TY - JOUR AU - Gerbert A. Jansen, Eveline M. Hogenhout, Sacha Ferdinandusse, Hans R. Waterham, Rob Ofman, Cornelis Jakobs, Ola H. Skjeldal, Ronald J.A. Wanders AB - Refsum’s disease (RD) is an inherited neurological syndrome biochemically characterized by the accumulation of phytanic acid in plasma and tissues. Patients with RD are unable to degrade phytanic acid due to a deficient activity of phytanoyl-CoA hydroxyl­ase (PhyH), a peroxisomal enzyme catalysing the first step of phytanic acid α-oxidation. To enable mutation analysis of RD at the genome level, we have elucidated the genomic organization of the PHYH gene. The gene is ~21 kb and contains nine exons and eight introns. Mutation analysis of PHYH cDNA from 22 patients with RD revealed 14 different missense mutations, a 3 bp insertion, and a 1 bp deletion, which were all confirmed at the genome level. A 111 bp deletion identified in the PHYH cDNA of several patients with RD was due to either one of two different mutations in the same splice acceptor site, which result in skipping of exon 3. Six mutations, including a large in-frame deletion and five missense mutations, were expressed in the yeast Saccharomyces cerevisiae to study their effect on PhyH activity. The results showed that all these mutations lead to an enzymatically inactive PhyH protein. Received 10 January 2000; Revised and Accepted 13 March 2000. « Previous | Next Article » Table of Contents This Article Hum. Mol. Genet. (2000) 9 (8): 1195-1200. doi: 10.1093/hmg/9.8.1195 » Abstract Free Full Text (HTML) Free Full Text (PDF) Free Classifications Report Services Article metrics Alert me when cited Alert me if corrected Find similar articles Similar articles in Web of Science Similar articles in PubMed Add to my archive Download citation Request Permissions Citing Articles Load citing article information Citing articles via CrossRef Citing articles via Scopus Citing articles via Web of Science Citing articles via Google Scholar Google Scholar Articles by Jansen, G. A. Articles by Wanders, R. J. Search for related content PubMed PubMed citation Articles by Jansen, G. A. Articles by Hogenhout, E. M. Articles by Ferdinandusse, S. Articles by Waterham, H. R. Articles by Ofman, R. Articles by Jakobs, C. Articles by Skjeldal, O. H. Articles by Wanders, R. J. Related Content Load related web page information Share Email this article CiteULike Delicious Facebook Google+ Mendeley Twitter What's this? Search this journal: Advanced » Current Issue November 15, 2015 24 (22) Alert me to new issues The Journal About this journal Rights & Permissions Dispatch date of the next issue This journal is a member of the Committee on Publication Ethics (COPE) We are mobile – find out more Journals Career Network Impact factor: 6.393 5-Yr impact factor: 6.850 Executive Editors Professor Kay Davies Professor Anthony Wynshaw-Boris Professor Joel Hirschhorn Dr Jeffrey Barrett View full editorial board For Authors Instructions to authors Online submission Submit Now! Self-archiving policy Open access options for authors - visit Oxford Open This journal enables compliance with the NIH Public Access Policy Alerting Services Email table of contents Email Advance Access CiteTrack XML RSS feed Corporate Services Advertising sales Reprints Supplements var taxonomies = ("SCI01140"); Most Most Read Genetics of obesity and the prediction of risk for health Non-coding RNA Telomerase and cancer Ion channel diseases Down syndrome--recent progress and future prospects » View all Most Read articles Most Cited The DNA methyltransferases of mammals Nonsense-Mediated mRNA Decay in Health and Disease Mutation of human short tandem repeats Prediction of deleterious human alleles Isolation of a Candidate Human Telomerase Catalytic Subunit Gene, Which Reveals Complex Splicing Patterns in Different Cell Types » View all Most Cited articles Disclaimer: Please note that abstracts for content published before 1996 were created through digital scanning and may therefore not exactly replicate the text of the original print issues. All efforts have been made to ensure accuracy, but the Publisher will not be held responsible for any remaining inaccuracies. If you require any further clarification, please contact our Customer Services Department. Online ISSN 1460-2083 - Print ISSN 0964-6906 Copyright © 2015 Oxford University Press Oxford Journals Oxford University Press Site Map Privacy Policy Cookie Policy Legal Notices Frequently Asked Questions Other Oxford University Press sites: Oxford University Press Oxford Journals China Oxford Journals Japan Academic & Professional books Children's & Schools Books Dictionaries & Reference Dictionary of National Biography Digital Reference English Language Teaching Higher Education Textbooks International Education Unit Law Medicine Music Online Products & Publishing Oxford Bibliographies Online Oxford Dictionaries Online Oxford English Dictionary Oxford Language Dictionaries Online Oxford Scholarship Online Reference Rights and Permissions Resources for Retailers & Wholesalers Resources for the Healthcare Industry Very Short Introductions World's Classics function fnc_onDomLoaded() { var query_context = getQueryContext(); PF_initOIUnderbar(query_context,":QS:default","","JRN"); PF_insertOIUnderbar(0); }; if (window.addEventListener) { window.addEventListener('load', fnc_onDomLoaded, false); } else if (window.attachEvent) { window.attachEvent('onload', fnc_onDomLoaded); } var gaJsHost = (("https:" == document.location.protocol) ? "https://ssl." : "http://www."); document.write(unescape("%3Cscript src='" + gaJsHost + "google-analytics.com/ga.js' type='text/javascript'%3E%3C/script%3E")); try { var pageTracker = _gat._getTracker("UA-189672-16"); pageTracker._setDomainName(".oxfordjournals.org"); pageTracker._trackPageview(); } catch(err) {} TI - Human phytanoyl-CoA hydroxylase: resolution of the gene structure and the molecular basis of Refsum’s disease JF - Human Molecular Genetics DO - 10.1093/hmg/9.8.1195 DA - 2000-05-01 UR - https://www.deepdyve.com/lp/oxford-university-press/human-phytanoyl-coa-hydroxylase-resolution-of-the-gene-structure-and-koEoLRdeM3 SP - 1195 VL - 9 IS - 8 DP - DeepDyve ER -