TY - JOUR AU - Singh, Palash AB - We investigate a conjecture to describe the characters of large families of RCFT’s in terms of contour integrals of Feigin-Fuchs type. We provide a simple algorithm to determine the modular S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \mathcal{S} $$\end{document}-matrix for arbitrary numbers of characters as a sum over paths. Thereafter we focus on the case of 2, 3 and 4 characters, where agreement between the critical exponents of the integrals and the characters implies that the conjecture is true. In these cases, we compute the modular S-matrix explicitly, verify that it agrees with expectations for known theories, and use it to compute degeneracies and multiplicities of primaries. We verify that our algorithm reproduces the correct S\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \mathcal{S} $$\end{document}-matrix for SU (2)k for all k ≤ 18 which provides additional evidence for the original conjecture. On the way we note that the Verlinde formula provides interesting constraints on the critical exponents of RCFT in this context. TI - Contour integrals and the modular S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usep ... JF - "Journal of High Energy Physics" DO - 10.1007/jhep07(2020)045 DA - 2020-07-08 UR - https://www.deepdyve.com/lp/springer-journals/contour-integrals-and-the-modular-s-documentclass-12pt-minimal-fZ57QQILWF VL - 2020 IS - 7 DP - DeepDyve ER -