TY - JOUR AU - Mourot, J. AB - ABSTRACT The Western diet is characterized by a high intake of SFA relative to PUFA, and the consumption of n-3 PUFA is decreased relative to n-6 PUFA. Therefore, there has been much interest in recent years in ways to manipulate the fatty acid composition of meat. The objective of this work was to determine the effects of dietary extruded linseed, an n-3 PUFA source, on growth performance, carcass composition, meat quality, and oxidative stability of pigs slaughtered at 111.0 (±4.8) kg of BW and 160.0 (±9.2) kg of BW. The association of these factors with BW at slaughter was also examined. Forty barrows, 78.1 (±1.75) kg of initial BW, were fed a control diet (2.5% sunflower oil) or a linseed diet containing 5% of whole extruded linseed. Both diets contained 170 mg of vitamin E and 250 μg of selenium. Eight pigs from each dietary treatment were slaughtered at 110 kg of BW and the others at 160 kg of BW. There was no dietary effect (P > 0.05) on growth, carcass characteristics, meat quality, or the activity of malic enzyme in LM and backfat. Inclusion of linseed increased (P < 0.05) n-3 PUFA content in both LM and backfat and decreased the n-6:n-3 PUFA ratio from 12 to 4.5 in LM, and from 11 to 3 in backfat. Liveweight at slaughter significantly influenced carcass characteristics, meat quality, total lipid and oxidative stability of LM, malic enzyme activity in adipose tissue, and fatty acid content of LM and backfat. This study shows that the inclusion of linseed in swine diets may improve the fatty acid profile of pork without deleteriously affecting oxidation or color stability. Thus, such a feeding practice may improve human health based on the n-6:n-3 PUFA ratio recommended for the human diet. INTRODUCTION In recent years, nutritionists have expressed concern that the typical Western diet provides too much n-6 and not enough n-3 PUFA. Some of the most important international organizations for nutrition, such as the joint Food and Agriculture Organization/World Health Organization committee, advised nutritional recommendations concerning the n-6:n-3 PUFA ratio, suggesting a value between 5:1 and 10:1, as reported in the International Society for the Study of Fatty Acids and Lipids (ISSFAL, 2004). The n-6:n-3 PUFA ratio may be as high as 17:1 in the overall Western diet (Simopoulos, 2001), so consumption of n-3 PUFA is too low relative to n-6 PUFA. The current high level of n-6 PUFA in the food supply is a concern because these acids can interfere with the conversion of α-linolenic acid (ALA) to eicosapentaenoic acid (EPA) and docosahexanoic acid (DHA). Furthermore, diets high in n-6 PUFA lead to increased concentrations of arachidonic acid (ARA) in membrane phospholipids, which results in an overproduction of eicosanoids that may contribute to hardening of the arteries and other chronic conditions (Simopoulos, 2002). Moreover, eating less n-6 and more n-3 PUFA may help decrease the risk of heart disease and cancer (Simopoulos, 2002). Meat could be a source of n-3 PUFA if the animals are fed diets supplemented with sources of n-3 PUFA. The most important alimentary source of n-3 PUFA is fish and fish products, which are rich in long-chain n-3 PUFA, but supplementation of fish and fish products can be costly and increases the risk of flavor taints and rancidity in meat (Wood et al., 1999). An alternative source is linseed and its by-products, which are rich in ALA, and are precursors for EPA and DHA. The aim of this study was to investigate in pigs slaughtered at different weights (110 kg and 160 kg of BW) and the effect of extruded linseed on 1) the accumulation of ALA, EPA, and DHA fatty acids in muscle and in adipose tissue; and 2) the growth performance, carcass characteristics, and meat quality. MATERIALS AND METHODS Animals and Diets All experimental procedures were carried out in accordance with the guidelines of the French Institut National de la Recherche Agronomique (INRA) for the care and use of laboratory animals. A total of 40 castrated crossbred pigs [Large White × (Landrace × Pietrain)] of 78.1 (±1.7) kg of BW, were chosen on the basis of their BW and were assigned to 1 of 2 dietary treatments. Eight pigs per treatment, randomly selected, were slaughtered at 111.0 (±4.8) kg of BW, followed by 12 pigs per treatment at 160.0 (±9.2) kg of BW. The diets, formulated to be isoenergetic and isolipidic, differed in lipid source and in fatty acid composition: 2.5% sunflower oil was present in the control diet, and 5% extruded linseed was included in the linseed diet. Diets and fatty acids composition of diets are shown in Table 1 and in Table 2, respectively. Both diets contained 170 mg of vitamin E and 250 μg of selenium (170 μg as selenite, and 80 μg as Se-methionine). The animals were kept in individual cages with a totally slotted floor, in total confinement, in an environmentally controlled building at the experimental station of the INRA center of Saint Gilles (France), with ad libitum access to feed and water until slaughter. The BW of each pig was recorded at the beginning of the trial and weekly until slaughter at 110 kg of BW or 160 kg of BW. Feed intake was measured for each pig by weighing all feed offered and subtracting what was removed from the trough daily. Average daily feed intake, ADG, and G:F were calculated for each pig. Table 1. Composition of experimental diets (as-fed basis)   Diet  Item  Control  Linseed  Ingredient, %      Barley  24.50  24.00      Wheat  24.00  24.00      Corn  15.00  15.00      Soybean meal  23.00  21.00      Wheat bran  5.00  5.00      Extruded linseed  —  5.00      Sunflower oil  2.50  —      Molasses, cane  3.00  3.00      Calcium carbonate  1.30  1.30      Dicalcium phosphate  0.51  0.51      Sodium chloride  0.45  0.45      Mineral and vitamin premix1  0.74  0.74  Calculated nutrient composition2      DE, Mcal/kg  3.20  3.20      CP, %  17.02  17.02      Crude fat, %  4.48  4.47      Crude fiber, %  3.87  4.19      Lysine, %  0.84  0.83      Methionine + Cysteine, %  0.59  0.57      Tryptophan, %  0.21  0.22      Threonine, %  0.61  0.62      Ca, %  0.78  0.79      P, %  0.48  0.50    Diet  Item  Control  Linseed  Ingredient, %      Barley  24.50  24.00      Wheat  24.00  24.00      Corn  15.00  15.00      Soybean meal  23.00  21.00      Wheat bran  5.00  5.00      Extruded linseed  —  5.00      Sunflower oil  2.50  —      Molasses, cane  3.00  3.00      Calcium carbonate  1.30  1.30      Dicalcium phosphate  0.51  0.51      Sodium chloride  0.45  0.45      Mineral and vitamin premix1  0.74  0.74  Calculated nutrient composition2      DE, Mcal/kg  3.20  3.20      CP, %  17.02  17.02      Crude fat, %  4.48  4.47      Crude fiber, %  3.87  4.19      Lysine, %  0.84  0.83      Methionine + Cysteine, %  0.59  0.57      Tryptophan, %  0.21  0.22      Threonine, %  0.61  0.62      Ca, %  0.78  0.79      P, %  0.48  0.50  1 The vitamin and mineral per kilogram of the diet provided by premix: vitamin A, 7,400 UI; vitamin D3, 1,500 UI; vitamin E, 170.0 mg; vitamin K3, 3.0 mg; vitamin B1, 3.0 mg; vitamin B2, 6.0 mg; calcium D-pantothenate, 15.0 mg; niacin, 22.0 mg; vitamin B12, 0.03 mg; vitamin B6, 1.5 mg; folic acid, 1.5 mg; biotin, 0.3 mg; choline chloride, 740.0 mg; Zn (ZnO), 150.0 mg; Cu (CuSO4), 15.0 mg; Mn (MnO), 59.0 mg; Fe (FeCO3), 120.0 mg; I (Ca(IO3)2), 300.0 μg; Co (CoSO4), 30.0 μg; Se (as Na2SeO3, 170.0 μg, and as Se-methionine 80 μg), 250 μg. 2 Calculated based on INRA (1989). View Large Table 1. Composition of experimental diets (as-fed basis)   Diet  Item  Control  Linseed  Ingredient, %      Barley  24.50  24.00      Wheat  24.00  24.00      Corn  15.00  15.00      Soybean meal  23.00  21.00      Wheat bran  5.00  5.00      Extruded linseed  —  5.00      Sunflower oil  2.50  —      Molasses, cane  3.00  3.00      Calcium carbonate  1.30  1.30      Dicalcium phosphate  0.51  0.51      Sodium chloride  0.45  0.45      Mineral and vitamin premix1  0.74  0.74  Calculated nutrient composition2      DE, Mcal/kg  3.20  3.20      CP, %  17.02  17.02      Crude fat, %  4.48  4.47      Crude fiber, %  3.87  4.19      Lysine, %  0.84  0.83      Methionine + Cysteine, %  0.59  0.57      Tryptophan, %  0.21  0.22      Threonine, %  0.61  0.62      Ca, %  0.78  0.79      P, %  0.48  0.50    Diet  Item  Control  Linseed  Ingredient, %      Barley  24.50  24.00      Wheat  24.00  24.00      Corn  15.00  15.00      Soybean meal  23.00  21.00      Wheat bran  5.00  5.00      Extruded linseed  —  5.00      Sunflower oil  2.50  —      Molasses, cane  3.00  3.00      Calcium carbonate  1.30  1.30      Dicalcium phosphate  0.51  0.51      Sodium chloride  0.45  0.45      Mineral and vitamin premix1  0.74  0.74  Calculated nutrient composition2      DE, Mcal/kg  3.20  3.20      CP, %  17.02  17.02      Crude fat, %  4.48  4.47      Crude fiber, %  3.87  4.19      Lysine, %  0.84  0.83      Methionine + Cysteine, %  0.59  0.57      Tryptophan, %  0.21  0.22      Threonine, %  0.61  0.62      Ca, %  0.78  0.79      P, %  0.48  0.50  1 The vitamin and mineral per kilogram of the diet provided by premix: vitamin A, 7,400 UI; vitamin D3, 1,500 UI; vitamin E, 170.0 mg; vitamin K3, 3.0 mg; vitamin B1, 3.0 mg; vitamin B2, 6.0 mg; calcium D-pantothenate, 15.0 mg; niacin, 22.0 mg; vitamin B12, 0.03 mg; vitamin B6, 1.5 mg; folic acid, 1.5 mg; biotin, 0.3 mg; choline chloride, 740.0 mg; Zn (ZnO), 150.0 mg; Cu (CuSO4), 15.0 mg; Mn (MnO), 59.0 mg; Fe (FeCO3), 120.0 mg; I (Ca(IO3)2), 300.0 μg; Co (CoSO4), 30.0 μg; Se (as Na2SeO3, 170.0 μg, and as Se-methionine 80 μg), 250 μg. 2 Calculated based on INRA (1989). View Large Table 2. Fatty acid composition (g/100 g of fatty acids) of diets supplemented with 2.5% sunflower oil (control diet) or 5% extruded linseed (linseed diet)   Diet  Fatty acid  Control  Linseed  C14:0  0.17  0.16  C14:1  