRIP14.5Hanein et al,2004TULP11.7Hanein et al,2004Total72.0Autosomal Dominant LCACRX≈1Perrault et al,2003;  Sohocki et al,1998IMPDH1≈1Bowne et al,2006TotalUnknownX-Linked RPRP215.1Pelletier et al,2006RPGR74.2Pelletier et al,2006‡Total89.3 Abbreviations: adRP, autosomal dominant retinitis pigmentosa; LCA, Leber congenital amaurosis; RP, retinitis pigmentosa. *Includes 1 family with digenic RDS-ROM1mutations. †Up to 50% of recessive RP with Coats disease or para-arteriolar preservation of the retinal pigment epithelium. ‡Includes families with X-linked retinitis pigmentosa not linked to RP2or RPGR.The percentages in Table 3come with several caveats. First, many of the numbers are “soft” because disease definitions are not consistent between reports, sample sizes may be small, different segments of the gene may have been screened, and the definition of a mutation differs significantly from study to study. In fact, very few published percentages include confidence intervals, which are usually large. Further, most of these studies are of Americans of European origin and Europeans. Other ethnic and geographic groups have different fractions of disease-causing mutations.Finally, these are the fractions of mutations detected in carefully designed studies with optimal methods; screening in practice may be less efficient.But caveats aside, across all of the categories of inherited retinopathy, careful screening of known disease genes leads to detection of pathogenic mutations in 25% to 90% of patients, an extraordinary accomplishment. At the same time, however, linkage studies and other evidence show that there are more, perhaps many more, RP genes to be found.GENES AND MUTATIONS CAUSING adRPTo give a more detailed perspective, what follows is a look at the genes and mutations causing just 1 form of retinal disease, adRP. However, many of the conclusions from the study of adRP are broadly applicable to other inherited retinal diseases. Therefore, this section ends with observations that apply generally to all forms of RP.In a recent survey, we tested a panel of affected individuals from 200 families with adRP for mutations in most of the known dominant RP genes (Table 2).To be included in the study, a family had to have a diagnosis of adRP by a knowledgeable clinical specialist and either 3 affected generations with affected females or 2 affected generations with male-to-male transmission. The latter requirement was to reduce the likelihood of including families with X-linked RP. This possibility arises because some mutations in the X-linked gene RPGRaffect female carriers; thus, the disease in these families can be misinterpreted as adRP.The cohort of patients with adRP was screened (largely by DNA sequencing) for mutations in the protein-coding regions and intron-exon junctions of all adRP genes or gene regions causing at least 1% of cases. Open reading frame 15 (ORF15), the “hot spot” for dominant-acting mutations in RPGR, was also tested in families without male-to-male transmission. Determining whether a novel, rare variant is pathogenic can be challenging.We used several computational and genetic tools for this purpose.Generally, once a definite disease-causing mutation was identified in a family, other genes were not tested further in these individuals.We found definite or probable mutations in 53.5% of the families with adRP. In subsequent studies, we tested several of the remaining families for linkage to genetic markers within or close to the known adRP genes and to RPGR.The logic here was to uncover mutations that might have been missed by sequencing or to locate genes that have been mapped but not identified yet. In 1 large family, we found linkage to the PRPF31gene, even though careful resequencing failed to disclose a DNA change. Further testing revealed that affected members of the family have a complex deletion and insertion in PRPF31. This rearrangement was not detected earlier because only the nondeleted, homologous chromosome was sequenced; that is, the deletion is “invisible” to sequencing.We then tested the remaining families for deletions in PRPF31using multiplex ligation-dependent probe amplification (MLPA).Surprisingly, we found 4 large deletions, including 2 that encompass genes adjacent to PRPF31.This brings the fraction of detected mutations to 56% (Table 3).These studies have a number of implications that go beyond just adRP. First, 14 different, common mutations account for up to 30% of the families with adRP in this survey; that is, each of these mutations accounts for at least 1% of the cases.Thus, screening for this handful of mutations alone will resolve at least 30% of the cases. Common mutations are found in other RP genes, and numerous inexpensive, high-throughput techniques