TY - JOUR AU - Zibrowius, Marcus AB - Abstract The K-ring of symmetric vector bundles over a scheme X, the so-called Grothendieck–Witt ring of X, can be endowed with the structure of a (special) λ-ring. The associated γ-filtration generalizes the fundamental filtration on the (Grothendieck–)Witt ring of a field and is closely related to the ‘classical’ filtration by the kernels of the first two Stiefel–Whitney classes. 1. Introduction In this article, we establish a (special) λ-ring structure on the Grothendieck–Witt ring of symmetric vector bundles over a scheme, and some basic properties of the associated γ-filtration. As far as Witt rings of fields are concerned, there is an unchallenged natural candidate for a good filtration: the ‘fundamental filtration’, given by powers of the ‘fundamental ideal’. Its claim to fame is that the associated graded ring is isomorphic to the mod-2 étale cohomology ring, as predicted by Milnor [32] and verified by Voevodsky et al. [35, 43]. For the Witt ring of a more general variety X, there is no candidate filtration of equal renown. The two most frequently encountered filtrations are: A short filtration which we will refer to as the classical filtration Fclas*W(X), given by the whole ring, the kernel of the rank homomorphism, the kernels of the first two Stiefel–Whitney classes. This filtration is used, for example, in [16, 48]. The unramified filtration FK*W(X), given by the preimage of the fundamental filtration on the Witt ring of the function field K of X under the natural homomorphism W(X)→W(K). Said morphism is not generally injective (cf. [42]), at least not when dim(X)>3, and its kernel will clearly be contained in every piece of the filtration. Recent computations with this filtration include [19]. Clearly, the unramified filtration coincides with the fundamental filtration in the case of a field, and so does the classical filtration as far as it is defined. The same will be true of the γ-filtration introduced here. It may be thought of as an attempt to extend the classical filtration to higher degrees. In general, in order to define a ‘ γ-filtration’, we simply need to exhibit a pre- λ-structure on the ring in question. However, the natural candidates for λ-operations, the exterior powers, are not well-defined on the Witt ring W(X). We remedy this by passing to the Grothendieck–Witt ring GW(X). It is defined just like the Witt ring, except that we do not quotient out hyperbolic elements. Consequently, the two rings are related by an exact sequence K(X)→GW(X)→W(X)→0. The classical filtration and the unramified filtration on the Witt ring naturally extend to the Grothendieck–Witt ring GW(X) (see Section 5.2 for precise definitions). We will show that they are related to the γ-filtration on GW(X) as follows: Theorem 1.1 Let Xbe an integral scheme over a field kof characteristic not two. The γ-filtration on GW(k)is the fundamental filtration. The γ-filtration on GW(X)is related to the classical filtration as follows: Fγ1GW(X)=Fclas1GW(X)≔ker(GW(X)⟶rankZ)Fγ2GW(X)=Fclas2GW(X)≔ker(Fclas1GW(X)⟶w1Het1(X,Z/2))Fγ3GW(X)⊆Fclas3GW(X)≔ker(Fclas2GW(X)⟶w2Het2(X,Z/2)).However, the inclusion at the third step is not in general an equality. The γ-filtration on GW(X)is finer than the unramified filtration. We define the ‘ γ-filtration’ on the Witt ring as the image of the above filtration under the canonical projection GW(X)→W(X). Thus, each of the above statements easily implies an analogous statement for the Witt ring: the γ-filtration on the Witt ring of a field is the fundamental filtration, FγiW(X) agrees with FclasiW(X) for i<3, etc. The same example as for the Grothendieck–Witt ring (Example 6.5) will show that Fγ3W(X)≠Fclas3W(X) in general. Most statements of Theorem 1.1 also hold under weaker hypotheses—see (1) Proposition 5.1, (2) Propositions 5.4 and 5.8 and (3) Proposition 5.9. On the other hand, under some additional restrictions, the relation with the unramified filtration can be made more precise. For example, if X is a regular variety of dimension at most three and k is infinite, the unramified filtration on the Witt ring agrees with the global sections of the sheafified γ-filtration (Section 5.3). The crucial assertion is of course the equality of Fγ2GW(X) with the kernel of w1—all other statements would hold similarly for the naive filtration of GW(X) by the powers of the ‘fundamental ideal’ Fγ1GW(X). The equality follows from the fact that the exterior powers make GW(X) not only a pre- λ-ring, but even a λ-ring (In older terminology, pre- λ-rings are called ‘ λ-rings’, while λ-rings are referred to as ‘special λ-rings’. See also the introduction to [49].): Theorem 1.2 For any scheme Xover a field of characteristic not two, the exterior power operations give GW(X)the structure