0.01  0.01  C16:0  14.51  14.22  C16:1  0.39  0.36  C18:0  3.33  3.15  C18:1n-9  25.64  20.91  C18:2n-6  51.34  39.61  C20:0  0.02  0.02  C18:3n-3  2.58  19.96  C20:1n-9  0.43  0.44  C20:2n-6  0.28  0.27  C20:3n-3  0.65  0.34  C20:4n-6  0.03  0.04  C22:1n-9  0.11  0.15  C20:5n-3  0.12  0.07  C24:0  0.22  0.10  C24:1  0.07  0.06  C22:5n-3  0.01  0.02  C22:6n-3  0.09  0.11  Total  100  100  SFA  18.25  17.65  MUFA  26.65  21.93  PUFA  55.10  60.42  n-6 PUFA  51.65  39.92  n-3 PUFA  3.45  20.50  n-6:n-3 PUFA  14.97  1.95    Diet  Fatty acid  Control  Linseed  C14:0  0.17  0.16  C14:1  0.01  0.01  C16:0  14.51  14.22  C16:1  0.39  0.36  C18:0  3.33  3.15  C18:1n-9  25.64  20.91  C18:2n-6  51.34  39.61  C20:0  0.02  0.02  C18:3n-3  2.58  19.96  C20:1n-9  0.43  0.44  C20:2n-6  0.28  0.27  C20:3n-3  0.65  0.34  C20:4n-6  0.03  0.04  C22:1n-9  0.11  0.15  C20:5n-3  0.12  0.07  C24:0  0.22  0.10  C24:1  0.07  0.06  C22:5n-3  0.01  0.02  C22:6n-3  0.09  0.11  Total  100  100  SFA  18.25  17.65  MUFA  26.65  21.93  PUFA  55.10  60.42  n-6 PUFA  51.65  39.92  n-3 PUFA  3.45  20.50  n-6:n-3 PUFA  14.97  1.95  View Large Table 2. Fatty acid composition (g/100 g of fatty acids) of diets supplemented with 2.5% sunflower oil (control diet) or 5% extruded linseed (linseed diet)   Diet  Fatty acid  Control  Linseed  C14:0  0.17  0.16  C14:1  0.01  0.01  C16:0  14.51  14.22  C16:1  0.39  0.36  C18:0  3.33  3.15  C18:1n-9  25.64  20.91  C18:2n-6  51.34  39.61  C20:0  0.02  0.02  C18:3n-3  2.58  19.96  C20:1n-9  0.43  0.44  C20:2n-6  0.28  0.27  C20:3n-3  0.65  0.34  C20:4n-6  0.03  0.04  C22:1n-9  0.11  0.15  C20:5n-3  0.12  0.07  C24:0  0.22  0.10  C24:1  0.07  0.06  C22:5n-3  0.01  0.02  C22:6n-3  0.09  0.11  Total  100  100  SFA  18.25  17.65  MUFA  26.65  21.93  PUFA  55.10  60.42  n-6 PUFA  51.65  39.92  n-3 PUFA  3.45  20.50  n-6:n-3 PUFA  14.97  1.95    Diet  Fatty acid  Control  Linseed  C14:0  0.17  0.16  C14:1  0.01  0.01  C16:0  14.51  14.22  C16:1  0.39  0.36  C18:0  3.33  3.15  C18:1n-9  25.64  20.91  C18:2n-6  51.34  39.61  C20:0  0.02  0.02  C18:3n-3  2.58  19.96  C20:1n-9  0.43  0.44  C20:2n-6  0.28  0.27  C20:3n-3  0.65  0.34  C20:4n-6  0.03  0.04  C22:1n-9  0.11  0.15  C20:5n-3  0.12  0.07  C24:0  0.22  0.10  C24:1  0.07  0.06  C22:5n-3  0.01  0.02  C22:6n-3  0.09  0.11  Total  100  100  SFA  18.25  17.65  MUFA  26.65  21.93  PUFA  55.10  60.42  n-6 PUFA  51.65  39.92  n-3 PUFA  3.45  20.50  n-6:n-3 PUFA  14.97  1.95  View Large Carcass Measurements All animals were slaughtered at the abattoir of INRA of Saint-Gilles (France) at 111.0 (±4.8) kg of BW and 160.0 (±9.2) kg of BW after fasting for 12 h. Pigs were electrically stunned, and following exsanguination, the carcasses were scalded, dehaired, and eviscerated. Liveweight at slaughter and hot carcass weight were recorded. Dressing percentage (hot carcass weight/live-weight at slaughter) was calculated. Backfat and LM thickness were measured with a Fat-O-Meater optical probe (Sydel, Lorient, France). Backfat thickness, including the rind, was evaluated between the third and fourth from the last lumbar vertebrae and the third and fourth from the last ribs, at 8 cm and 6 cm from median line, respectively. Longissimus muscle was evaluated between the third and fourth from the last ribs at 6 cm from median line. The lean meat content of all pig carcasses was calculated according to the following formula (Daumas et al., 1998):  \begin{eqnarray*}&&Y\ =\ 58.15\ {-}\ (0.198\ {\times}\ G1)\ {-}\ (0.570\ {\times}\ G2)\\&&+\ (0.255\ {\times}\ M2),\end{eqnarray*} where Y = the estimated percentage of lean meat in the carcass, G1 = the thickness of backfat (including rind) in millimeters, measured 8 cm off the midline of the split carcass between the third and fourth from the last lumbar vertebrae, G2 = the thickness of backfat (including rind) in millimeters, measured 6 cm off the midline of the split carcass between the third and fourth from the last ribs, and M2 = the thickness of the LM in millimeters, measured 6 cm off the midline of the split carcass between the third and fourth from the last ribs. Meat and Fat Quality All chemicals used in this study were reagent grade. Unless otherwise indicated, reagents were purchased from Sigma Chemical Co. (St. Louis, MO). Immediately after slaughter, samples of LM and backfat from all pigs were taken from the region of the last rib of the right side of each carcass, to evaluate meat quality parameters and malic enzyme activity. At 24 h postmortem, samples of LM and backfat at the last lumbar vertebra were taken, vacuum-packed, frozen and stored at −20°C pending analyses of total lipids and thiobarbituric acid-reactive substances (TBARS; of LM only). Color and pH were measured for all 40 pigs at 24 h postmortem on the LM (at the last lumbar vertebra). The pH was determined (HI 9023 microcomputer, Hanna Instruments, Amorim-Póvoa de Varzim, Portugal) by insertion of electrodes. Tri-stimulus color coordinates (L*, a*, b*) were recorded using a Chroma Meter CR-300 (Minolta Cameras, Osaka, Japan). The instrument was calibrated using the white calibration plate (Calibration Plate CR-A43, Minolta Cameras, Osaka, Japan) at the beginning of the session. The Chroma Meter has a measuring area 8 mm in diameter and illuminates the sample area with diffuse illumination from a pulsed Xenon arc lamp at 0° viewing angle (illuminant C). Reflectance measurements were obtained at a viewing angle of 0° and the spectral component was included. Color was measured with reference to lightness (L*: 0 = black, 100 = white) and 2 color coordinates, a* for redness and b* for yellowness, with the extreme colors of a* equal to red (positive) and green (negative) and of b* equal to yellow (positive) and blue (negative). Malic enzyme was analyzed in the LM and in backfat. To measure the activity of malic enzyme (EC 1.1.1.40), samples of muscle (1.5 g) and fat (0.7 g) were homogenized in 0.25 mol/L sucrose buffer and centrifuged at 30,000 × g for 40 min at 4°C. Supernatants were analyzed for malic enzyme using a modified (Gandemer et al., 1983) method of Hsu and Lardy (1969). Malic enzyme was assayed through measurement of NADPH formation at 37°C by absorbance at 340 nm. The activity of malic enzyme was expressed as nanomoles of NADPH formed per minute per milligram of protein. Lipid extraction was done using chloroform/methanol (2:1) according to the method of Folch et al. (1957). Lipids were extracted from 10 g of each sample of LM and from 1.5 g of each sample of backfat. The extracts were dried under vacuum on a rotary evaporator (Laborota 4000, Heidolph Instruments, Milan, Italy). Fatty acid composition was measured after methylation of samples. Fatty acid methyl esters were prepared with boron trifluoride methanol according to Morrison and Smith (1964) and analyzed on a Di 200 (Delsi) gas chromatograph equipped with fused silica gel capillary column (0.25 mm i.d. × 30 m), filled with stationary phase (80% biscyanopropyl and 20% cyanopropylphenyl), using margaric acid (C17) as the internal standard. The chromatography conditions used were: temperature program from 45 to 240°C at 20 to 35°C/min. The injector and detector temperatures were maintained at 220 and 280°C, respectively. Retention times and peak areas were determined using chromatography software (Nelson Analytical, Manchester, NH). The identities of the peaks were verified by comparison with the retention time of standard fatty acid methyl esters. Results were expressed as the percentage of the total fatty acid composition of feed, LM, and backfat. Iron-induced lipid oxidation of LM was determined using a TBARS assay and was carried out as a modification of the method described by Monahan et al. (1992). Moreover, the iron-induced lipid oxidation of LM was assessed by determining the production of TBARS, mostly malondialdehyde (MDA), after incubation with ferrous sulfate as a promoter of peroxidation. Briefly, 1 g of tissue was homogenized (Polytron homogenizer; Kinematica, Kùens-Lucerne, Switzerland) with 9 mL of 1.15% (w/v) KCl for 45 s. From the solution, 100 μL of homogenate was immediately submitted to iron-induced lipid oxidation by incubation for 60, 120, 200, or 300 min at 37°C in 80 mM Tris maleate buffer (pH 7.4) in the presence of 5 mM ferrous sulfate (to catalyze lipid peroxidation) in a total volume of 1 mL. At fixed times (0, 60, 120, 200, and 300 min), aliquots were removed and immediately analyzed for their MDA content, adding 2 mL of stock thiobarbituric acid-trichloracetic acid-HCl reagent and mixing thoroughly. The solution was heated for 15 min in boiling water. After cooling, the precipitate was removed by centrifugation at 715 × g for 15 min. The absorbance of the samples was measured using a spectrophotometer (Genesys 5-Milton Roy, Rochester, NY) at a wavelength of 535 nm against a blank sample that contained all the re-agents but not the test sample. The TBARS values are expressed as nanomoles of MDA/mg of protein during the time period of induced oxidation. Protein content was determined by the method of Lowry et al. (1951) with bovine serum albumin as the standard. Statistical Analysis The statistical model for performance used only the diet (control and linseed) as the main effect, analyzed separately for animals at 110 and 160 kg of BW. The statistical model for carcass characteristics, meat quality, malic enzyme activity, total lipid content, and fatty acid composition included the following effects: diet (control and linseed), weight at slaughter (110 and 160 kg of BW), and their interaction term. Statistical analysis of the data was performed by ANOVA (SPSS/ PC Statistics, SPSS Inc., Chicago, IL). When the interaction between the dietary treatments and liveweight was significant, the effect of the treatments was assessed by comparing the least-squares