exist for detecting these variants.Second, another 20% of mutations were novel and could only be detected by sequencing entire genes. Further, each novel mutation requires careful evaluation of pathogenicity. As a consequence, the main bottleneck in genetic testing of patients with RP is the need to screen and analyze many genes by expensive, time-consuming methods. Fortunately, promising high-throughput resequencing techniques, such as microarray gene chips, may relieve this bottleneck.Nonetheless, interpretation of novel, rare variants will still require professional evaluation.Third, some families thought to have adRP actually have digenic or X-linked mutations. Digenic RP is the result of 1 mutation in RDSand a second in ROM1.Different individual mutations in RDSand ROM1can cause adRP, but each of the digenic mutations alone is not pathogenic. Digenic and polygenic inheritance is true of other forms of retinal disease, such as Bardet-Biedl syndrome, which can be “triallelic.”Another misleading mode of inheritance among families diagnosed with “adRP” is X-linked inheritance of RPGRmutations with significant disease in carrier females.Both of these phenomena are important reminders that the molecular diagnosis can radically change genetic counseling.Fourth, at least 2.5% of adRP mutations are genomic rearrangements or deletions in PRPF31that are not detectable by conventional screening methods.Whether there are disease-causing deletions in other adRP genes or in recessive or X-linked genes is an active area of research. This is likely, though, because deletions are a common cause of other inherited and acquired diseases.For example, large deletions cause up to 17% of familial breast cancer.The existence of disease-causing deletions has significant implications for molecular testing of patients with RP. For one, routine testing methods may miss deletions (eg, sequencing does not detect the breast cancer deletions). For another, deletions may explain reported anomalies in the frequency and segregation of RP mutations. If so, here again, the molecular diagnosis will affect counseling. Finally, this finding suggests that there may be other subtle mutations in known RP genes that are missed by standard methods.Fifth, there are definitely additional, unknown adRP genes. We failed to detect mutations in 40% of the families we tested. Some, but not all, of the remaining mutations may be deletions or subtle changes in known genes that have not been detected to date.Linkage mapping continues to locate new adRP genes—most recently RP31and RP33.Likewise, new recessive and X-linked genes are reported regularly.It is impossible to predict whether there are several or many more RP genes that have yet to be discovered. Completion of the Human Genome Project, new high-throughput screening methods, and development of powerful bioinformatic approaches have dramatically reduced the time it will take to find new genes. In spite of these technical advances, the need for thorough, knowledgeable, innovative clinical characterization of patients and families has never been greater.RELEVANCE TO CLINICAL PRACTICE AND FUTURE DIRECTIONSWhat does the current state of RP genetics say of the future? A reasonable hope is that within 5 years, molecular testing of newly diagnosed patients with RP will be a routine part of clinical practice and will uncover the underlying disease-causing mutation (or mutations) in at least 90% of cases. For this hope to come true, 4 conditions must be met:Most of the genes causing RP must be identified.It must be possible to detect nearly all of the disease-causing mutations within these genes.Mutation testing must become inexpensive, reliable, and widely available.We must be able to understand, interpret, and explain the molecular information.Before addressing these necessary conditions, it is worth asking why finding the underlying disease-causing mutation should matter to the patient or the clinician. After all, RP is currently an untreatable condition, so wouldn't the molecular information be of no use?There are several compelling reasons why molecular testing is important for clinical care. For one, identifying the underlying mutation(s) can establish the diagnosis, which may be problematic otherwise. This is particularly important for childhood retinopathies wherein the molecular diagnosis may portend distinctly different clinical outcomes.Also, knowing the genetic cause is essential for family counseling and for predicting recurrence risk and prognosis. In addition, each new mutation that is found contributes to a better understanding of ocular biology. Finally and of the most importance, the era of gene-specific and mutation-specific treatments for inherited retinal diseases is quickly