TY - JOUR AU - Busch, D Shallin AB - Abstract A substantial body of research now exists demonstrating sensitivities of marine organisms to ocean acidification (OA) in laboratory settings. However, corresponding in situ observations of marine species or ecosystem changes that can be unequivocally attributed to anthropogenic OA are limited. Challenges remain in detecting and attributing OA effects in nature, in part because multiple environmental changes are co-occurring with OA, all of which have the potential to influence marine ecosystem responses. Furthermore, the change in ocean pH since the industrial revolution is small relative to the natural variability within many systems, making it difficult to detect, and in some cases, has yet to cross physiological thresholds. The small number of studies that clearly document OA impacts in nature cannot be interpreted as a lack of larger-scale attributable impacts at the present time or in the future but highlights the need for innovative research approaches and analyses. We summarize the general findings in four relatively well-studied marine groups (seagrasses, pteropods, oysters, and coral reefs) and integrate overarching themes to highlight the challenges involved in detecting and attributing the effects of OA in natural environments. We then discuss four potential strategies to better evaluate and attribute OA impacts on species and ecosystems. First, we highlight the need for work quantifying the anthropogenic input of CO2 in coastal and open-ocean waters to understand how this increase in CO2 interacts with other physical and chemical factors to drive organismal conditions. Second, understanding OA-induced changes in population-level demography, potentially increased sensitivities in certain life stages, and how these effects scale to ecosystem-level processes (e.g. community metabolism) will improve our ability to attribute impacts to OA among co-varying parameters. Third, there is a great need to understand the potential modulation of OA impacts through the interplay of ecology and evolution (eco–evo dynamics). Lastly, further research efforts designed to detect, quantify, and project the effects of OA on marine organisms and ecosystems utilizing a comparative approach with long-term data sets will also provide critical information for informing the management of marine ecosystems. Introduction A third of the anthropogenic CO2 released to the atmosphere has been absorbed by the oceans, causing declines in ocean pH and calcium carbonate saturation state (Bindoff et al., 2019; Gruber et al., 2019). These changes are referred to as ocean acidification (OA) (Caldeira and Wickett, 2003; Doney et al., 2009; Le Quéré et al., 2018). Information from the geological record (Hönisch et al., 2012), laboratory experiments (Kroeker et al., 2013), field observations (Keller et al., 2014; Sutton et al., 2016, 2017; Henson et al., 2017; Turk et al., 2019), and numerical modelling (Marshall et al., 2017) strongly suggests that OA has the potential to alter the function of ocean ecosystems, impacting marine biota and ecosystem services (Andersson et al., 2015). However, characterizing current and future effects of OA on marine systems is challenging. While there is a general consensus that OA elicits largely negative effects on calcifying organisms and positive effects on primary producers (Kroeker et al., 2010; Busch and McElhany, 2016; Mostofa et al., 2016), these conclusions are primarily drawn from laboratory experiments in which species sensitivity is evaluated using short-term incubations under elevated CO2 conditions. Controlled experiments have found relationships between organism responses and CO2 conditions (Waldbusser et al., 2014) and have considered how physiological sensitivities scale to predictions of evolutionary responses (Munday et al., 2013). These types of studies offer important insight into mechanistic responses of marine organismal physiology to OA but may provide a limited assessment of population-level impacts due to the complexity of how OA impacts may cascade through ecosystems (e.g. variation in the sensitivity of individuals within a community and subsequent impacts on population dynamics; Busch et al., 2013; Busch and McElhany, 2016). In addition to characterizing existing organismal sensitivities to OA, we must document how ecologically complex in situ conditions (e.g. simulating natural variability of carbonate chemistry, food availability) vary from those observed in the laboratory to understand OA impacts and interpret ecosystem-level responses (Andersson and Mackenzie, 2012). OA sensitivities are also expected to vary widely in