means using a Student's t-test. The development of MDA in tissues during iron-induced lipid oxidation was analyzed by a repeated measures ANOVA in SPSS separately for animals killed at 110 kg and 160 kg of BW; a fixed-effects model was used to assess the main effects of dietary treatment (2 levels: control and linseed) and time of iron-induced lipid oxidation (5 levels: 0, 60, 120, 200, 300), and the interaction between the 2 factors. Individual pigs were considered as the experimental unit. Differences were considered significant if P ≤ 0.05. RESULTS Fatty Acid Composition of Diet and Growth Performance The control diet, supplemented with sunflower oil, was characterized by a high content of C18:1n-9 (oleic acid), C18:2n-6 (linoleic acid, LA), and of monounsaturated fatty acid generally, with an n-6:n-3 ratio of about 15 (Table 2). Alternatively, the treatment diet, supplemented with extruded linseed, was characterized by a high content of C18:3n-3 (ALA), with a n-6:n-3 PUFA ratio of less than 2. Dietary treatment did not affect final weight, ADFI, ADG or G:F, either in 110 kg of BW pigs or in 160 kg of BW pigs (Table 3). However, greater homogeneity of final BW was observed for pigs fed the linseed diet at 110 and 160 kg of BW. Liveweight at slaughter did not affect ADG (110 kg = 1.18 kg vs. 160 kg = 1.04 kg; P > 0.05), but significantly affected G:F (110 kg = 319 g/kg vs. 160 kg = 242 g/kg; P < 0.001) and ADFI (110 kg = 3.69 kg vs. 160 kg = 4.09 kg; P < 0.001). Table 3. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) on performance of 110 and 160-kg liveweight pigs (least-squares means)1 Item  Control diet  Linseed diet  SE  Phase I, 78 to 110 kg of BW      No.2  20  20        Initial weight, kg  78.23  77.97  0.846      Final weight, kg  111.46  110.52  2.435      ADFI, kg  3.70  3.67  0.169      ADG, kg  1.18  1.17  0.078      G:F, g of liveweight gain/kg of feed  319  320  17.070  Phase II, 110 to 160 kg of BW      No.2  12  12        Initial weight, kg  113.78  111.88  1.733      Final weight, kg  161.48  158.76  3.924      ADFI, kg  4.13  4.05  0.210      ADG, kg  1.06  1.01  0.081      G:F, g of liveweight gain/kg of feed  245  240  5.607  Item  Control diet  Linseed diet  SE  Phase I, 78 to 110 kg of BW      No.2  20  20        Initial weight, kg  78.23  77.97  0.846      Final weight, kg  111.46  110.52  2.435      ADFI, kg  3.70  3.67  0.169      ADG, kg  1.18  1.17  0.078      G:F, g of liveweight gain/kg of feed  319  320  17.070  Phase II, 110 to 160 kg of BW      No.2  12  12        Initial weight, kg  113.78  111.88  1.733      Final weight, kg  161.48  158.76  3.924      ADFI, kg  4.13  4.05  0.210      ADG, kg  1.06  1.01  0.081      G:F, g of liveweight gain/kg of feed  245  240  5.607  1 The data were analyzed separately for animals at 110 kg and 160 kg of BW. 2 Number of replicate pens per diet. Pigs were housed 1 per pen. View Large Table 3. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) on performance of 110 and 160-kg liveweight pigs (least-squares means)1 Item  Control diet  Linseed diet  SE  Phase I, 78 to 110 kg of BW      No.2  20  20        Initial weight, kg  78.23  77.97  0.846      Final weight, kg  111.46  110.52  2.435      ADFI, kg  3.70  3.67  0.169      ADG, kg  1.18  1.17  0.078      G:F, g of liveweight gain/kg of feed  319  320  17.070  Phase II, 110 to 160 kg of BW      No.2  12  12        Initial weight, kg  113.78  111.88  1.733      Final weight, kg  161.48  158.76  3.924      ADFI, kg  4.13  4.05  0.210      ADG, kg  1.06  1.01  0.081      G:F, g of liveweight gain/kg of feed  245  240  5.607  Item  Control diet  Linseed diet  SE  Phase I, 78 to 110 kg of BW      No.2  20  20        Initial weight, kg  78.23  77.97  0.846      Final weight, kg  111.46  110.52  2.435      ADFI, kg  3.70  3.67  0.169      ADG, kg  1.18  1.17  0.078      G:F, g of liveweight gain/kg of feed  319  320  17.070  Phase II, 110 to 160 kg of BW      No.2  12  12        Initial weight, kg  113.78  111.88  1.733      Final weight, kg  161.48  158.76  3.924      ADFI, kg  4.13  4.05  0.210      ADG, kg  1.06  1.01  0.081      G:F, g of liveweight gain/kg of feed  245  240  5.607  1 The data were analyzed separately for animals at 110 kg and 160 kg of BW. 2 Number of replicate pens per diet. Pigs were housed 1 per pen. View Large Carcass Characteristics and Meat Quality Dietary treatment did not affect carcass characteristics (Table 4). Muscle thickness did not differ by weight at slaughter. However, all other variables were different in pigs slaughtered at 110 kg of BW compared with pigs slaughtered at 160 kg of BW. Obviously, warm carcass weight and dressing yield percentage were greater (P < 0.05) in 160 kg slaughtered pigs. Heavy pigs, as expected, were fatter than pigs of 110 kg of BW, as shown by greater values of backfat thickness (P < 0.05) and by lower values of lean percentage (P < 0.05). Loin weight was not affected by dietary treatment, but was greater (P < 0.05) in pigs slaughtered at 160 kg of BW than in pigs slaughtered at 110 kg of BW. The loin weight/carcass weight ratio was greater (P < 0.05) in pigs fed the linseed diet, slaughtered at both 110 and 160 kg of BW. Table 4. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110) or 160 kg of BW (BW160), on carcass characteristics and meat quality (leastsquares means)   BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Warm carcass weight, kg  87.57  86.50  132.87  130.41  4.435  NS  *  NS  Dressing yield, %  80.60  80.12  82.28  82.15  0.749  NS  *  NS  G1,2 mm  18.78  18.29  27.91  28.39  1.696  NS  *  NS  G2,3 mm  15.67  16.14  25.36  24.77  1.495  NS  *  NS  M2,4 mm  61.44  65.71  62.36  64.00  4.029  NS  NS  NS  Lean, %  61.17  62.08  53.13  51.98  3.163  NS  *  NS  Loin, kg  11.00  11.25  16.46  16.51  0.703  NS  *  NS  Loin weight/carcass weight, %  12.84  13.30  12.66  12.94  0.310  *  NS  NS  LM      pH 24 h  5.47  5.58  5.59  5.59  0.098  NS  NS  NS  Color 24 h      L*  57.05  56.80  57.20  56.15  2.418  NS  NS  NS      a*  8.35  7.73  9.66  8.51  0.941  NS  *  NS      b*  5.11  4.89  6.06  5.20  0.864  NS  NS  NS    BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Warm carcass weight, kg  87.57  86.50  132.87  130.41  4.435  NS  *  NS  Dressing yield, %  80.60  80.12  82.28  82.15  0.749  NS  *  NS  G1,2 mm  18.78  18.29  27.91  28.39  1.696  NS  *  NS  G2,3 mm  15.67  16.14  25.36  24.77  1.495  NS  *  NS  M2,4 mm  61.44  65.71  62.36  64.00  4.029  NS  NS  NS  Lean, %  61.17  62.08  53.13  51.98  3.163  NS  *  NS  Loin, kg  11.00  11.25  16.46  16.51  0.703  NS  *  NS  Loin weight/carcass weight, %  12.84  13.30  12.66  12.94  0.310  *  NS  NS  LM      pH 24 h  5.47  5.58  5.59  5.59  0.098  NS  NS  NS  Color 24 h      L*  57.05  56.80  57.20  56.15  2.418  NS  NS  NS      a*  8.35  7.73  9.66  8.51  0.941  NS  *  NS      b*  5.11  4.89  6.06  5.20  0.864  NS  NS  NS  1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 G1 = the thickness of backfat (including rind) in millimeters, measured 8 cm off the midline of the split carcass between the third and fourth from the last lumbar vertebrae. 3 G2 = the thickness of backfat (including rind) in millimeters, measured 6 cm off the midline of the split carcass between the third and fourth from the last ribs. 4 M2 = the thickness of LM in millimeters, measured 6 cm off the midline of the split carcass between the third and fourth from the last ribs. * P < 0.05; NS = not significant. View Large Table 4. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110) or 160 kg of BW (BW160), on carcass characteristics and meat quality (leastsquares means)   BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Warm carcass weight, kg  87.57  86.50  132.87  130.41  4.435  NS  *  NS  Dressing yield, %  80.60  80.12  82.28  82.15  0.749  NS  *  NS  G1,2 mm  18.78  18.29  27.91  28.39  1.696  NS  *  NS  G2,3 mm  15.67  16.14  25.36  24.77  1.495  NS  *  NS  M2,4 mm  61.44  65.71  62.36  64.00  4.029  NS  NS  NS  Lean, %  61.17  62.08  53.13  51.98  3.163  NS  *  NS  Loin, kg  11.00  11.25  16.46  16.51  0.703  NS  *  NS  Loin weight/carcass weight, %  12.84  13.30  12.66  12.94  0.310  *  NS  NS  LM      pH 24 h  5.47  5.58  5.59  5.59  0.098  NS  NS  NS  Color 24 h      L*  57.05  56.80  57.20  56.15  2.418  NS  NS  NS      a*  8.35  7.73  9.66  8.51  0.941  NS  *  NS      b*  5.11  4.89  6.06  5.20  0.864  NS  NS  NS    BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Warm carcass weight, kg  87.57  86.50  132.87  130.41  4.435  NS  *  NS  Dressing yield, %  80.60  80.12  82.28  82.15  0.749  NS  *  NS  G1,2 mm  18.78  18.29  27.91  28.39  1.696  NS  *  NS  G2,3 mm  15.67  16.14  25.36  24.77  1.495  NS  *  NS  M2,4 mm  61.44  65.71  62.36  64.00  4.029  NS  NS  NS  Lean, %  61.17  62.08  53.13  51.98  3.163  NS  *  NS  Loin, kg  11.00  11.25  16.46  16.51  0.703  NS  *  NS  Loin weight/carcass weight, %  12.84  13.30  12.66  12.94  0.310  *  NS  NS  LM      pH 24 h  5.47  5.58  5.59  5.59  0.098  NS  NS  NS  Color 24 h      L*  57.05  56.80  57.20  56.15  2.418  NS  NS  NS      a*  8.35  7.73  9.66  8.51  0.941  NS  *  NS      b*  5.11  4.89  6.06  5.20  0.864  NS  NS  NS  1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 G1 = the thickness of backfat (including rind) in millimeters, measured 8 cm off the midline of the split carcass between the third and fourth from the last lumbar vertebrae. 