TY - JOUR AU - Passlick, Bernward AB - BackgroundTo date, several chest drainage systems are available, such as digital drainage systems (DDS) and traditional systems with continuous suction or water seal. However, none of these systems were yet shown to be favorable in the treatment of complex situations such as persistent air leaks or residual spaces. We present in-vitro as well as clinical data of a novel hybrid drainage system consisting of an optimized digital drainage system (ODDS) and an underwater seal drainage system (UWSD).MethodsFor in-vitro analysis, a DDS and an ODDS were connected to a pleural cavity simulator. Different air leaks were produced and data on intrapleural pressure and air flow were analyzed. Furthermore, we tested the hybrid drainage system in 10 patients with potential air leaks after pulmonary surgery.ResultsIn in-vitro analysis, we could show, that with advanced pump technology, pressure fluctuations caused by the drainage system when trying to maintain a set pressure level in patients with airleaks were much smaller when using an ODDS and could even be eliminated when using a fluid collection canister with sufficient buffer capacity. This minimized air leak boosts caused by the drainage system. Optimizing the auto-pressure regulation algorithms also led to a reduced airflow through the fistula and promoted rest. Switching to a passive UWSD also reduced the amount of airflow. Clinical application of the hybrid drainage system yielded promising results.ConclusionThe novel hybrid drainage system shows promising results in the treatment of patients with complex clinical situations such as persistent air leaks. TI - Hybrid (Digital/Water Seal) Chest Drainage System – An Innovative Device for Patients with Anticipated Air Leaks JF - Surgical Innovation DO - 10.1177/15533506241232618 DA - 2024-04-01 UR - https://www.deepdyve.com/lp/sage/hybrid-digital-water-seal-chest-drainage-system-an-innovative-device-iTC7BLqeW7 SP - 185 EP - 194 VL - 31 IS - 2 DP - DeepDyve ER -