of a λ-ring. In the case when X is a field, this was established in [31]. The underlying pre- λ-structure for affine X has also recently been established independently in [46], where it is used to study sums-of-squares formulas. Although in this article the λ-structure is used mainly as a tool in proving Theorem 1.1, it should be noted that λ-rings and even pre- λ-rings have strong structural properties. Much of the general structure of Witt rings of fields could be (re)derived using the pre- λ-structure on their Grothendieck–Witt rings. As an example, we include a new proof of the well-known absence of odd torsion (see Corollary 4.4). Among the few results that generalize immediately to Grothendieck–Witt rings of schemes is the fact that torsion elements are nilpotent: this is true in any pre- λ-ring. For λ-rings, Clauwens has even found a sharp bound on the nilpotence degree [13]. In our situation, Clauwens result reads: Corollary Let Xbe as above. Suppose x∈GW(X)is an element satisfying pex=0for some prime pand some exponent e>0. Then xpe+pe−1=0. To put the corollary into context, recall that for a field k of characteristic not two, an element x∈GW(k) is nilpotent if and only if it is 2n-torsion for some n [29, VIII.8; 50]. This equivalence may be generalized at least to connected semi-local rings in which 2 is invertible, using the pre- λ-structure for one implication and [28, Example 3.11] for the other. See [31] for further applications of the λ-ring structure on Grothendieck–Witt rings of fields and [4] for nilpotence results for Witt rings of regular schemes. From the λ-theoretic point of view, the main complication in the Grothendieck–Witt ring of a general scheme as opposed to that of a field is that not all generators can be written as sums of line elements. In K-theory, this difficulty can often be overcome by embedding K(X) into the K-ring of some auxiliary scheme in which a given generator does have this property, but in our situation this is impossible: there is no splitting principle for Grothendieck–Witt rings (Section 4). 2. Generalities We understand a ring to be a ring with unit. 2.1. λ-rings We give a quick and informal introduction to λ-rings, treading medium ground between the traditional definition in terms of exterior power operations [38, Exposé V] and the abstract definition of λ-rings as coalgebras over a comonad [9, 1.17]. The main point we would like to get across is that a λ-ring is ‘a ring equipped with all possible symmetric operations’, not just ‘a ring with exterior powers’. This observation is not essential for anything that follows—we will later work exclusively with the traditional definition—but we hope that it provides some intrinsic motivation for considering this kind of structure. To make our statement more precise, let W be the ring of symmetric functions. That is, W consists of all formal power series ϕ(x1,x2,…) in countably many variables x1,x2,… with coefficients in Z such that ϕ has bounded degree and such that the image ϕ(x1,…,xn,0,0,…) of ϕ under the projection to Z[x1,…,xn] is a symmetric polynomial for all n. For example, W contains … elementary symmetric functions λk≔∑i1<⋯0⊂A on which d is positive and which generates A in the strong sense that any element of A can be written as a difference of elements in A>0; it is moreover required to satisfy a list of axioms for which we refer to [49, Section 3]. For example, one of the axioms for a positive structure is that for an element e∈A>0, the exterior powers λke vanish for all k>d(e). We will refer to elements of A>0 as positive elements, and to positive elements l of augmentation d(l)=1 as line elements. The motivating example, the K-ring K(X) of a connected scheme X, is augmented by the rank homomorphism, and a set of positive elements is given by the classes of non-zero vector bundles. The Grothendieck–Witt ring GW(X) of a connected scheme is likewise augmented by the rank homomorphism, and a set of positive elements is given by the classes of non-zero symmetric vector bundles. Here are two simple criteria for showing that a pre- λ-ring with positive structure is a λ-ring: Splitting Criterion If all positive elements of A decompose into sums of line elements, then A is a λ-ring. Detection Criterion If for any pair of positive elements e1,e2∈A>0 we can find a λ-ring A′ and a λ-morphism A′→A with both e1 and e2 in its image, then A is a λ-ring. We again refer to [49] for details. 