3 G2 = the thickness of backfat (including rind) in millimeters, measured 6 cm off the midline of the split carcass between the third and fourth from the last ribs. 4 M2 = the thickness of LM in millimeters, measured 6 cm off the midline of the split carcass between the third and fourth from the last ribs. * P < 0.05; NS = not significant. View Large Body weight and dietary treatment did not affect pH at 24 h, or the coordinates L* and b* of the color at 24 h. The a* values were statistically different between pigs of 110 kg of BW and 160 kg of BW, with redder LM in pigs of 160 kg of BW (P < 0.05; Table 4). Lipogenic Enzyme Activities and Total Lipids There was no effect of dietary treatment on the activities of this lipogenic enzyme (P > 0.05) in LM or in backfat (Table 5). Malic enzyme activity was greater (P < 0.05) in backfat of heavy pigs, but not in LM (P > 0.05). Table 5. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110) or 160 kg of BW (BW160), on malic enzyme activity and total lipid content (%) of LM and backfat (least squares means)   BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Malic enzyme activity2      LM  1.13  1.23  1.02  1.01  0.233  NS  NS  NS      Subcutaneous adipose tissue  0.49  0.50  0.79  0.71  0.211  NS  *  NS  Total lipids,3 %      LM  1.89  1.79  2.46  2.11  0.435  NS  *  NS      Subcutaneous adipose tissue  68.66  68.77  70.79  69.49  3.182  NS  NS  NS    BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Malic enzyme activity2      LM  1.13  1.23  1.02  1.01  0.233  NS  NS  NS      Subcutaneous adipose tissue  0.49  0.50  0.79  0.71  0.211  NS  *  NS  Total lipids,3 %      LM  1.89  1.79  2.46  2.11  0.435  NS  *  NS      Subcutaneous adipose tissue  68.66  68.77  70.79  69.49  3.182  NS  NS  NS  1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 Malic enzyme activity: nmol of NADPH formed per min per mg of protein. 3 Data expressed as percentage of wet weight. * P < 0.05; NS = not significant. View Large Table 5. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110) or 160 kg of BW (BW160), on malic enzyme activity and total lipid content (%) of LM and backfat (least squares means)   BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Malic enzyme activity2      LM  1.13  1.23  1.02  1.01  0.233  NS  NS  NS      Subcutaneous adipose tissue  0.49  0.50  0.79  0.71  0.211  NS  *  NS  Total lipids,3 %      LM  1.89  1.79  2.46  2.11  0.435  NS  *  NS      Subcutaneous adipose tissue  68.66  68.77  70.79  69.49  3.182  NS  NS  NS    BW110  BW160    Significance1  Item  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          Malic enzyme activity2      LM  1.13  1.23  1.02  1.01  0.233  NS  NS  NS      Subcutaneous adipose tissue  0.49  0.50  0.79  0.71  0.211  NS  *  NS  Total lipids,3 %      LM  1.89  1.79  2.46  2.11  0.435  NS  *  NS      Subcutaneous adipose tissue  68.66  68.77  70.79  69.49  3.182  NS  NS  NS  1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 Malic enzyme activity: nmol of NADPH formed per min per mg of protein. 3 Data expressed as percentage of wet weight. * P < 0.05; NS = not significant. View Large Total lipid content in LM and in backfat was not affected by dietary treatment, as shown in Table 5. The slaughter weight of animals affected total lipid content of LM, which was 24% greater in LM of 160-kg slaughtered pigs but did not affect the lipid content of backfat (P > 0.05; Table 5). Longissimus Muscle and Backfat Fatty Acid Composition The dietary treatment caused some significant changes in the fatty acid composition of LM (Table 6). Longissimus muscles of pigs fed the linseed diet showed a greater content of total n-3 PUFA (P < 0.001) and particularly of ALA (C18:3n-3; P < 0.001), EPA (C20:5n-3; P < 0.001), docosapentaenoic acid (DPA, C22:5n-3; P < 0.001), and DHA (C22:6n-3; P < 0.001). The percentage of ALA increased 3 fold, EPA increased 4-fold, and those of DPA and DHA were nearly doubled in linseed-fed pigs compared with the control pigs. Longissimus muscle composition of pigs fed the control diet did not show a greater content of n-6 PUFA, than LM of pigs fed the linseed diet. As a consequence of these changes in the fatty acid composition of the LM, the n-6:n-3 PUFA ratio was markedly reduced in the muscle of pigs fed linseed diets (P < 0.001): 43 and 33% for 110- and 160-kg slaughtered pigs, respectively, vs. control values. Table 6. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110), or 160 kg of BW (BW160) on fatty acid composition (g/100 g of fatty acids) of LM (least squares means)   BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          C14:0  1.22  1.25  1.30  1.32  0.088  NS  NS  NS  C14:1  0.07  0.07  0.05  0.05  0.010  NS  ***  NS  C16:0  24.59  24.31  24.98  24.98  0.675  NS  NS  NS  C16:1  3.40  3.41  3.46  3.48  0.249  NS  NS  NS  C18:0  11.86  12.02  12.18  12.36  0.616  NS  NS  NS  C18:1n9  40.54  39.93  43.74  42.28  1.295  NS  ***  NS  C18:2n6  13.24  12.33  10.10  9.61  1.364  NS  ***  NS  C18:3n3  0.48  1.48  0.35  1.49  0.105  ***  NS  NS  C20:0  0.15  0.17  0.18  0.16  0.039  NS  NS  NS  C20:1  0.66  0.68  0.73  0.68  0.068  NS  NS  NS  C20:2n6  0.39  0.35  0.30  0.30  0.039  NS  ***  NS  C20:3n3  0.30  0.29  0.25  0.27  0.051  NS  NS  NS  C20:4n6  2.44  2.42  1.91  1.82  0.417  NS  **  NS  C20:5n3  0.12  0.37  0.07  0.39  0.057  ***  NS  NS  C22:1n9  0.04  0.10  0.03  0.08  0.020  ***  NS  NS  C22:5n3  0.35  0.59  0.25  0.57  0.094  ***  NS  NS  C22:6n3  0.07  0.14  0.06  0.09  0.025  ***  *  NS  C24:1  0.08  0.09  0.06  0.07  0.014  NS  **  NS  SFA  37.82  37.75  38.64  38.82  1.182  NS  NS  NS  MUFA  44.79  44.28  48.07  46.64  1.403  NS  ***  NS  PUFA  17.39  17.97  13.29  14.54  2.007  NS  ***  NS  n-6 PUFA  16.07  15.10  12.31  11.73  1.752  NS  ***  NS  n-3 PUFA  1.32  2.87  0.98  2.81  0.265  ***  NS  NS  n-6:n-3 PUFA  12.17c  5.26b  12.56c  4.17a  0.473  ***  NS  ***  Total fatty acids2  1,278  1,268  1,956  1,668  358.603  NS  **  NS    BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          C14:0  1.22  1.25  1.30  1.32  0.088  NS  NS  NS  C14:1  0.07  0.07  0.05  0.05  0.010  NS  ***  NS  C16:0  24.59  24.31  24.98  24.98  0.675  NS  NS  NS  C16:1  3.40  3.41  3.46  3.48  0.249  NS  NS  NS  C18:0  11.86  12.02  12.18  12.36  0.616  NS  NS  NS  C18:1n9  40.54  39.93  43.74  42.28  1.295  NS  ***  NS  C18:2n6  13.24  12.33  10.10  9.61  1.364  NS  ***  NS  C18:3n3  0.48  1.48  0.35  1.49  0.105  ***  NS  NS  C20:0  0.15  0.17  0.18  0.16  0.039  NS  NS  NS  C20:1  0.66  0.68  0.73  0.68  0.068  NS  NS  NS  C20:2n6  0.39  0.35  0.30  0.30  0.039  NS  ***  NS  C20:3n3  0.30  0.29  0.25  0.27  0.051  NS  NS  NS  C20:4n6  2.44  2.42  1.91  1.82  0.417  NS  **  NS  C20:5n3  0.12  0.37  0.07  0.39  0.057  ***  NS  NS  C22:1n9  0.04  0.10  0.03  0.08  0.020  ***  NS  NS  C22:5n3  0.35  0.59  0.25  0.57  0.094  ***  NS  NS  C22:6n3  0.07  0.14  0.06  0.09  0.025  ***  *  NS  C24:1  0.08  0.09  0.06  0.07  0.014  NS  **  NS  SFA  37.82  37.75  38.64  38.82  1.182  NS  NS  NS  MUFA  44.79  44.28  48.07  46.64  1.403  NS  ***  NS  PUFA  17.39  17.97  13.29  14.54  2.007  NS  ***  NS  n-6 PUFA  16.07  15.10  12.31  11.73  1.752  NS  ***  NS  n-3 PUFA  1.32  2.87  0.98  2.81  0.265  ***  NS  NS  n-6:n-3 PUFA  12.17c  5.26b  12.56c  4.17a  0.473  ***  NS  ***  Total fatty acids2  1,278  1,268  1,956  1,668  358.603  NS  **  NS  a–c Means in the same row without common superscripts differ (P < 0.05). 1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 Expressed as mg/100 g of muscle. * P < 0.05; **P < 0.01; ***P < 0.001; NS = not significant. View Large Table 6. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110), or 160 kg of BW (BW160) on fatty acid composition (g/100 g of fatty acids) of LM (least squares means)   BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          C14:0  1.22  1.25  1.30  1.32  0.088  NS  NS  NS  C14:1  0.07  0.07  0.05  0.05  0.010  NS  ***  NS  C16:0  24.59  24.31  24.98  24.98  0.675  NS  NS  NS  C16:1  3.40  3.41  3.46  3.48  0.249  NS  NS  NS  C18:0  11.86  12.02  12.18  12.36  0.616  NS  NS  NS  C18:1n9  40.54  39.93  43.74  42.28  1.295  NS  ***  NS  C18:2n6  13.24  12.33  10.10  9.61  1.364  NS  ***  NS  C18:3n3  0.48  1.48  0.35  1.49  0.105  ***  NS  NS  C20:0  0.15  0.17  0.18  0.16  0.039  NS  NS  NS  C20:1  0.66  0.68  0.73  0.68  0.068  NS  NS  NS  C20:2n6  0.39  0.35  0.30  0.30  0.039  NS  ***  NS  C20:3n3  0.30  0.29  0.25  0.27  0.051  NS  NS  NS  C20:4n6  2.44  2.42  1.91  1.82  0.417  NS  **  NS  C20:5n3  0.12  0.37  0.07  0.39  0.057  ***  NS  NS  C22:1n9  0.04  0.10  0.03  0.08  0.020  ***  NS  NS  C22:5n3  0.35  0.59  0.25  0.57  0.094  ***  NS  NS  C22:6n3  0.07  0.14  0.06  0.09  0.025  ***  *  NS  C24:1  0.08  0.09  0.06  0.07  0.014  NS  **  NS  SFA  37.82  37.75  38.64  38.82  1.182  NS  NS  NS  MUFA  44.79  44.28  48.07  46.64  1.403  NS  ***  NS  PUFA  17.39  17.97  13.29  14.54  2.007  NS  ***  NS  n-6 PUFA  16.07  15.10  12.31  11.73  1.752  NS  ***  NS  n-3 PUFA  1.32  2.87  0.98  2.81  0.265  ***  NS  NS  n-6:n-3 PUFA  12.17c  5.26b  12.56c  4.17a  0.473  ***  NS  ***  Total fatty acids2  1,278  1,268  1,956  1,668  358.603  NS  **  NS    BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  No. of animals  8  8  12  12          C14:0  1.22  1.25  1.30  1.32  0.088  NS  NS  NS  C14:1  0.07  0.07  0.05  0.05  0.010  NS  ***  NS  C16:0  24.59  24.31  24.98  24.98  0.675  NS  NS  NS  C16:1  3.40  3.41  3.46  3.48  0.249  NS  NS  NS  C18:0  11.86  12.02  12.18  12.36  0.616  NS  NS  NS  C18:1n9  40.54  39.93  43.74  42.28  1.295  NS  ***  NS  C18:2n6  13.24  12.33  10.10  9.61  1.364  NS  ***  NS  C18:3n3  0.48  1.48  0.35  1.49  0.105  ***  NS  NS  C20:0  0.15  0.17  0.18  0.16  0.039  NS  NS  NS  C20:1  0.66  0.68  0.73  0.68  0.068  NS  NS  NS  C20:2n6  0.39  0.35  0.30  0.30  0.039  NS  ***  NS  C20:3n3  0.30  0.29  0.25  0.27  0.051  NS  NS  NS  C20:4n6  2.44  2.42  1.91  1.82  0.417  NS  **  NS  C20:5n3  0.12  0.37  0.07  0.39  0.057  ***  NS  NS  C22:1n9  0.04  0.10  0.03  0.08  0.020  ***  NS  NS  C22:5n3  0.35  0.59  0.25  0.57  0.094  ***  NS  NS  C22:6n3  0.07  0.14  0.06  0.09  0.025  ***  *  NS  C24:1  0.08  0.09  0.06  0.07  0.014  NS  **  NS  SFA  37.82  37.75  38.64  38.82  1.182  NS  NS  NS  MUFA  44.79  44.28  48.07  46.64  1.403  NS  ***  NS  PUFA  17.39  17.97  13.29  14.54  2.007  NS  ***  NS  n-6 PUFA  16.07  15.10  12.31  11.73  1.752  NS  ***  NS  n-3 PUFA  1.32  2.87  0.98  2.81  0.265  ***  NS  NS  n-6:n-3 PUFA  12.17c  5.26b  12.56c  4.17a  0.473  ***  NS  ***  Total fatty acids2  1,278  1,268  1,956  1,668  358.603  NS  **  NS  a–c Means in the same row without common superscripts differ (P < 0.05). 