TY - JOUR AU1 - Loianno, Giuseppe AU2 - Mulgaonkar, Yash AU3 - Brunner, Chris AU4 - Ahuja, Dheeraj AU5 - Ramanandan, Arvind AU6 - Chari, Murali AU7 - Diaz, Serafin AU8 - Kumar, Vijay AB - Advances in consumer electronics products and the technology seen in personal computers, digital cameras, and smartphones phones have led to the price/performance ratio of sensors and processors falling dramatically over the last decade. In particular, many consumer products are packaged with small cameras, gyroscopes, and accelerometers, all sensors that are needed for autonomous robots in GPS-denied environments. The low mass and small form factor make them particularly well suited for autonomous flight with small flying robots. In this work, we present the first fully autonomous smartphone-based system for quadrotors. We show how multiple quadrotors can be stabilized and controlled to achieve autonomous flight in indoor buildings with application to smart homes, search and rescue, monitoring construction projects, and developing models for architecture design. In our work, the computation for sensing and control runs on an off-the-shelf smartphone, with all the software functionality embedded in a smartphone app. No additional sensors or processors are required for autonomous flight. We are also able to use multiple, coordinated autonomous aerial vehicles to improve the efficiency of our mission. In our framework, multiple vehicles are able to plan safe trajectories avoiding inter-robot collisions, while concurrently building in a cooperative manner a three-dimensional map of the environment. The work allows any consumer with any number of robots equipped with smartphones to autonomously drive a team of quadrotor robots, even without GPS, by downloading our app and cooperatively build three-dimensional maps. TI - Autonomous flight and cooperative control for reconstruction using aerial robots powered by smartphones JF - The International Journal of Robotics Research DO - 10.1177/0278364918774136 DA - 2018-09-01 UR - https://www.deepdyve.com/lp/sage/autonomous-flight-and-cooperative-control-for-reconstruction-using-kdkJxwoCpx SP - 1341 EP - 1358 VL - 37 IS - 11 DP - DeepDyve ER -