2.2. The γ-filtration The γ-operations on a pre- λ-ring A can be defined as γn(x)≔λn(x+n−1). They again satisfy the identity γk(x+y)=∑i+j=kγi(x)γj(y). Definition 2.4 The γ-filtration on an augmented pre- λ-ring A is defined as follows: Fγ0A≔AFγ1A≔ker(A⟶dZ)FγiA≔(subgroupgeneratedbyallfiniteproducts∏jγij(aj)withaj∈Fγ1Aand∑jij≥i)fori>1. This is in fact a filtration by ideals, multiplicative in the sense that FγiA·FγjA⊂Fγi+jA, hence we have an associated graded ring grγ*A≔⨁iFγiA/Fγi+1A. See [2, Section 4] or [18, III Section 1] for details. The following lemma is sometimes useful for concrete computations. Lemma 2.5 If Ais a pre- λ-ring with positive structure such that every positive element in Acan be written as a sum of line elements, then FγkA=(Fγ1A)k. More generally, suppose that Ais an augmented pre- λ-ring, and let E⊂Abe some set of additive generators of Fγ1A. Then FγkAis additively generated by finite products of the form ∏jγij(ej)with ej∈Eand ∑jij≥k. Proof The first assertion may be found in [18, III Section 1]. It also follows from the second, which we now prove. As each x∈Fγ1A can be written as a linear combination of elements of E, we can write any γi(x) as a linear combination of products of the form ∏jγij(±ej) with ej∈E and ∑jij=i. Thus, FγkA can be generated by finite products of the form ∏jγij(±ej), with ej∈E and ∑jij≥k. Moreover, γi(−e) is a linear combination of products of the form ∏jγij(e) with ∑jij=i: this follows from the above identity for γk(x+y). Thus, FγkA is already generated by products of the form described.□ For λ-rings with positive structure, we also have the following general fact: Lemma 2.6 [18, III, Theorem 1.7] For any λ-ring Awith positive structure, the additive group gr1A=Fγ1A/Fγ2Ais isomorphic to the multiplicative group of line elements in A. 3. The λ-structure on the Grothendieck–Witt ring Given a scheme X, we denote by GW(X) and W(X) the Grothendieck–Witt and the Witt ring of the exact category with duality of vector bundles over X. Precise definitions may be found in [27, Section 4] or [37, Section 2]. No assumption on the invertibility of 2 is required in these definitions. For a ring R, the Witt ring W(Spec(R)) is the classical Witt ring W(R) of symmetric bilinear forms over R. When 2 is invertible, it may equivalently be defined in terms of quadratic forms. 3.1. The pre- λ-structure Proposition 3.1 Let Xbe a scheme. The exterior power operations λk:(M,μ)↦(ΛkM,Λkμ)induce well-defined maps on GW(X)which provide GW(X)with the structure of a pre- λ-ring. Our proof of the existence of a pre- λ-structure will follow the same pattern as the proof for symmetric representation rings in [49]: Step 1. The assignment λi(M,μ)≔(ΛiM,Λiμ) is well defined on the set of isometry classes of symmetric vector bundles over X, so that we have an induced map λt:{isometryclassesofsymmetricvectorbundlesoverX}⟶(1+tGW(X)〚t〛)×. We extend it linearly to a group homomorphism ⨁Z(M,μ)⟶(1+tGW(X)〚t〛)×, where the sum on the left is over all isometry classes of symmetric vector bundles over X. Step 2. The map λt is additive in the sense that λt((M,μ)⊥(N,ν))=λt(M,μ)λt(N,ν). Thus, it factors through the quotient of ⨁Z(M,μ) by the ideal generated by the relations ((M,μ)⊥(N,ν))=(M,μ)+(N,ν). Step 3. The homomorphism λt respects the relation (M,μ)=H(L) for every metabolic vector bundle (M,μ) with Lagrangian L. Thus, we obtain the desired factorization λt:GW(X)→(1+tGW(X)〚t〛)×. To carry out these steps, we only need to replace all arguments on the level of vector spaces of [49] with local arguments. We formulate the key lemma in detail and then sketch the remaining part of the proof. Filtration Lemma 3.2 (c.f. [38, Exposé V]) Fix a natural number n and vector bundles Land Nover a scheme X. With any extension e=(0→L→Me→N→0)of vector bundles, we can associate a filtration Me•of Λn(Me)by sub-vector bundles Λn(Me)=Me0⊃Me1⊃Me2⊃⋯together with isomorphisms πei:Mei/Mei+1≅ΛiL⊗Λn−iN.More precisely, we can do so in a unique way that is functorial with respect to restrictions to open subsets and isomorphisms of extensions, in the sense detailed in condition (1) below, and moreover normalized in the sense of condition (2) below. To describe the functoriality, we first define appropriate categories. Keep X, L, N and n fixed as above. The source category of our functor will be a category ext whose objects are pairs (U,e) consisting of an open subscheme U⊂X and an extension of vector bundles e=(0→L∣U→Me→N∣U→0) over U. A morphism (U,e)→(V,f) in ext is a pair (U⊂V,ϕ) consisting of an inclusion U⊂V and an isomorphism of extensions ϕ:e≅f∣U: As target category, we consider a category filtext whose objects are quadruples (U,e,Me•,πe•) with (U,e)∈ext as above, Me• a descending filtration of Λn(Me) and πe• a sequence of isomorphisms πei:Mei/Mei+1≅(ΛiL⊗Λn−iN)∣U as in the Filtration Lemma 3.2. A morphism (U,e,Me•,πe•)→(V,f,Mf•,πf•) in filtext is a morphism (U⊂V,ϕ):(U,e)→(V,f) in ext with the additional property that Λnϕ restricts to isomorphisms ϕi:Mei⟶≅(Mfi)∣U (1filt) that are compatible with the isomorphisms πei and πfi in the sense that the following triangle commutes for all i: (1π) The conditions of the Filtration Lemma 3.2 are: The association of a filtration Me• and isomorphisms πei with an extension of vector bundles defines a functor: ext→filtext(U,e)↦(U,e,Me•,πe•). This functor is normalized in the sense that, for any open U⊂X, the trivial extension e:(0→L∣U⟶(id0)(L⊕N)∣U⟶(0id)N∣U→0) is sent to the filtration of Λn(L⊕N)∣U≅⨁j(ΛjL⊗Λn−jN)∣U by the sub-vector bundles Mei≔⨁j≥i(ΛjL⊗Λn−jN)∣U, together with the isomorphisms πei:Mei/Mei+1⟶≅(ΛiL⊗Λn−iN)∣U induced by the canonical projections. Proof of the Filtration Lemma 3.2 We first show that a functor as in (1) satisfying condition (2) is uniquely determined. So suppose such a functor exists, pick an arbitrary extension (V,f)∈ext and let (V,f,Mf•,πf•) be its image under this functor. Choose a cover of V by open subsets U over which the extension f splits. For each such open subset U, we then have a morphism (U,e)→(V,f) in ext, where e denotes the trivial extension over U. The image of (U,e) under our functor is determined by (2), and thus the restrictions of the sub-vector bundles Mfi and of the isomorphisms πfi to each U are uniquely determined by (1filt) and (1π). As the open subsets U cover V, this determines the filtration Mf• and the isomorphisms πfi completely. To prove the existence of such a functor, we give an explicit construction. To simplify notation, we describe the functor only on objects of the form (X,e), that is, on extensions defined over X itself, but it will be clear that the same construction makes sense for extensions over open subsets. So let e=(0→L⟶ιM⟶πN→0) be such an extension over X. Consider the morphism ΛiL⊗Λn−iM→ΛnM induced by ι. Let Mi be its kernel and Mi its image, so that we have a short exact sequence of quasi-coherent sheaves: We claim (a) that the sheaves Mi and Mi are again vector bundles, (b) that the morphism ΛiL⊗Λn−iM→ΛiL⊗Λn−iN induced by π factors through Mi and induces an isomorphism πMi:Mi/Mi+1→ΛiL⊗Λn−iN, (c1) that this construction of subbundles Mi and isomorphisms πMi is functorial in the sense of condition (1) above, and (c2) that it satisfies the normalization property (2). These claims can be checked in the following order. First, verify claim (c2): the above construction yields the desired filtration and isomorphisms for split extensions. Next, verify half of claim (c1): the above filtration is functorial in the sense that, given a morphism (U⊂V,ϕ) in ext, the morphism Λnϕ induces an isomorphism of filtrations as in (1filt). Then claim (a) follows because locally the extension splits, and hence Mi and Mi are locally isomorphic to the vector bundles ⨁j0. So grγiGW(R)≅grγiW(R) in positive degrees i. This fails for general schemes in place of R (see Section 6). Remark 5.3 It may seem more natural to define a filtration on GW(X) starting with the kernel not of the rank morphism but of the rank reduced modulo two, as for example in [3]: GI′(X)≔ker(GW(X)→H0(X,Z/2)). For connected X, GI′(X) is isomorphic to a direct sum of GI(X) and a copy of Z generated by the hyperbolic plane H. In particular, GI(X) and GI′(X) have the same image in W(X). However, even over a field, the filtration by powers of GI′ does not yield the same graded ring as the filtration by powers of ( GI or) I. For example, for X=Spec(R), we find GIn(R)/GIn+1(R)≅Z/2(n>0),(GI′)n(R)/(GI′)n+1(R)≅Z/2⊕Z/2. It is the filtration by powers of GI that yields an associated graded ring isomorphic to Het*(R,Z/2) in positive degrees, not the filtration by powers of GI′. 5.2. Comparison with the classical filtration The classical filtration on the Witt ring of a scheme is given by the kernels of the first two étale Stiefel–Whitney classes w1 and w2 on the Grothendieck–Witt ring and of the induced classes w¯1 and w¯2 on the Witt ring Fclas2GW(X)≔ker(Fclas1GW(X)⟶w1Het1(X,Z/2)),Fclas2W(X)≔ker(Fclas1W(X)G⟶w¯1Het1(X,Z/2)),Fclas3GW(X)≔ker(Fclas2GW(X)⟶w2Het2(X,Z/2)),Fclas3W(X)≔ker(Fclas2W(X)G⟶w¯2Het2(X,Z/2)/Pic(X)). Proposition 5.4 Let Xbe any connected scheme over a field of characteristic not two (or, more generally, any scheme such that the canonical pre- λ-structure on GW(X)is a λ-structure). Then Fγ2GW(X)=Fclas2GW(X),Fγ2W(X)=Fclas2W(X). Proof The first identity is a consequence of Lemma 2.6. In our case, the group of line elements is the multiplicative group of isomorphism classes of symmetric line bundles over X, or, equivalently, of étale O1-torsors, and hence may be identified with Het1(X,O1)=Het1(X,Z/2). Under this identification, the determinant GW(X)→Het1(X,Z/2) is precisely the first Stiefel–Whitney class w1. In particular, the kernel of the restriction of w1 to Fclas1GW(X) is Fγ2GW(X), as claimed. For the second identity, it suffices to observe that Fclas2GW(X) maps surjectively onto Fclas2W(X).