TY - JOUR AU - Lanconelli, Ermanno AB - By exploiting an old idea first used by Pizzetti for the classical Laplacian, we introduce a notion of asymptotic average solutions making pointwise solvable every Poisson equation ℒu(x)=−f(x)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}${\mathcal {L}} u(x)=-f(x)$\end{document} with continuous data f, where ℒ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}${\mathcal {L}}$\end{document} is a hypoelliptic linear partial differential operator with positive semidefinite characteristic form. TI - Asymptotic Average Solutions to Linear Second Order Semi-Elliptic PDEs: A Pizzetti-Type Theorem JF - Potential Analysis DO - 10.1007/s11118-023-10063-y DA - 2024-02-01 UR - https://www.deepdyve.com/lp/springer-journals/asymptotic-average-solutions-to-linear-second-order-semi-elliptic-pdes-mA0J940Qmb SP - 615 EP - 626 VL - 60 IS - 2 DP - DeepDyve ER -