1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 Expressed as mg/100 g of muscle. * P < 0.05; **P < 0.01; ***P < 0.001; NS = not significant. View Large The dietary treatment produced significant changes in the fatty acid composition of backfat (Table 7). Backfat of pigs fed the linseed diet showed a high content of total n-3 PUFA (P < 0.001); ALA (C18:3n-3; P < 0.001), eicosatrienoic acid (C20:3n-3; P < 0.001), EPA (C20:5n-3; P < 0.001), DPA (C22:5n-3; P < 0.001), and DHA (C22:6n-3; P < 0.05). The percentage of ALA in the pigs fed the linseed diet increased 3 fold in 110-kg pigs and nearly increased 4-fold in 160-kg pigs, DPA increased 3-fold in 110-kg pigs and doubled in 160-kg pigs, eicosatrienoic acid nearly doubled in 160-kg pigs, EPA nearly doubled in 110-kg pigs and increased 3-fold in 160-kg pigs, and DHA increased 3-fold in 110-kg pigs and nearly doubled in 160-kg pigs, compared with the control. The backfat composition of pigs fed a control diet showed a higher content of n-6 PUFA, and particularly of LA (C18:2n-6), than the backfat of pigs fed the linseed diet. The ARA (C20:4n-6) content was greater in the backfat of pigs fed the linseed diet than in pigs fed the control diet. As a consequence of these changes in the fatty acid composition of backfat, the n-6:n-3 PUFA ratio was markedly reduced in the backfat of pigs fed the linseed diet (P < 0.001; 30 and 22% for 110- and 160-kg slaughtered pigs, respectively, vs. control values). No differences in the content of SFA, MUFA, and PUFA were observed in LM or in backfat as a result of the different diets. The linseed diet in LM produced a n-6:n-3 ratio of about 5 in 110-kg pigs and of about 4 in 160-kg pigs (P < 0.05), and in backfat a n-6:n-3 ratio of about 3.5 in 110-kg pigs and of about 2 in 160-kg pigs (P < 0.05). Table 7. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110) or 160 kg of BW (BW160), on fatty acid composition (g/100 g of fatty acids) of backfat (least-squares means)   BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  Number of animals  8  8  12  12          C14:0  1.18  1.20  1.18  1.15  0.050  NS  NS  NS  C14:1  0.06bc  0.06c  0.05b  0.04a  0.005  NS  ***  *  C16:0  24.96  24.91  24.50  24.90  0.664  NS  NS  NS  C16:1  1.99  2.04  1.77  1.74  0.142  NS  ***  NS  C18:0  14.38  14.68  14.46  15.12  0.885  NS  NS  NS  C18:1n9  39.27  38.46  40.27  39.86  0.821  NS  **  NS  C18:2n6  15.00c  12.74b  14.52c  10.45a  0.790  ***  ***  *  C18:3n3  0.90a  3.29b  0.78a  3.82c  0.156  ***  *  ***  C20:0  0.03  0.05  0.13  0.16  0.052  NS  ***  NS  C20:1  0.98  0.98  1.01  1.06  0.096  NS  NS  NS  C20:2n6  0.67  0.60  0.74  0.56  0.069  **  NS  NS  C20:3n3  0.34a  0.58b  0.36a  0.80c  0.030  ***  ***  ***  C20:4n6  0.04  0.05  0.03  0.03  0.005  ***  NS  NS  C20:5n3  0.02  0.01  0.03  0.04  0.007  ***  †  NS  C22:1n9  0.02a  0.03b  0.01a  0.04c  0.005  ***  NS  *  C22:5n3  0.04  0.11  0.0  0.12  0.023  ***  NS  NS  C22:6n3  0.02  0.06  0.03  0.04  0.017  *  NS  NS  C24:0  0.07  0.05  0.11  0.04  0.039  *  NS  NS  C24:1  0.03  0.03  0.03  0.03  0.010  NS  NS  NS  SFA  40.62  41.03  40.24  41.37  1.321  NS  NS  NS  MUFA  42.35  41.61  43.13  42.77  0.924  NS  *  NS  PUFA  17.03  17.36  16.63  15.86  0.937  NS  *  NS  n-6 PUFA  15.71c  13.53b  15.15c  11.04a  0.790  ***  ***  *  n-3 PUFA  1.32a  3.83b  1.48a  4.82c  0.167  ***  **  ***  n-6:n-3 PUFA  11.90c  3.53b  10.24c  2.29a  0.541  ***  NS  *  Total fatty acids2  52.22  51.47  62.77  61.26  3.554  NS  ***  NS    BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  Number of animals  8  8  12  12          C14:0  1.18  1.20  1.18  1.15  0.050  NS  NS  NS  C14:1  0.06bc  0.06c  0.05b  0.04a  0.005  NS  ***  *  C16:0  24.96  24.91  24.50  24.90  0.664  NS  NS  NS  C16:1  1.99  2.04  1.77  1.74  0.142  NS  ***  NS  C18:0  14.38  14.68  14.46  15.12  0.885  NS  NS  NS  C18:1n9  39.27  38.46  40.27  39.86  0.821  NS  **  NS  C18:2n6  15.00c  12.74b  14.52c  10.45a  0.790  ***  ***  *  C18:3n3  0.90a  3.29b  0.78a  3.82c  0.156  ***  *  ***  C20:0  0.03  0.05  0.13  0.16  0.052  NS  ***  NS  C20:1  0.98  0.98  1.01  1.06  0.096  NS  NS  NS  C20:2n6  0.67  0.60  0.74  0.56  0.069  **  NS  NS  C20:3n3  0.34a  0.58b  0.36a  0.80c  0.030  ***  ***  ***  C20:4n6  0.04  0.05  0.03  0.03  0.005  ***  NS  NS  C20:5n3  0.02  0.01  0.03  0.04  0.007  ***  †  NS  C22:1n9  0.02a  0.03b  0.01a  0.04c  0.005  ***  NS  *  C22:5n3  0.04  0.11  0.0  0.12  0.023  ***  NS  NS  C22:6n3  0.02  0.06  0.03  0.04  0.017  *  NS  NS  C24:0  0.07  0.05  0.11  0.04  0.039  *  NS  NS  C24:1  0.03  0.03  0.03  0.03  0.010  NS  NS  NS  SFA  40.62  41.03  40.24  41.37  1.321  NS  NS  NS  MUFA  42.35  41.61  43.13  42.77  0.924  NS  *  NS  PUFA  17.03  17.36  16.63  15.86  0.937  NS  *  NS  n-6 PUFA  15.71c  13.53b  15.15c  11.04a  0.790  ***  ***  *  n-3 PUFA  1.32a  3.83b  1.48a  4.82c  0.167  ***  **  ***  n-6:n-3 PUFA  11.90c  3.53b  10.24c  2.29a  0.541  ***  NS  *  Total fatty acids2  52.22  51.47  62.77  61.26  3.554  NS  ***  NS  a–c Means in the same row without common superscripts differ (P < 0.05). 1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 Expressed as g/100 g of tissue. †P < 0.10; *P < 0.05; **P < 0.01; ***P < 0.001; NS = not significant. View Large Table 7. Effects of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) and liveweight at slaughter, 110 kg of BW (BW110) or 160 kg of BW (BW160), on fatty acid composition (g/100 g of fatty acids) of backfat (least-squares means)   BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  Number of animals  8  8  12  12          C14:0  1.18  1.20  1.18  1.15  0.050  NS  NS  NS  C14:1  0.06bc  0.06c  0.05b  0.04a  0.005  NS  ***  *  C16:0  24.96  24.91  24.50  24.90  0.664  NS  NS  NS  C16:1  1.99  2.04  1.77  1.74  0.142  NS  ***  NS  C18:0  14.38  14.68  14.46  15.12  0.885  NS  NS  NS  C18:1n9  39.27  38.46  40.27  39.86  0.821  NS  **  NS  C18:2n6  15.00c  12.74b  14.52c  10.45a  0.790  ***  ***  *  C18:3n3  0.90a  3.29b  0.78a  3.82c  0.156  ***  *  ***  C20:0  0.03  0.05  0.13  0.16  0.052  NS  ***  NS  C20:1  0.98  0.98  1.01  1.06  0.096  NS  NS  NS  C20:2n6  0.67  0.60  0.74  0.56  0.069  **  NS  NS  C20:3n3  0.34a  0.58b  0.36a  0.80c  0.030  ***  ***  ***  C20:4n6  0.04  0.05  0.03  0.03  0.005  ***  NS  NS  C20:5n3  0.02  0.01  0.03  0.04  0.007  ***  †  NS  C22:1n9  0.02a  0.03b  0.01a  0.04c  0.005  ***  NS  *  C22:5n3  0.04  0.11  0.0  0.12  0.023  ***  NS  NS  C22:6n3  0.02  0.06  0.03  0.04  0.017  *  NS  NS  C24:0  0.07  0.05  0.11  0.04  0.039  *  NS  NS  C24:1  0.03  0.03  0.03  0.03  0.010  NS  NS  NS  SFA  40.62  41.03  40.24  41.37  1.321  NS  NS  NS  MUFA  42.35  41.61  43.13  42.77  0.924  NS  *  NS  PUFA  17.03  17.36  16.63  15.86  0.937  NS  *  NS  n-6 PUFA  15.71c  13.53b  15.15c  11.04a  0.790  ***  ***  *  n-3 PUFA  1.32a  3.83b  1.48a  4.82c  0.167  ***  **  ***  n-6:n-3 PUFA  11.90c  3.53b  10.24c  2.29a  0.541  ***  NS  *  Total fatty acids2  52.22  51.47  62.77  61.26  3.554  NS  ***  NS    BW110  BW160    Significance1  Fatty acid  Control diet  Linseed diet  Control diet  Linseed diet  SE  D  BW  D × BW  Number of animals  8  8  12  12          C14:0  1.18  1.20  1.18  1.15  0.050  NS  NS  NS  C14:1  0.06bc  0.06c  0.05b  0.04a  0.005  NS  ***  *  C16:0  24.96  24.91  24.50  24.90  0.664  NS  NS  NS  C16:1  1.99  2.04  1.77  1.74  0.142  NS  ***  NS  C18:0  14.38  14.68  14.46  15.12  0.885  NS  NS  NS  C18:1n9  39.27  38.46  40.27  39.86  0.821  NS  **  NS  C18:2n6  15.00c  12.74b  14.52c  10.45a  0.790  ***  ***  *  C18:3n3  0.90a  3.29b  0.78a  3.82c  0.156  ***  *  ***  C20:0  0.03  0.05  0.13  0.16  0.052  NS  ***  NS  C20:1  0.98  0.98  1.01  1.06  0.096  NS  NS  NS  C20:2n6  0.67  0.60  0.74  0.56  0.069  **  NS  NS  C20:3n3  0.34a  0.58b  0.36a  0.80c  0.030  ***  ***  ***  C20:4n6  0.04  0.05  0.03  0.03  0.005  ***  NS  NS  C20:5n3  0.02  0.01  0.03  0.04  0.007  ***  †  NS  C22:1n9  0.02a  0.03b  0.01a  0.04c  0.005  ***  NS  *  C22:5n3  0.04  0.11  0.0  0.12  0.023  ***  NS  NS  C22:6n3  0.02  0.06  0.03  0.04  0.017  *  NS  NS  C24:0  0.07  0.05  0.11  0.04  0.039  *  NS  NS  C24:1  0.03  0.03  0.03  0.03  0.010  NS  NS  NS  SFA  40.62  41.03  40.24  41.37  1.321  NS  NS  NS  MUFA  42.35  41.61  43.13  42.77  0.924  NS  *  NS  PUFA  17.03  17.36  16.63  15.86  0.937  NS  *  NS  n-6 PUFA  15.71c  13.53b  15.15c  11.04a  0.790  ***  ***  *  n-3 PUFA  1.32a  3.83b  1.48a  4.82c  0.167  ***  **  ***  n-6:n-3 PUFA  11.90c  3.53b  10.24c  2.29a  0.541  ***  NS  *  Total fatty acids2  52.22  51.47  62.77  61.26  3.554  NS  ***  NS  a–c Means in the same row without common superscripts differ (P < 0.05). 1 D = diet effect; BW = BW at slaughter effect; D × BW = diet × liveweight at slaughter effect. 