approaching.Knowing the underlying genetic cause will be essential for enrolling patients in clinical trials, a few of which have begun already or will begin shortly.It is a safe prediction that in the near future, there will be many more treatment and prevention strategies based on knowledge of the underlying mutation(s) in affected individuals and families.Then, how close are we to routine molecular diagnosis of RP? Identification of new RP genes is proceeding swiftly. An educated guess (at best) is that most of the major genes, at least in Americans of European origin and Europeans, will be found within 5 to 10 years. Whether current screening methods, such as sequencing or microarray testing, can detect all or even most of the mutations in known genes is debatable. Not all of the gene regions that could harbor mutations are tested routinely. For example, large intervening sequences and noncoding regulatory regions are usually ignored. Also, current methods do not detect large deletions or rearrangements. Venturing another educated guess, though, existing methods and methods under development will be able to detect most mutations, ie, more than 90%, within 5 years.Currently, the greatest roadblock to molecular diagnosis of RP is the availability of genetic testing. Large commercial interests have not yet entered the field, primarily because there are so many genes to test and so many inherent complications. However, methods for rapid, inexpensive detection of known RP mutations exist today and will be routinely available soon.Also, targeted screening of genes and gene regions that are frequent causes of inherited retinal diseases is being offered on a fee-for-service basis by a few institutions in the United States and Europe (see the GeneTests Web site for further information). In addition, the National Eye Institute has recently developed a program, eyeGENETM,to facilitate genetic testing of inherited eye diseases. Finally, it is reasonable to expect that new high-throughput sequencing methods will make genetic testing of all diseases affordable and efficient within 10 years.In our opinion, the major impediment to routine molecular diagnosis of RP is not technical or commercial but rather informational. No aspect of understanding, interpreting, and explaining the molecular causes of RP is routine. Skilled, informed clinical diagnosis must precede testing. Even if genetic testing is standardized, interpretation of novel variants will require sophisticated analysis. Understanding the results of genetic testing will be challenging, especially if novel findings such as polygenic inheritance are involved. Making sense of this to patients and families in a helpful and supportive way will require good counseling skills. Finally, when gene-specific and mutation-specific treatments become available, which is inevitable, even greater levels of knowledge and understanding will be demanded.None of this is unique to RP: molecular diagnostics will enrich all aspects of medical care in future years. What is unusual, though, is the extent of the current knowledge of the molecular causes of inherited retinal diseases and the recognition of the underlying complexity. Thus, clinical ophthalmology has the unique opportunity to prepare for the near future by enhancing training in genetics, incorporating genetic counseling at all levels of care, and developing specialized centers for the diagnosis and treatment of inherited eye diseases. Another reasonable prediction is that the ophthalmology profession will lead the way for other branches of medicine.Correspondence:Stephen P. Daiger, PhD, Human Genetics Center, School of Public Health, 1200 Herman Pressler Dr, The University of Texas Health Science Center, Houston, TX 77030-3900 (stephen.p.daiger@uth.tmc.edu).Submitted for Publication:September 14, 2006; final revision received September 29, 2006; accepted October 2, 2006.Financial Disclosure:None reported.Funding/Support:This study was supported by grants from the Foundation Fighting Blindness, the William Stamps Farish Foundation, the Gustavus and Louise Pfeiffer Research Foundation, and the Hermann Eye Fund as well as by grants EY007142 and EY014170 from the National Institutes of Health.REFERENCESSPDaigerThe University of Texas Health Science CenterRetNet: Retinal Information Network.http://www.sph.uth.tmc.edu/RetNet/. Accessed December 1, 2006DABessantRRAliSSBhattacharyaMolecular genetics and prospects for therapy of the inherited retinal dystrophies.Curr Opin Genet Dev20011130731611377968TPDryjaRetinitis pigmentosa and stationary night blindness.In: Scriver CR, Beaudet AL, Sly WS, Vale D, eds. The Metabolic and Molecular Bases of Inherited Disease. 