TY - JOUR AU1 - Farley, J. D. AB - Let X be a poset and Y an ordered space; X Y $(X^Y_\Sigma, X^Y_\Lambda)$ denotes the poset of continuous order-preserving maps from Y to X with the discrete (respectively, Scott, Lawson) topology. If S is a $\lor$ -semilattice, $S^\sigma$ its ideal semilattice, and T a bounded distributive lattice with Priestley dual space P(T), it is shown that the following isomorphisms hold: $(S^{P(T)})^\sigma \cong (S^\sigma) ^{P(T^\sigma)}_\Lambda.$ Moreover, $$(S^\sigma)^{P(T^\sigma)}_\Lambda \cong (S^\sigma) ^{P(T^\sigma)}$ if and only if $(S^\sigma)^{P(T^\sigma)}_\Lambda = (S^\sigma)^{P(T^\sigma)},$ and sufficient conditions and necessary conditions for the isomorphism to hold are obtained (both necessary and sufficient if S is a distributive $\lor$ -semilattice). TI - Ideals of Priestley powers of semilattices JF - algebra universalis DO - 10.1007/s000120050114 DA - 1999-09-01 UR - https://www.deepdyve.com/lp/springer-journals/ideals-of-priestley-powers-of-semilattices-nAF4wcNyhg SP - 239 EP - 254 VL - 41 IS - 4 DP - DeepDyve ER -