2 Expressed as g/100 g of tissue. †P < 0.10; *P < 0.05; **P < 0.01; ***P < 0.001; NS = not significant. View Large Fatty acid content of LM was also affected by the weight of the animals. In particular, the proportions of MUFA and total fatty acids content were significantly greater, and total PUFA (particularly n-6 PUFA, LA, and ARA) was decreased in LM of 160-kg pigs than 110-kg pigs. The fatty acid content of backfat, like that of LM, was also affected by the weight of the animals. Linoleic acid, total PUFA, and n-6 PUFA were significantly decreased, and ALA, MUFA, n-3 PUFA, and the total fatty acids content were greater in the backfat of 160-kg pigs compared with 110-kg pigs. Some interactions BW × diet were observed in backfat fatty acids composition for C14:1 (myristoleic acid), C18:2n-6 (LA), C18:3n-3 (ALA), C20:3n-3 (eicosatrienoic acid), n-6 PUFA, n-3 PUFA, and n-6:n-3 PUFA ratio. In linseed fed pigs C14:1 (myristoleic acid), C18:2n-6 (LA) and n-6 PUFA content and n-6:n-3 PUFA ratios were decreased in heavy pigs compared with light pigs and C18:3n-3 (ALA), C20:3n-3 (eicosatrienoic acid) and n-3 PUFA content were greater in heavy compared with light pigs. Only one interaction was observed in the LM fatty acids composition for n-6:n-3 PUFA ratio of pigs fed linseed, which was decreased in heavy compared with light pigs. Iron-Induced Lipid Oxidation Time of iron-induced lipid oxidation significantly affected TBARS values (P < 0.001) in pigs slaughtered at 110 kg of BW, but there was no significant interaction between time and treatment (Figure 1). Time of iron-induced lipid oxidation and dietary treatment significantly affected TBARS values (P < 0.001 and P < 0.05, respectively), and there was a significant interaction between time and treatment in pigs slaughtered at 160 kg of BW (Figure 2). In LM of control heavy pigs, however, TBARS values were always less than 1 nmol of MDA/mg of protein (Figure 2), in contrast to TBARS values of LM in light pigs (Figure 1). In the LM of heavy pigs fed on the linseed diet, iron-induced lipid oxidation increased at 200 min, whereas in LM of light pigs fed on the linseed diet, iron-induced lipid oxidation increased at 120 min. Figure 1. View largeDownload slide Effect of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) on iron-induced lipid oxidation, expressed as nanomoles of malondial-dehyde (MDA)/milligram of protein, of LM from pigs slaughtered at 110 kg of BW. This was assessed by determining the production of thiobarbituric acid-reactive substances (TBARS), mostly MDA, after incubation with ferrous sulfate as a promoter of peroxidation. Values are means ± SEM, 8 animals per group. Significant effect (P < 0.001) of time of iron-induced lipid oxidation. Figure 1. View largeDownload slide Effect of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) on iron-induced lipid oxidation, expressed as nanomoles of malondial-dehyde (MDA)/milligram of protein, of LM from pigs slaughtered at 110 kg of BW. This was assessed by determining the production of thiobarbituric acid-reactive substances (TBARS), mostly MDA, after incubation with ferrous sulfate as a promoter of peroxidation. Values are means ± SEM, 8 animals per group. Significant effect (P < 0.001) of time of iron-induced lipid oxidation. Figure 2. View largeDownload slide Effect of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) on iron-induced lipid oxidation, expressed as nanomoles of malondial-dehyde (MDA)/mg of protein, of LM from pigs slaughtered at 160 kg of BW. This was assessed by determining the production of thiobarbituric acid-reactive substances (TBARS), mostly MDA, after incubation with ferrous sulfate as a promoter of peroxidation. Values are means ± SEM, 12 animals per group. Significant effects of dietary treatment (P < 0.05), of time of iron-induced lipid oxidation (P < 0.001), and interaction of time of iron-induced lipid oxidation × dietary treatment (P < 0.05). Figure 2. View largeDownload slide Effect of diet (control diet: 2.5% sunflower oil; linseed diet: 5% extruded linseed) on iron-induced lipid oxidation, expressed as nanomoles of malondial-dehyde (MDA)/mg of protein, of LM from pigs slaughtered at 160 kg of BW. This was assessed by determining the production of thiobarbituric acid-reactive substances (TBARS), mostly MDA, after incubation with ferrous sulfate as a promoter of peroxidation. Values are means ± SEM, 12 animals per group. Significant effects of dietary treatment (P < 0.05), of time of iron-induced lipid oxidation (P < 0.001), and interaction of time of iron-induced lipid oxidation × dietary treatment (P < 0.05). DISCUSSION The Effects of Fatty Acid Composition of Diet and Slaughtering Weight on Growth Performance This study was designed to investigate the use of extruded linseed to increase the n-3 PUFA content of the LM and adipose tissue of pigs slaughtered at 2 different weights, 1 of which is characteristic in Italy (160 kg of BW) and the other in other European nations (110 kg of BW). Extruded linseed did not affect growth parameters in pigs slaughtered at 110 or 160 kg of BW (ADFI, ADG, or G:F) similar to the studies of Romans et al. (1995a) and Riley et al. (2000) who used ground flaxseed and extruded linseed as sources of n-3 PUFA. Consistent with the results of Cisneros et al. (1996), slaughtering weight did not affect ADG in pigs from 100 to 120 or 160 kg, respectively. In contrast, Ellis et al. (1996) showed that ADG decreased with increasing BW. These conflicting results may be explained by the genetic propensity for growth rate of pigs used in these studies. In regards to ADFI, our results are consistent with those of other studies (Cisneros et al., 1996) that showed that ADFI increased linearly with age and liveweight, due to greater BW. Also, our results are in agreement with the results of Latorre et al. (2004), who observed a linear decrease of G:F with increasing live-weight. Dietary and Weight Effect on Carcass Characteristics and Meat Quality The absence of a dietary effect on carcass traits of light and heavy pigs is consistent with previous observations using heavy pigs, of Corino et al. (2002), who used dietary rapeseed oil, and, results using light pigs (Riley et al., 2000). These authors showed no effects of various dietary linseed additions on warm carcass weight, dressing yield, muscle and fat thickness, lean percentage, or cold loin weight. As observed by other researchers (Correa et al., 2006), there were significant increases in hot carcass weight and dressing yield as slaughtering weight increased. In addition, backfat increased linearly with age as reported by Ellis et al. (1996) and Cisneros et al. (1996). According to Correa et al. (2006), slaughtering weight did not affect loin weight as a percentage of carcass weight. Our results concerning meat quality traits are also consistent with results in heavy pigs of Corino et al. (2002), and with those in light pigs in Riley et al. (2000), who did not find any dietary effect on pH at 24 h or on color coordinates (L*, a*, and b*). However, Van Oeckel et al. (1996) observed a significant difference in color coordinate L* in light pigs fed linseed. Previous studies showed little or no effect of slaughter weight on technological meat quality traits (Cisneros et al., 1996; Latorre et al., 2004; Correa et al., 2006). Our results are in agreement with those of Candek-Potokar et al. (1998), who reported no effect of age on pH. The increase of the a* value of the meat with age is in agreement with results reported by Cannata et al. (2007). Dietary and Weight Effects on Activities of Lipogenic Enzymes and on Total Lipids In the pig, malic enzyme, with glucose-6-phosphate dehydrogenase, is a major enzyme involved in supplying NADPH for the reductive biosynthesis of fatty acids (Young et al., 1964). Our results are in agreement with those obtained by Mourot et al. (1994) showing the absence of a significant effect of diets rich in LA on pig muscle lipogenic enzyme activities. Our results in adipose tissue differ from previous results obtained in pigs (Allee et al., 1972; Kouba and Mourot, 1999), which showed a significant effect of diets with different fatty acid compositions on the lipogenic enzyme activities of pig adipose tissue. Malic enzyme activity is not weight-related in LM, although malic enzyme activity is decreased in heavy pigs compared with light pigs. This result is in contrast with the observations of Mourot and Kouba (1998), who studied muscle growth in (20 to 100 kg of BW) Large White and Meishan pigs. In backfat, malic enzyme activity is weight-related in accordance with previous observations of Mersmann et al. (1976) on the extramuscular adipose tissue of young pigs. However, our results differ from those previously reported that showed a decrease in malic enzyme activity in the extramuscular adipose tissue of older and heavier pigs (Allee et al., 1971; Mourot et al., 1995). Whether malic enzyme is actually involved in the regulation of the deposition of intramuscular lipids deserves further investigation. In the present study, the total lipid content of LM and backfat were not affected by dietary treatment, which is in agreement with other studies showing the affects of different fats in light pigs (Romans et al., 1995a,b; Riley et al., 2000). Pig weight at slaughter did not affect the total lipid content of backfat. However, animal weight at slaughter did affect the total lipid content of LM, and the values were notably greater in the LM of heavy pigs compared with light pigs. Dietary Effects on Fatty Acid Composition Diet is known to affect the fatty acid composition of pig adipose tissue, particularly back and perirenal fat (Fontanillas et al., 1997). Leszczynski et al. (1992) showed that LM intramuscular fat was less affected by diet than subcutaneous fat. This may be due to weak deposition of absorbed fat in muscle tissue (Vernon, 1992), or the greater amount of membrane lipids in intramuscular fat containing high quantities of PUFA, which are less sensitive to dietary variations. However, in the present study, there were significant changes in the fatty acid compositions of LM. In particular, dietary linseed increased C18:3n-3 (ALA) concentrations and decreased the n-6:n-3 PUFA ratio in LM, and allowed C18:3n-3 (ALA) to compete more effectively with C18:2n-6 (LA) for the pathways responsible for producing longer-chain fatty acid products. Our results are in agreement with those reported previously in light pigs by Enser et