□ In order to analyse the relation of Fγ3GW(X) to Fclas3GW(X), we need a few lemmas concerning products of ‘reduced line elements’: Lemma 5.5 Let u1,…,ul,v1,…,vlbe line elements in a pre- λ-ring Awith positive structure. Then γk(∑i(ui−vi))can be written as a linear combination of products (ui1−1)⋯(uis−1)(vj1−1)⋯(vjt−1)with s+t=kfactors. Proof This is easily seen by induction over l. For l=1 and k=0, the statement is trivial, while for l=1 and k≥1, we have γk(u−v)=γk((u−1)+(1−v))=γ0(u−1)γk(1−v)+γ1(u−1)γk−1(1−v)=±(v−1)k∓(u−1)(v−1)k−1. For the induction step, we observe that every summand in γk(∑i=1l+1ui−vi)=∑i=0kγi(∑i=1lui−vi)γk−i(ul−vl) can be written as a linear combination of the required form.□ Lemma 5.6 Let Xbe a scheme over Z[12], and let u1,…,un∈GW(X)be classes of symmetric line bundles with Stiefel–Whitney classes w1(ui)=:u¯i. Let ρdenote the product ρ≔(u1−1)⋯(un−1).Then wi(ρ)=0for 03, we obtain grclas*GW(X)≅Z⊕Het1(X,Z/2)⊕Het2(X,Z/2)⊕CH2(X),grγ*W(X)=grclas*W(X)≅Z/2⊕Het1(X,Z/2)⊕Het2(X,Z/2)/Pic(X). However, in general, Fγ3GW(X)⊊Fclas3GW(X)=CH2(X). For a concrete example, consider the product X=C×P1, where C is any smooth projective curve. In this case, Fclas3GW(X)≅Pic(C),Fγ3GW(X)≅Pic(C)[2](kernelofmultiplicationby2). Example 6.3 ( Pr). Let Pr be the r-dimensional projective space over a field k. We first describe its Grothendieck–Witt ring. Let a≔H0(O(1)−1) and ρ≔⌈r2⌉. Then GW(Pr)≅{GW(k)⊕Za⊕Za2⊕⋯⊕Zaρ−1⊕ZaρifrisevenGW(k)⊕Za⊕Za2⊕⋯⊕Zaρ−1⊕(Z/2)aρifr≡−1mod4GW(k)⊕Za⊕Za2⊕⋯⊕Zaρ−1ifr≡−1mod4. The multiplication is determined by the formula ϕ·ai=rank(ϕ)ai for ϕ∈GW(k) and i>0, and by the vanishing of all higher powers of a (that is, ai=0 for all i≥ρ when r≡−1mod4; ai=0 for all i>ρ in the other cases). (Over k=C, this agrees with the ring structure of KO(CPn) as computed by Sanderson [36, Theorem 3.9].) In this description, FγiGW(Pr) is the ideal generated by FγiGW(k) and a⌈i2⌉. In particular, Fγ3GW(X) is again strictly smaller than Fclas3GW(X): Fclas3GW(Pr)=Fγ3GW(k)+(a2,2a),Fγ3GW(Pr)=Fγ3GW(k)+(a2). The associated graded ring looks very similar to the ring itself: grγ*GW(Pr)≅{grγ*GW(k)⊕Za⊕Za2⊕⋯⊕Zaρ−1⊕Zaρifrisevengrγ*GW(k)⊕Za⊕Za2⊕⋯⊕Zaρ−1⊕(Z/2)aρifr≡−1mod4grγ*GW(k)⊕Za⊕Za2⊕⋯⊕Zaρ−1ifr≡−1mod4, with a of degree 2. In the Witt ring, all the hyperbolic elements ai vanish, so obviously grγ*W(Pr)≅grγ*W(k). Example 6.4 ( A1−0). For the punctured affine line over a field k, we have GW(A1−0)≅GW(k)⊕W(k)εˆFγiGW(A1−0)≅GIi(k)⊕Ii−1(k)εˆ, for some generator εˆ∈Fγ1GW(A1−0) satisfying εˆ2=2εˆ. In this example, Fγ3GW(A1−0)=ker(w2). Example 6.5 ( A4n+1−0). For punctured affine spaces of dimensions d≡1mod4 with d>1, there is a similar result for the Grothendieck–Witt group [6] GW(A4n+1−0)≅GW(k)⊕W(k)εˆ, for some εˆ∈Fγ1GW(A1−0). However, in this case εˆ2=0, and the γ-filtration is also different from the γ-filtration in the one-dimensional case. This is already apparent over the complex numbers, where we find FγiGW(AC5−0)≅FγiW(AC5−0)≅{Z/2εˆfori=1,20fori≥3. In particular, in this example, Fγ3W(X)≠Fclas3W(X), the latter being non-zero since since w2 and w¯2 are zero. Calculations for Example 6.1 (Curve) Consider the summary at the beginning of this section. In dimension 1, we have Ftop2K=0, so Fγ2K=ker(c1)=0. Moreover, by [48, proof of Corollary 3.7], w2 is surjective for the curves under consideration, with kernel isomorphic to the kernel of c1. So w2 is an isomorphism. It follows that Fγ3GW=Fγ3W=0, and hence that grγ*GW=grclas*GW and grγ*W=grclas*W. These graded groups are computed in [loc. cit., Theorem 3.1 and Corollary 3.7].□ Calculations for Example 6.2 (Surface) The classical filtration is computed in [48, Corollary 3.7/4.7]. In the case X=C×P1, Walter’s projective bundle formula [44, Theorem 1.5] and the results on GW*(C) of [48, Theorem 2.1/3.1] yield Here, π:X↠C is the projection and Ψ∈GW1(P1) is a generator. Writing Hi:K→GWi for the hyperbolic maps, we can describe the additive generators of GW(X) explicitly as follows: 1 (the trivial symmetric line bundle), aL≔π*L−1, for each symmetric line bundle L on C, that is for each L∈Pic(C)[2], b≔H0(π*L1−1), where L1 is a line bundle of degree 1 on C (hence a generator of the free summand of Pic(C)), c≔H−1(1)·Ψ=H0(FΨ); here FΨ=O(−1)−1 with O(−1) the pullback of the canonical line bundle on P1, dN≔H−1(π*N−1)·Ψ=H0((π*N−1)·FΨ), for each N∈Pic(C). In this list, the generators appear in the same order as the direct summands of GW(X) that they generate appear in the formula above. An alternative set of generators is obtained by replacing the generators dN by the following generators: dN′≔H0(π*N⊗O(−1)−1)={dN+cifNisofevendegreedN+b+cifNisofodddegree. The only non-trivial products of the alternative generators are aLc=aLdN′=dL′+c(=dL). Moreover, the effects of the operations γi on the alternative generators is immediate from Lemma 6.6 below. So Lemma 2.5 tells us that Fγ3GW has additive generators γ1(aL)·γ2(c)=aL·(−c)=dL with L∈Pic(C)[2]. Thus, Fγ3GW(X)≅Pic(C)[2], viewed as subgroup of the last summand in the formula above. We also find that Fγ4GW(X)=0.