8th ed. New York, NY: McGraw-Hill; 2001:5903-5934JRHeckenlivelySPDaigerHereditary retinal and choroidal degenerations.In: Rimoin DL, Connor JM, Pyeritz RE, eds. Emery and Rimoin's Principles and Practice of Medical Genetics. Vol 1. 4th ed. New York, NY: Churchill Livingston; 2002:2255-2576LRPacioneMJSzegoSIkedaPMNishinaRRMcInnesProgress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations.Annu Rev Neurosci20032665770014527271JRHeckenlivelyedRetinitis Pigmentosa.Philadelphia, Pa: JB Lippincott; 1988BJKeatsSSavasGenetic heterogeneity in Usher syndrome.Am J Med Genet A2004130131615368488WJKimberlingDOrtenSPieke-DahlGenetic heterogeneity of Usher syndrome.Adv Otorhinolaryngol200056111810868209NKatsanisThe oligogenic properties of Bardet-Biedl syndrome.Hum Mol Genet200413R65R7114976158MHaimEpidemiology of retinitis pigmentosa in Denmark.Acta Ophthalmol Scand Suppl200223313411921605SJBowneLSSullivanSEMortimerSpectrum and frequency of mutations in IMPDH1 associated with autosomal dominant retinitis pigmentosa and Leber congenital amaurosis.Invest Ophthalmol Vis Sci200647344216384941SBSchwartzTSAlemanAVCideciyanASwaroopSGJacobsonEMStoneDe novo mutation in the RP1 gene (Arg677ter) associated with retinitis pigmentosa.Invest Ophthalmol Vis Sci2003443593359712882812GMLathropJMLalouelCJulierJOttStrategies for multilocus linkage analysis in humans.Proc Natl Acad Sci U S A198481344334466587361VCSheffieldDYNishimuraEMStoneNovel approaches to linkage mapping.Curr Opin Genet Dev199553353417549428AOEdwardsRRitterIIIKJAbelAManningCPanhuysenLAFarrerComplement factor H polymorphism and age-related macular degeneration.Science200530842142415761121BGoldJEMerriamJZernantVariation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration.Nat Genet20063845846216518403JLHainesMAHauserSSchmidtComplement factor H variant increases the risk of age-related macular degeneration.Science200530841942115761120JJakobsdottirYPConleyDEWeeksTSMahREFerrellMBGorinSusceptibility genes for age-related maculopathy on chromosome 10q26.Am J Hum Genet20057738940716080115RJKleinCZeissEYChewComplement factor H polymorphism in age-related macular degeneration.Science200530838538915761122ARiveraSAFisherLGFritscheHypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk.Hum Mol Genet2005143227323616174643EMStoneTABraunSRRussellMissense variations in the fibulin 5 gene and age-related macular degenerationN Engl J Med200435134635315269314SZareparsiMBuraczynskaKEBranhamToll-like receptor 4 variant D299G is associated with susceptibility to age-related macular degeneration.Hum Mol Genet2005141449145515829498LSSullivanSJBowneDGBirchPrevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa (adRP): a screen of known genes in 200 families.Invest Ophthalmol Vis Sci2006473052306416799052LSSullivanSJBowneRSeamanGenomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa.Invest Ophthalmol Vis Sci2006474579458817003455BJKleveringSYzerKRohrschneiderMicroarray-based mutation analysis of the ABCA4(ABCR) gene in autosomal recessive cone-rod dystrophy and retinitis pigmentosa.Eur J Hum Genet2004121024103215494742TPDryjaJTFinnYWPengTLMcGeeELBersonKWYauMutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa.Proc Natl Acad Sci U S A19959210177101817479749SBernalMCalafMGarcia-HoyosStudy of the involvement of the RGR, CRPB1, and CRB1 genes in the pathogenesis of autosomal recessive retinitis pigmentosa.J Med Genet200340e8912843338CRivoltaNEPeckABFultonGAFishmanELBersonTPDryjaNovel frameshift mutations in CRXassociated with Leber congenital amaurosis.Hum Mutat20011855055111748859TPDryjaDERucinskiSHChenELBersonFrequency of mutations in the gene encoding the alpha subunit of rod cGMP-phosphodiesterase in autosomal recessive retinitis pigmentosa.Invest Ophthalmol Vis Sci1999401859186510393062MEMcLaughlinTLEhrhartELBersonTPDryjaMutation spectrum of the gene encoding the beta subunit of rod phosphodiesterase among patients with autosomal recessive retinitis pigmentosa.Proc Natl Acad Sci U S A199592324932537724547HMorimuraGAFishmanSAGroverABFultonELBersonTPDryjaMutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis.Proc Natl Acad Sci U S A199895308830939501220BJSeyedahmadiCRivoltaJAKeeneELBersonTPDryjaComprehensive screening of the USH2Agene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa.Exp Eye Res20047916717315325563SHaneinIPerraultSGerberLeber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis.Hum Mutat20042330631715024725AIden HollanderRKKoenekoopSYzerMutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis.Am J Hum Genet20067955656116909394IPerraultSHaneinSGerberRetinal dehydrogenase 12 (RDH12) mutations in Leber congenital amaurosis.Am J Hum Genet20047563964615322982IPerraultSHaneinSGerberEvidence of autosomal dominant Leber congenital amaurosis (LCA) underlain by a CRX heterozygous null allele.J Med