al. (2000), who observed significant increases in all n-3 PUFA in muscle with linseed feeding. Specifically, the increases were: EPA 100%, ALA 55%, DHA 35%, and DPA 29%. A significant increase limited only to some n-3 PUFA was observed by Ahn et al. (1996), who showed that increasing the content of α-linolenic acid in the diet to 35 g/kg by the inclusion of linseed resulted in an increase in the C18:3n-3 (ALA), C20:5n-3 (EPA), and C22:5n-3 (DPA) content in the loin muscle, but not in C22:6n-3 (DHA). These results confirmed by Hoz et al. (2003) and by Riley et al. (2000). For heavy pigs our results contrast with those previously reported by Corino et al. (2002), who showed significant differences in the LM composition of animals fed diets supplemented with 2.5% rapeseed oil during the finishing phase [only for C18:3n-3 (ALA), but not for any other n-3 fatty acid]. This can be explained by the observation that rapeseed oil has a very low content of n-3 PUFA compared with extruded linseed and the different dietary vitamin E supplementation used. For backfat of pigs fed the linseed diet, the content of n-3 PUFA was greater than in pigs fed the control diet. In fact, in backfat of pigs fed the control diet, the n-6:n-3 PUFA ratio value was 11, as in LM, but the n-6:n-3 ratio of backfat of pigs fed the linseed diet was about 3, which was decreased compared with LM. In agreement with our results, Enser et al. (2000) observed significant increases in DHA in adipose tissue with long-term linseed feeding. However, in several studies DHA content was not affected in adipose tissue by a greater amount of ALA in the diet (Cunnane et al., 1990; Ahn et al., 1996). These authors showed that dietary linseed supplementation increased concentrations of ALA and EPA, but not of DHA, in adipose tissue. In contrast, Romans et al. (1995b) fed pigs linseed at 150 g/kg, for different lengths of time, and observed an increase in the quantities of ALA, EPA, and DHA in the inner and outer layers of backfat. Rossi and Corino (2002) observed significant differences in the backfat composition of heavy pigs fed diets supplemented with 2.5% rapeseed oil during their growing-finishing phase only for C18:3n-3 (ALA). As observed for LM, this can be explained by the different content of n-3 PUFA of rapeseed oil compared with that of extruded linseed. Slaughtering weight affected the fatty acid composition for both adipose and muscle tissue. In particular, a decreased PUFA and n-6 PUFA content in LM and in backfat, with a simultaneous increase in MUFA was observed in 160-kg pigs. Animal weight at slaughter affected total fatty acids content of LM and backfat, and was greater in tissues from heavy compared with light pigs. With increasing age and weight, the partition of ingested energy turns from muscular to adipose tissue growth, which increases the ratio between de novo synthesized fatty acids (mainly C18:1, oleic acid; Enser, 1991) and those derived from dietary fatty acids (C18:2n-6, LA, and C18:3n-3, ALA, in our diets). In adipose tissue, our results are in agreement with Virgili et al. (2003), who showed a reduction of total PUFA in ham subcutaneous adipose tissue, particularly in LA and ALA, and an increase in MUFA. Nevertheless, subcutaneous fat from pigs slaughtered at 160 kg, characterized by decreased percentages of PUFA, appears more suitable for long-curing pork production. It should be noted that PUFA of the n-3 family have different modes of incorporation in tissues. Our results are in agreement with those of Nguyen et al. (2003), who observed that EPA is preferentially stored in the organs or muscle rather than in adipose tissue, and DHA is more efficiently incorporated into adipose tissue than EPA. The authors explain the difference between the 2 fatty acids by the observation that EPA, but not DHA, can be converted into eicosanoids. However, in our study, there were greater quantities of EPA, DPA, and DHA in LM than in adipose tissue. Øverland et al. (1996) argue that greater concentrations of EPA, DPA, and DHA in the lipid of muscle tissue compared with subcutaneous adipose tissue were probably due to greater contents of phospholipids in intramuscular fat compared with subcutaneous fat and that PUFA is preferentially incorporated into phospholipids rather than into triacylglycerol. Our results for LA are in agreement with those of Nguyen et al. (2003); in fact, LA is stored preferentially in adipose tissue rather than in muscle. Likely, the intake of LA is much greater than the amount required for membrane synthesis, so a high proportion of the intake is channeled into a storage site (adipose tissue). However, in contrast with Nguyen et al. (2003), in our study, ALA was stored much more in adipose tissue than in muscle. This difference could be due to a different quantity of ALA in the diets, different sources of n-3 PUFA in the diets, or the length of feeding. From our results, and those of other authors (Enser et al., 2000), it appears possible that the pig may use ALA for elongation and desaturation, which explains the moderate effect of dietary treatment observed on long chain n-3 PUFA. However, the reason for a greater or decreased deposition of n-3 PUFA is unclear. Some authors, such as Romans et al. (1995a, b) and Enser et al. (2000), reported that n-3 PUFA content could be dependent on the time of administration of the source of n-3 PUFA, and by several factors including the rate of synthesis, rate of conversion to other fatty acids, rate of loss (i.e., oxidation or conversion to other metabolites), specificity of acylating enzymes, and the amount and type of lipids into which they may be incorporated. Effects of Diet and Weight on Iron-Induced Lipid Oxidation of Longissimus Muscle The n-3 fatty acids are particularly susceptible to lipid oxidation, and small increases in the concentration of these fatty acids in the phospholipid fraction of fat may be significant in the progress of oxidation (Lopez-Bote et al., 1997). Lipid oxidation in food is also a problem for the sensory characteristics of pork and a risk to human health. In fact, some molecules produced by lipid oxidation, particularly oxides of cholesterol, could be atherogenic agents and may be mutagenic, carcinogenic, or cytotoxic (Kubow, 1990). The oxidative stability of the LM from heavy pigs fed the linseed diet was lower than for controls, but the oxidative stability was not affected by dietary treatment in light pigs. Values of TBARS of LM were greater in light pigs than in heavy pigs that were fed the control diet. Different liveweights influence iron-induced lipid oxidation of LM, as assessed by the TBARS test; this is due to a greater content in MUFA in the LM of heavy pigs than of light pigs, and to a greater content in PUFA, particularly n-6 PUFA, in the LM of light pigs than heavy pigs. The decreased value of TBARS was probably due to inclusion in the diets of a greater concentration of antioxidants, which increased the oxidative stability of the raw LM, and by the time of dietary supplementation (i.e., total vitamin E intake) in heavy pigs vs. light pigs. This observation is consistent with the results of Corino et al. (1999) and Hoz et al. (2003), who showed greater oxidative stability in the muscle of pigs fed with diets containing high concentration of antioxidants. This study confirmed that it is possible to improve the nutritional quality of pork through feeding of live pigs. In particular, dietary enrichment with raw materials rich in linolenic acid increased not only linolenic acid content, but also that of its derivates EPA, DPA, and DHA. Quality problems that might have been expected as a result of this type of tissue manipulation, concerning oxidation resistance, appear to have been controlled by dietary supplementation with vitamin E and selenium in pigs slaughtered at 110 kg of BW. Dietary extruded linseed reduces the n-6:n-3 PUFA ratio and a value of 5 was obtained as recommended by ISSFAL (2004). An increase in slaughter weight of pigs from 110 to 160 kg impaired live pig performance and carcass characteristics important for meat intended for immediate consumption. However, an increased slaughter weight resulted in greater intramuscular fat content and greater SFA and MUFA content in backfat that positively affected the technological quality and oxidative stability of meat. It may be possible to improve the nutritional quality of fresh meat and of raw material for transforming products, but there is a need to further evaluate the impact of extruded linseed on long-cured meat products (e. g., Parma ham) and to redefine antioxidant needs related to the supply of n-3 PUFA in pig feeding. LITERATURE CITED Ahn, D. A., S. Lutz, and J. S. Sim 1996. Effects of dietary alpha-linolenic acid on the fatty acid composition, storage stability and sensory characteristics of pork loin. Meat Sci.  43: 291– 299. Google Scholar CrossRef Search ADS PubMed  Allee, G. L., D. Romos, G. A. Leveille, and D. H. Baker 1971. Influence of age in vitro lipid biosynthesis and enzymatic activity in pig adipose tissue. Proc. Soc. Exp. Biol. Med.  137: 449– 452. Google Scholar CrossRef Search ADS   Allee, G. L., D. Romos, G. A. Leveille, and D. H. Baker 1972. Lipogenesis and enzymatic activity in pig adipose tissue as influenced by source of dietary fat. J. Anim. Sci.  35: 41– 47. Google Scholar CrossRef Search ADS PubMed  Candek-Potokar, M., B. Zlender, and M. Bonneau 1998. Effects of breed and slaughter weight on longissimus muscle biochemical traits and sensory quality in pigs. Ann. Zootechnology  47: 3– 16. Google Scholar CrossRef Search ADS   Cannata, S., M. Musella, R. Rossi, G. Pastorelli, and C. Corino 2007. A study on loin quality from pigs slaughtered at 120 or 160 kg liveweight. Ital. J. Anim. Sci.  6( Suppl. 