□ Calculation of the ring structure on GW(Pr) (Example 6.3) By [44, Theorems 1.1 and 1.5], the Grothendieck–Witt ring of projective space can be additively described as GW(Pr)={GW(k)⊕Za1⊕⋯⊕ZaρifrisevenGW(k)⊕Za1⊕⋯⊕Zaρ−1⊕(Z/2)H0(FΨ)ifr≡−1mod4GW(k)⊕Za1⊕⋯⊕Zaρ−1ifr≡−1mod4, where ai=H0(O(i)−1) and Ψ is a certain element in GWr(Pr). Moreover, by tracing through Walter’s computations, we find that H0(FΨ)=−∑j=1ρ(−1)j(r+1ρ−j)aj. (6.1) Indeed, we see from the proof of [44, Theorem 1.5] that FΨ=O⊕N−λρ(Ω)(ρ) in K(Pr), where Ω is the cotangent bundle of Pr and N is such that the virtual rank of this element is zero. The short exact sequence 0→Ω→O⊕(r+1)(−1)→O→0 over Pr implies that λρ(Ω)=λρ(O⊕(r+1)(−1)−1)inK(Pr), from which (6.1) follows by a short computation. An element Ψ∈GWr(Pr) also exists in the case r≡−1mod4, and (6.1) is likewise valid in this case. However, in this case, we see from Karoubi’s exact sequence GW−1(Pr)⟶FK(Pr)⟶H0GW0(Pr) that H0(FΨ)=0. We can thus rewrite the above result for the Grothendieck–Witt group as GW(Pr)={GW(k)⊕Za1⊕⋯⊕Zaρifriseven(GW(k)⊕Za1⊕⋯⊕Zaρ−1⊕Zaρ)/2hrifr≡−1mod4(GW(k)⊕Za1⊕⋯⊕Zaρ−1⊕Zaρ)/hrifr≡−1mod4, with hr≔∑j=1ρ(−1)j(r+1ρ−j)aj. To see that we can alternatively use powers of a≔a1 as generators, it suffices to observe that for all k≥1, ak=ak+(alinearcombinationofa,a2,…,ak−1), (6.2) which follows inductively from the recursive relation ak=(a+2)ak−1−ak−2+2a, (6.3) for all k≥2. ( a0≔0.) Next, we show that ak=0 for all k>ρ. Let x≔O(1), viewed as an element of K(Pr). The relation (x−1)r+1=0 in K(Pr) implies that (x−1)+(x−1−1)=∑i=2r(−1)i(x−1)i, so that we can compute ak=[H(x−1)]k=H([FH(x−1)]k−1(x−1))=H([(x−1)+(x−1−1)]k−1(x−1))=H((x−1)2k−1+higherordertermsin(x−1))=0for2k−1>r,or,equivalently,fork>ρ. Equation (6.2) also allows us to rewrite hr in terms of the powers of a. Inductively, we find that hr=(−a)ρ for all odd r, where ρ=⌈r2⌉.□ Calculation of the γ-filtration on GW(Pr) (Example 6.3, continued) We claim above that FγiGW(Pr) is the ideal generated by FγiGW(k) and a⌈i2⌉. Equivalently, it is the subgroup generated by FγiGW(k) and by all powers aj with j≥i2. To verify the claim, we note that by Lemma 6.6 below, we have γi(aj)=±aj for i=1,2, while for all i>2 we have γi(aj)=0. In particular, a=a1∈Fγ2GW(Pr), and, therefore, aj∈Fγ2jGW(Pr). This shows that all the above named additive generators indeed lie in FγiGW(Pr). For the converse inclusion, we note that by Lemma 2.5, FγiGW(Pr) is additively generated by FγiGW(k) and by all finite products of the form ∏jγij(aαj), with ∑jij≥i. Such a product is non-zero only if ij∈{0,1,2} for all j, in which case it is of the form ±∏jaαj with at least i2 non-trivial factors. By (6.2), each non-trivial factor aαj can be expressed as a non-zero polynomial in a with no constant term. Thus, the product itself can be rewritten as a linear combination of powers aj with j≥i2.□ Calculations for Example 6.4 (A1−0) The Witt group of the punctured affine line has the form W(A1−0)≅W(k)⊕W(k)ε, where ε=(O,t), the trivial line bundle with the symmetric form given by multiplication with the standard coordinate (cf. [6]). It follows that GW(A1−0)≅GW(k)⊕W(k)εˆ, where εˆ≔ε−1. As for any symmetric line bundle, ε2=1 in the Grothendieck–Witt ring; equivalently, εˆ2=−2εˆ. To compute the γ-filtration, we need only observe that GW(A1−0) is generated by line elements. So FγiGW(A1−0)=(Fγ1GW(A1−0))i=(GI(k)⊕W(k)εˆ)i=GIi(k)⊕Ii−1(k)εˆ. The étale cohomology of A1−0 has the form Het*(A1−0,Z/2)≅Het*(k,Z/2)⊕Het*(k,Z/2)w1ε. Recall that when we write ker(w1) and ker(w2), we necessarily mean the kernels of the restrictions of w1 and w2 to ker(rank) and ker(w1), respectively. An arbitrary element of GW(A1−0) can be written as x+yεˆ with x,y∈GW(k). For such an element, we have w1(x+yεˆ)=w1x+rank(y)w1ε, so the general fact that ker(w1)=Fγ2GW is consistent with our computation. When rank(y)=0, we further find that w2(x+yεˆ)=w2x+w1y∪w1ε, proving the claim that ker(w2)=Fγ3GW in this example.