Genet200340e9012843339MMSohockiLSSullivanHAMintz-HittnerA range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene.Am J Hum Genet199863130713159792858VPelletierMJambouNDelphinComprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling.Hum Mutat200627[published online ahead of print September 12, 2006]16969763doi:10.1002/humu.20417AIden HollanderJDavisSDvan der Velde-VisserCRB1 mutation spectrum in inherited retinal dystrophies.Hum Mutat20042435536915459956TPDryjaTLMcGeeLBHahnMutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa.N Engl J Med1990323130213072215617TPDryjaTLMcGeeEReichelA point mutation of the rhodopsin gene in one form of retinitis pigmentosa.Nature19903433643662137202CPPangDSLamDifferential occurrence of mutations causative of eye diseases in the Chinese population.Hum Mutat20021918920811857735YWadaMTamaiMolecular genetic analysis for Japanese patients with autosomal dominant retinitis pigmentosa.Nippon Ganka Gakkai Zasshi200310768769414661542AJMearsSHiriyannaRVervoortRemapping of the RP15 locus for X-linked cone-rod degeneration to Xp11.4-p21.1, and identification of a de novo insertion in the RPGR exon ORF15.Am J Hum Genet2000671000100310970770JMRozetIPerraultNGigarelDominant X-linked retinitis pigmentosa is frequently accounted for by truncating mutations in exon ORF15 of the RPGR gene.J Med Genet20023928428511950860RVervoortALennonACBirdMutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa.Nat Genet20002546246610932196EMStoneFinding and interpreting genetic variations that are important to ophthalmologists.Trans Am Ophthalmol Soc200310143748414971589RFSternRGRobertsKMannSCYauJBergCMOgilvieMultiplex ligation-dependent probe amplification using a completely synthetic probe set.Biotechniques20043739940515470894MSchwartzMDunoImproved molecular diagnosis of dystrophin gene mutations using the multiplex ligation-dependent probe amplification method.Genet Test2004836136715684864PYKwokXChenDetection of single nucleotide variations.Genet Eng (N Y)1998201251349666557SYzerBPLeroyEDe BaereMicroarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis.Invest Ophthalmol Vis Sci2006471167117616505055MNMandalJRHeckenlivelyTBurchSequencing arrays for screening multiple genes associated with early-onset human retinal degenerations on a high-throughput platform.Invest Ophthalmol Vis Sci2005463355336216123440KKajiwaraELBersonTPDryjaDigenic retinitis pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci.Science1994264160416088202715SCanningTPDryjaShort, direct repeats at the breakpoints of deletions of the retinoblastoma gene.Proc Natl Acad Sci U S A198986504450482740342LFeukARCarsonSWSchererStructural variation in the human genome.Nat Rev Genet20067859716418744AJSharpDPLockeSDMcGrathSegmental duplications and copy-number variation in the human genome.Am J Hum Genet200577788815918152TWalshSCasadeiKHCoatsSpectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer.JAMA20062951379138816551709LSSullivanSJBowneSPShankarAutosomal dominant retinitis pigmentosa: exclusion of known and mapped genes in three families.Invest Ophthalmol Vis Sci200445E-abstract 4747MPapaioannouCFChakarovaDCPrescottA new locus (RP31) for autosomal dominant retinitis pigmentosa maps to chromosome 9p.Hum Genet200511850150316189705CZhaoSLuXZhouXZhangKZhaoCLarssonA novel locus (RP33) for autosomal dominant retinitis pigmentosa mapping to chromosomal region 2cen-q12.1.Hum Genet200611961762316612614RKKoenekoopAn overview of Leber congenital amaurosis: a model to understand human retinal development.Surv Ophthalmol20044937939815231395JBennettGene therapy for Leber congenital amaurosis.Novartis Found Symp200425519520214750605GJChaderBeyond basic research for inherited and orphan retinal diseases: successes and challenges.Retina200525S15S1716374318WWHauswirthThe consortium project to treat RPE65 deficiency in humans.Retina200525S6016374340PASievingRCCarusoWTaoCiliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants.Proc Natl Acad Sci U S A20061033896390116505355KJaaksonJZernantMKulmGenotyping microarray (gene chip) for the ABCR (ABCA4) gene.Hum Mutat20032239540314517951University of Washington, SeattleGeneTests.http://www.GeneTests.org. Accessed December 1, 2006National Eye InstituteNational Ophthalmic Disease Genotyping Network (eyeGENETM).http://www.nei.nih.gov/resources/eyegene.asp. Accessed December 1, 2006RFServiceGene sequencing: the race for the $1000 genome.Science20063111544154616543431 TI - Perspective on Genes and Mutations Causing Retinitis Pigmentosa JO - JAMA Ophthalmology DO - 10.1001/archopht.125.2.151 DA - 2007-02-01 UR - https://www.deepdyve.com/lp/american-medical-association/perspective-on-genes-and-mutations-causing-retinitis-pigmentosa-nX00sBeGAP SP - 151 EP - 158 VL - 125 IS - 2 DP - DeepDyve ER -