1): 676– 678. Cisneros, F., M. Ellis, F. K. McKeith, J. McGraw, and R. L. Fernando 1996. Influence of slaughter weight on growth and carcass characteristics, commercial cutting and curing yields, and meat quality of barrows and gilts from two genotypes. J. Anim. Sci.  74: 2566– 2576. Google Scholar CrossRef Search ADS PubMed  Corino, C., S. Magni, E. Pagliarini, R. Rossi, G. Pastorelli, and L. M. Chiesa 2002. Effects of dietary fats on meat quality and sensory characteristics of heavy pig loins. Meat Sci.  60: 1– 8. Google Scholar CrossRef Search ADS PubMed  Corino, C., G. Oriani, L. Pantaleo, G. Pastorelli, and G. Salvatori 1999. Influence of dietary vitamin E supplementation on heavy pig carcass characteristics, meat quality, and vitamin E status. J. Anim. Sci.  77: 1755– 1761. Google Scholar CrossRef Search ADS PubMed  Correa, J. A., L. Faucitano, J. P. Laforest, J. Rivest, M. Marcoux, and C. Gariépy 2006. Effects of slaughter weight on carcass composition and meat quality in pigs of two different growth rates. Meat Sci.  72: 91– 99. Google Scholar CrossRef Search ADS PubMed  Cunnane, S. C., P. A. Stitt, S. Gangli, and J. K. Armstrong 1990. Raised omega-3 fatty acid levels in pigs fed flax. Can. J. Anim. Sci.  70: 251– 254. Google Scholar CrossRef Search ADS   Daumas, G., D. Causeur, T. Dhorne, and E. Schollhammer 1998. Les méthodes de classement des carcasses de porc autorisées en France en 1997. J. Rech. Porc. France  30: 1– 6. Ellis, M., A. J. Webb, P. J. Avery, and I. Brown 1996. The influence of terminal sire genotype, sex, slaughter weight, feeding regime and slaughter-house on growth performance and carcass and meat quality in pigs and on the organoleptic properties of fresh pork. Anim. Sci.  62: 521– 530. Google Scholar CrossRef Search ADS   Enser, M. 1991. Animal carcass fats and fish oil. Page 329 in Analysis of Oilseeds, Fats and Fatty Foods.  J. B. Rossel and J. L. R. Pritchard, ed. Elsevier Applied Science, London, UK. Enser, M., R. I. Richardson, J. D. Wood, B. P. Gill, and P. R. Sheard 2000. Feeding linseed to increase the n-3 PUFA of pork: Fatty acid composition of muscle, adipose tissue, liver and sausages. Meat Sci.  55: 201– 212. Google Scholar CrossRef Search ADS PubMed  Folch, J., M. Lees, and G. H. Sloane Stanley 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem.  226: 497– 509. Google Scholar PubMed  Fontanillas, R., A. Barroeta, M. D. Baucells, and R. Codony 1997. Effect of feeding highly cis-monounsaturated, trans, or n-3 fats on lipid composition of muscle and adipose tissue of pigs. J. Agric. Food Chem.  45: 3070– 3075. Google Scholar CrossRef Search ADS   Gandemer, G., G. Pascal, and G. Durand 1983. Lipogenic capacity and relative contribution of the different tissues and organs to lipid synthesis in male rat. Reprod. Nutr. Dev.  23: 575– 586. Google Scholar CrossRef Search ADS PubMed  Hoz, L., C. J. Lopez-Bote, M. I. Cambero, M. D'Arrigo, C. Pin, C. Santos, and J. A. Ordóñez 2003. Effect of dietary linseed oil and α-tocopherol on pork tenderloin (Psoas major) muscle. Meat Sci.  65: 1039– 1044. Google Scholar CrossRef Search ADS PubMed  Hsu, R. Y., and H. A. Lardy. 1969. Malic enzyme. No. 17, page 230 in Methods in Enzymology.  J. M. Lowenstein, ed. Academic Press, New York, NY. INRA. 1989. L'alimentation des animaux monogastriques: Porc, lapin, volailles.  INRA, Paris, France. ISSFAL. 2004. Global Recommendations.  http://www.issfal.org.uk/recommendations-of-others.html Accessed Feb. 15, 2007. Kouba, M., and J. Mourot 1999. Effect of feeding linoleic acid diet on lipogenic enzyme activities and on the composition of the lipid fraction of the fat and lean tissues in the pig. Meat Sci.  52: 39– 45. Google Scholar CrossRef Search ADS PubMed  Kubow, S. 1990. Toxicity of dietary lipid peroxidation products. Trends Food Sci. Technol.  1: 67– 71. Google Scholar CrossRef Search ADS   Latorre, M. A., R. Lázaro, D. G. Valencia, P. Medel, and G. G. Mateos 2004. The effects of gender and slaughter weight on the growth performance, carcass traits, and meat quality characteristics of heavy pigs. J. Anim. Sci.  82: 526– 533. Google Scholar CrossRef Search ADS PubMed  Leszczynski, D. E., J. Pikul, R. A. Easter, F. K. McKeith, D. G. MacLaren, J. Novakofski, P. J. Bechtel, and D. E. Jewell 1992. Characterization of lipid in loin and bacon from finishing pigs fed full fat soybeans or tallow. J. Anim. Sci.  70: 2175– 2181. Google Scholar CrossRef Search ADS PubMed  Lopez-Bote, C. J., A. I. Rey, M. Sanz, J. I. Gray, and J. D. Buckley 1997. Dietary vegetables oil and α-tocopherol reduce lipid oxidation in rabbit muscle. J. Nutr.  127: 1176– 1182. Google Scholar PubMed  Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randal 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem.  193: 265– 275. Google Scholar PubMed  Mersmann, H. J., C. D. Allen, D. G. Steffen, L. G. Brown, and D. M. Danielson 1976. Effect of age, weaning and diet on swine adipose tissue and liver lipogenesis. J. Anim. Sci.  43: 140– 150. Google Scholar CrossRef Search ADS PubMed  Monahan, F. J., D. J. Buckley, P. A. Morrissey, P. B. Lynch, and J. I. Gray 1992. Influence of dietary fat and α-tocopherol supplementation on lipid oxidation in pork. Meat Sci.  31: 229– 241. Google Scholar CrossRef Search ADS PubMed  Morrison, W. R., and L. M. Smith 1964. Preparation of fatty acid methyl esters and dimethyl acetals from lipids with Boron Fluoride- Methanol. J. Lipid Res.  5: 600– 608. Google Scholar PubMed  Mourot, J., and M. Kouba 1998. Lipogenic enzyme activities in muscles of growing Large White and Meishan pigs. Livest. Prod. Sci.  55: 127– 133. Google Scholar CrossRef Search ADS   Mourot, J., M. Kouba, and P. Peiniau 1995. Comparative study of in vitro lipogenesis in various adipose tissues in the growing domestic pig (Sus domesticus). Comp. Biochem. Physiol.  111B: 379– 384. Google Scholar CrossRef Search ADS   Mourot, J., P. Peiniau, and A. Mounier 1994. Effets de l'acide linoléique alimentaire sur l'activité des enzymes de la lipogenèse dans les tissues adipeux chez le porc. Reprod. Nutr. Dev.  34: 213– 220. Google Scholar CrossRef Search ADS PubMed  Nguyen, L. Q., M. C. G. A. Nuijens, H. Everts, N. Salden, and A. C. Beynen 2003. Mathematical relationships between the intake of n-6 and n-3 polyunsaturated fatty acids and their contents in adipose tissue of growing pigs. Meat Sci.  65: 1399– 1406. Google Scholar CrossRef Search ADS PubMed  Øverland, M., O. Taugbl, A. Haug, and E. Sundstl 1996. Effect of fish oil on growth performance, carcass characteristics, sensory parameters, and fatty acid composition in pigs. Acta Agric. Scand. A. Anim. Sci.  46: 11– 17. Riley, P. A., M. Enser, G. R. Nute, and J. D. Wood 2000. Effects of dietary linseed on nutritional value and other quality aspects of pig muscle and adipose tissue. Anim. Sci.  71: 483– 500. Google Scholar CrossRef Search ADS   Romans, J. R., R. C. Johnson, D. M. Wulf, G. W. Libal, and W. J. Costello 1995a. Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics and omega-3 fatty acid content of pork: I. Dietary level of flaxseed. J. Anim. Sci.  73: 1982– 1986. Google Scholar CrossRef Search ADS   Romans, J. R., D. M. Wulf, R. C. Johnson, G. W. Libal, and W. J. Costello 1995b. Effects of ground flaxseed in swine diets on pig performance and on physical and sensory characteristics and omega-3 fatty acid content of pork: II. Duration of 15% dietary flaxseed. J. Anim. Sci.  73: 1987– 1999. Google Scholar CrossRef Search ADS   Rossi, R., and C. Corino 2002. Influence of long-term nutrition with different dietary fats on fatty acid composition of heavy pigs backfat. Ital. J. Anim. Sci.  1: 7– 16. Google Scholar CrossRef Search ADS   Simopoulos, A. P. 2001. N-3 fatty acids and human health: Defining strategies for public policy. Lipids  36: S83– S89. Google Scholar CrossRef Search ADS PubMed  Simopoulos, A. P. 2002. The importance of the ratio of omega-6/ omega-3 essential fatty acids. Biomed. Pharmacother.  56: 365– 379. Google Scholar CrossRef Search ADS PubMed  Van Oeckel, M. J., M. Casteels, N. Warnants, L. Van Damme, and C. V. Boucqué 1996. Omega-3 fatty acids in pig nutrition: Implications for the intrinsic and sensory quality of the meat. Meat Sci.  44: 55– 63. Google Scholar CrossRef Search ADS PubMed  Vernon, R. G. 1992. Control of lipogenesis and lipolysis. Pages 59–81 in The Control of Fat and Lean Deposition.  P. J. Buttery, K. N. Boorman, and D. B. Lindsay, ed. Butterworth-Heinemann Ltd., Oxford, UK. Google Scholar CrossRef Search ADS   Virgili, R., M. Degni, C. Schivazappa, V. Faeti, E. Poletti, G. Marchetto, M. T. Pacchioli, and A. Mordenti 2003. Effect of age at slaughter on carcass traits and meat quality of Italian heavy pigs. J. Anim. Sci.  81: 2448– 2456. Google Scholar CrossRef Search ADS PubMed  Wood, J. D., M. Enser, A. V. Fisher, G. R. Nute, R. I. Richardson, and P. R. Sheard 1999. Manipulating meat quality and composition. Proc. Nutr. Soc.  58: 363– 370. Google Scholar CrossRef Search ADS PubMed  Young, J. W., E. Shrago, and H. A. Lardy 1964. Metabolic control of enzymes involved in lipogenesis and gluconeogenesis. Biochemistry  3: 1687– 1692. Google Scholar CrossRef Search ADS PubMed  Footnotes 1 The authors wish to express thanks to Valorex S.A.S. for financially supporting this research through the Industrial European Project EUREKA. This study was also supported by grants from the University of Milan. Copyright 2008 Journal of Animal Science TI - Influence of extruded linseed on growth, carcass composition, and meat quality of slaughtered pigs at one hundred ten and one hundred sixty kilograms of liveweight JF - Journal of Animal Science DO - 10.2527/jas.2007-0155 DA - 2008-08-01 UR - https://www.deepdyve.com/lp/oxford-university-press/influence-of-extruded-linseed-on-growth-carcass-composition-and-meat-gnHiVTk0vV SP - 1850 EP - 1860 VL - 86 IS - 8 DP - DeepDyve ER -