□ Calculations for Example 6.5 (A4n+1−0) Balmer and Gille show in [6] that for d=4n+1 we have W(Ad−0)≅W(k)⊕W(k)ε for some symmetric space ε of even rank r such that ε2=0 in the Witt ring. Let εˆ≔ε−r2H. Then GW(Ad−0)≅GW(k)⊕W(k)εˆ with εˆ2=0. As the K-ring of Ad−0 is trivial, that is, isomorphic to Z via the rank homomorphism, FγiGW(Ad−0) maps isomorphically to FγiW(Ad−0) for all i>0. We now switch to the complex numbers. Equipped with the analytic topology, AC4n+1 is homotopy equivalent to the sphere S8n+1, so we have a comparison map GW(AC4n+1−0)→KO(S8n+1). As the λ-ring structures on both sides are defined via exterior powers, this is clearly a map of λ-rings. In fact, it is an isomorphism, as we see by comparing the localization sequences for ACd−0◦↪ACd|↩{0}, as in the proof of [47, Theorem 2.5]. The λ-ring structure on KO(S8n+1) can be deduced from [1, Theorem 7.4]—as a special case, the theorem asserts that the projection RP8n+1↠RP8n+1/RP8n≃S8n+1 induces the following map in KO-theory: Here, λ is the canonical line bundle over the real projective space, λˆ≔λ−1, and f is some integer. Thus, γt(2f−1λˆ)=(1+λˆt)2f−1 and we find that γi(εˆ)=ciεˆ for ci≔(2f−1i)2i−f. Note that ci is indeed an integer: by Kummerʼs theorem on binomial coefficients, we find that the highest power of two dividing (2f−1i) is at least f−1−k, where k is the highest power of two such that 2k≤i. In fact, modulo two we have c2≡1 and ci≡0 for all i>2. So the γ-filtration is as described.□ Finally, here is the lemma referred to multiple times above. Lemma 6.6 Let Lbe a line bundle over a scheme Xover Z[12]. Then γ2(H(L−1))=−H(L−1),and γi(H(L−1))=0in GW(X)for all i>2. Proof Let us write λt(x)=1+xt+λ2(x)t2+⋯ for the total λ-operation, and similarly for γt(x). Then λt(x+y)=λt(x)λt(y), γt(x+y)=γt(x)γt(y), and γt(x)=λt1−t(x). Let a≔H(L−1). From λt(a)=λt(HL)λt(H1)=1+(HL)t+det(HL)t21+(H1)t+det(H1)t2=1+(HL)t+〈−1〉t21+(H1)t+〈−1〉t2, we deduce that γt(a)=1+(HL−2)t+(1+〈−1〉−HL)t21+(H1−2)t+(1+〈−1〉−H1)t2=1+(HL−2)t−H(L−1)t21+(H1−2)t=[1+(HL−2)t−H(L−1)t2]·∑i≥0(2−H1)iti. Here, the penultimate step uses that H1≅1+〈−1〉 when two is invertible. In order to proceed, we observe that H1·Hx=H(FH1·x)=2Hx for any x∈GW(X). It follows that (2−H1)i=2i−1(2−H1), and hence that [1+(HL−2)t−H(L−1)t2]·(2−H1)iti=2i−1(2−H1)(1−2t)ti, for all i≥1. This implies that the above expression for γt(a) simplifies to 1+H(L−1)t−H(L−1)t2, as claimed.□ Acknowledgements I thank Pierre Guillot for getting me started on these questions. The proof of Proposition 4.3 was inspired by a talk of Niko Naumann on [30], following which Kirsten Wickelgren moreover made me aware of the above-mentioned nilpotence results. I am also grateful to Peter Arndt for his patience and encouragement during a private lecture on an earlier version of this manuscript, and finally to the anonymous referees for their numerous comments and suggestions. References 1 J. F. Adams , Vector fields on spheres , Ann. Math. (2) 75 ( 1962 ), 603 – 632 . Google Scholar CrossRef Search ADS 2 M. F. Atiyah and D. O. Tall , Group representations, λ-rings and the J-homomorphism , Topology 8 ( 1969 ), 253 – 297 . Google Scholar CrossRef Search ADS 3 A. Auel , Remarks on the Milnor Conjecture Over Schemes, Galois–Teichmüller Theory and Arithmetic Geometry, Adv. Stud. Pure Math., Vol. 63, Math. Soc. Japan, Tokyo, 2012 , pp. 1–30. 4 P. Balmer , Vanishing and nilpotence of locally trivial symmetric spaces over regular schemes , Comment. Math. Helv. 78 ( 2003 ), 101 – 115 . Google Scholar CrossRef Search ADS 5 P. Balmer , Witt Groups, Handbook of K-theory , Vols. 1, 2, Springer , Berlin , 2005 , 539 – 576 . Google Scholar CrossRef Search ADS 6 P. Balmer and S. Gille , Koszul complexes and symmetric forms over the punctured affine space , Proc. Lond. Math. Soc. (3) 91 ( 2005 ), 273 – 299 . Google Scholar CrossRef Search ADS 7 P. Balmer and C. Walter , A Gersten-Witt spectral sequence for regular schemes , Ann. Sci. École Norm. Sup. (4) 35 ( 2002 ), 127 – 152 . Google Scholar CrossRef Search ADS 8 R. Baeza , Quadratic Forms over Semilocal Rings, Lecture Notes in Mathematics, Vol. 655, Springer-Verlag, Berlin, 1978 . 9 J. Borger , The Basic Geometry of Witt Vectors, I: The Affine Case , Algebra Number Theory 5 ( 2011 ), 231 – 285 . Google Scholar CrossRef Search ADS 10 J. Borger , Witt vectors, semirings, and total positivity, 2013 , arXiv:1310.3013. 11 N. Bourbaki , Éléments de mathématique. Algèbre. Chapitres 1 à 3 , Hermann , Paris , 1970 . 12 F. J. B. J. Clauwens , The K -groups of λ-rings. I. Construction of the logarithmic invariant , Compositio Math. 61 ( 1987 ), 295 – 328 . 13 F. J. B. J. Clauwens , The nilpotence degree of torsion elements in lambda-rings, 2010 , arXiv:1004.0829. 14 M. Emsalem , Twisting by a torsor, 2015 , arXiv:1508.02903. 15 H. Esnault , B. Kahn and E. Viehweg , Coverings with odd ramification and Stiefel–Whitney classes , J. Reine Angew. Math. 441 ( 1993 ), 145 – 188 . 16 F. Fernández-Carmena , The Witt group of a smooth complex surface , Math. Ann. 277 ( 1987 ), 469 – 481 . Google Scholar CrossRef Search ADS 17 W. Fulton , Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics , Vol. 2, 2nd edn , Springer-Verlag , Berlin , 1998 . 18 W. Fulton and S. Lang , Riemann–Roch algebra, Grundlehren der Mathematischen Wissenschaften , Vol. 277, Springer-Verlag , New York , 1985 . 19 J. M. Funk and R. T. Hoobler , The Witt ring of a curve with good reduction over a non-dyadic local field , J. Algebra 422 ( 2015 ), 648 – 659 . Google Scholar CrossRef Search ADS 20 S. Gille , Homotopy invariance of coherent Witt groups , Math. Z. 244 ( 2003 ), 211 – 233 . Google Scholar CrossRef Search ADS 21 J. Giraud , Cohomologie non abélienne , Springer-Verlag , Berlin-New York , 1971 . Die Grundlehren der mathematischen Wissenschaften, Band 179. 22 P. Guillot and J. Mináč , Milnor K-theory and the graded representation ring , J. K-Theory 13 ( 2014 ), 447 – 480 . Google Scholar CrossRef Search ADS 23 L. Hesselholt , The big de Rham–Witt complex , Acta Math. 214 ( 2015 ), 135 – 207 . Google Scholar CrossRef Search ADS 24 J. Hornbostel , A1-representability of Hermitian K-theory and Witt groups , Topology 44 ( 2005 ), 661 – 687 . Google Scholar CrossRef Search ADS 25 J. Hornbostel , Some comments on motivic nilpotence, 2016 , To appear in Trans. Amer. Math. Soc. arXiv:1511.07292. 26 M. Kerz and S. Müller-Stach , The Milnor–Chow homomorphism revisited , K-Theory 38 ( 2007 ), 49 – 58 . Google Scholar CrossRef Search ADS 27 M. Knebusch , Symmetric Bilinear Forms over Algebraic Varieties, Queen’s Univ., Kingston, Ont., pp. 103–283. Queen’s Papers in Pure and Appl. Math., No. 46. Also available from epub.uni-regensburg.de/12783/, 1977 . 28 M. Knebusch , A. Rosenberg and R. Ware , Structure of Witt rings and quotients of Abelian group rings , Amer. J. Math. 94 ( 1972 ), 119 – 155 . Google Scholar CrossRef Search ADS 29 T. Y. Lam , Introduction to Quadratic Forms Over Fields, Graduate Studies in Mathematics , Vol. 67, American Mathematical Society , Providence, RI , 2005 . 30 A. Mathew , N. Naumann and J. Noel , On a nilpotence conjecture of J. P. May , J. Topol. 8 ( 2015 ), 917 – 932 . Google Scholar CrossRef Search ADS 31 S. McGarraghy , Exterior powers of symmetric bilinear forms , Algebra Colloq. 9 ( 2002 ), 197 – 218 . 32 J. Milnor , Algebraic K -theory and quadratic forms , Invent. Math. 9 ( 1969 /1970), 318 – 344 . Google Scholar CrossRef Search ADS 33 M. Ojanguren , Quadratic forms over regular rings , J. Indian Math. Soc. (N.S.) 44 ( 1980 ), 109 – 116 (1982). 34 M. Ojanguren and I. Panin , A purity theorem for the Witt group , Ann. Sci. École Norm. Sup. (4) 32 ( 1999 ), 71 – 86 . Google Scholar CrossRef Search ADS 35 D. Orlov , A. Vishik and V. Voevodsky , An exact sequence for K M/2 with applications to quadratic forms , Ann. Math. (2) 165 ( 2007 ), 1 – 13 . Google Scholar CrossRef Search ADS 36 B. J. Sanderson , Immersions and embeddings of projective spaces , Proc. Lond. Math. Soc. (3) 14 ( 1964 ), 137 – 153 . Google Scholar CrossRef Search ADS 37 M. Schlichting , Hermitian K-theory of exact categories , J. K-Theory 5 ( 2010 ), 105 – 165 . Google Scholar CrossRef Search ADS 38 Théorie des intersections et théorème de Riemann–Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin, 1971 . Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6). 39 J.-P. Serre , Espaces Fibrés Algébriques , Séminaire C. Chevalley , Vol. 3, 1958 , 1 – 37 , Talk 1. 40 J.-P. Serre , Groupes de Grothendieck des schémas en groupes réductifs déployés , Inst. Hautes Études Sci. Publ. Math. 34 ( 1968 ), 37 – 52 . Google Scholar CrossRef Search ADS 41 The Stacks Project , stacks.math.columbia.edu. 42 B. Totaro , Non-injectivity of the map from the Witt group of a variety to the Witt group of its function field , J. Inst. Math. Jussieu 2 ( 2003 ), 483 – 493 . Google Scholar CrossRef Search ADS 43 V. Voevodsky , Motivic cohomology with Z/2-coefficients , Publ. Math. Inst. Hautes Études Sci. 98 ( 2003 ), 59 – 104 . Google Scholar CrossRef Search ADS 44 C. Walter , Grothendieck–Witt groups of projective bundles, 2003, available at www.math.uiuc.edu/K-theory/0644/. Preprint. 45 C. A. Weibel , Homotopy Algebraic K-Theory, Algebraic K-Theory and Algebraic Number Theory (Honolulu, HI, 1987), Contemp. Math., Vol. 83, Amer. Math. Soc., Providence, RI, 1989 , pp. 461–488. 46 H. Xie , An application of Hermitian K-theory: sums-of-squares formulas , Doc. Math. 19 ( 2014 ), 195 – 208 . 47 M. Zibrowius , Witt groups of complex cellular varieties , Doc. Math. 16 ( 2011 ), 465 – 511 . 48 M. Zibrowius , Witt groups of curves and surfaces , Math. Z. 278 ( 2014 ), 191 – 227 . Google Scholar CrossRef Search ADS 49 M. Zibrowius , Symmetric representation rings are λ-rings , New York J. Math. 21 ( 2015 ), 1055 – 1092 . 50 M. Zibrowius , Nilpotence in Milnor–Witt K-Theory, 2016 . Appendix to [25]. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) TI - The γ-filtration on the Witt ring of a scheme JO - The Quarterly Journal of Mathematics DO - 10.1093/qmath/hax050 DA - 2017-12-14 UR - https://www.deepdyve.com/lp/oxford-university-press/the-filtration-on-the-witt-ring-of-a-scheme-lu2IgUvbdT SP - 1 EP - 583 VL - Advance Article IS - 2 DP - DeepDyve ER -