natural systems, for example an average 0.1 decline in pH due to OA could be enough to push some species or ecosystems over critical thresholds, or might be unimportant in systems that have natural variability ranging from 0.5 to 1 pH units within a day (Hofmann et al., 2011). Challenges of both spatial and temporal scaling of laboratory results to in situ responses are compounded by the need to understand how OA interacts with other physical, chemical, and biological forcings (Breitburg et al., 2015; Kroeker et al., 2017). While researchers generally agree that a multifaceted approach is necessary, evaluating the benefits and drawbacks of different approaches requires careful consideration (see Andersson et al., 2015; Boyd et al., 2018). For example, free ocean carbon enrichment-type experiments constrain natural variation between specific locations within an ecosystem while only manipulating CO2 (Barry et al., 2014; Gattuso et al., 2014; Doo et al., 2019) but are difficult to scale to ecosystem-level projections of OA impacts. Furthermore, in situ large-scale pelagic mesocosms studies have been performed to document changes in plankton communities, although the community composition and trajectory (e.g. potential phytoplankton blooms in select mesocosms) are difficult to constrain (Bach et al., 2016; Algueró-Muñiz et al., 2017; Riebesell et al., 2017, 2018). Field-based observations are largely gleaned from natural CO2 gradients (from vents/seeps and spatial pH gradients) across ecosystem scales (e.g. Hall-Spencer et al., 2008; Fabricius et al., 2011; Silbiger et al., 2014; Barkley et al., 2015; Mollica et al., 2018). However, these effects are often interwoven with other physical and chemical parameters that are difficult to disentangle (Silbiger et al., 2017). Other methods, including statistical techniques (e.g. Silbiger et al., 2014) and proxies (e.g. Mollica et al., 2018), have been used to gain insight into how ecosystems may respond to OA. Scaling between sensitivity information from laboratory settings to multi-generational and ecosystem-level responses in nature has largely been done using conceptual models (Busch et al., 2015; Edmunds et al., 2016). These models are complemented by laboratory studies that assess potential transgenerational adaptation effects, highlighting the possibility for organisms to rapidly adapt to changing CO2 conditions (Parker et al., 2015; Putnam and Gates, 2015; Wong et al., 2018). Although both natural and laboratory experiments strongly suggest negative biological consequences in response to OA, long-term (multi-decadal) biological and ecological measurements that are unequivocally linked to anthropogenic CO2 accumulation in situ are limited to a handful of studies, mostly on planktonic foraminifera (de Moel et al., 2009; Moy et al., 2009; Fox et al., 2020; Osborne et al., 2020). Disentangling effects of OA on marine species from natural environmental variability and other climate change drivers has been a cornerstone of OA research over the past decade (Breitburg et al., 2015). The quality and abundance of ocean carbonate chemistry measurements have advanced, making progress in attributing ocean chemistry changes to anthropogenic CO2 (Weisberg et al., 2016). Although OA has been unequivocally observed in the open ocean (Bates et al., 2014), this trend is only beginning to be documented in near-shore environments due to high natural variability and limited duration of observations (Duarte et al., 2013; Andersson et al., 2015; Reimer et al., 2017; Sutton et al., 2019). Time of emergence refers to the point at which an anthropogenic signal is detectable outside the bounds of natural variability; it has been applied with success to marine carbonate chemistry and other oceanographic measurements of CO2 increase (Keller et al., 2014; Sutton et al., 2016, 2017; Henson et al., 2017; Turk et al., 2019), but has not been observed in some ocean environments, especially those lacking historical measurements, including many coastal regions (Sutton et al., 2019). With many marine ecosystems lacking time-series measurements of carbonate chemistry and biological indices that are longer than the time of emergence, the extent to which biological responses are attributable to OA in nature remains an open question. The topic of scaling from laboratory-based, single-species studies to understanding OA impacts in situ has been discussed in previous perspectives and syntheses (Hennige et al., 2014; Riebesell and Gattuso, 2015; Hurd et al., 2018). Our aim here is to review our ability to detect and attribute OA impacts for four well-studied groups and to stimulate further discussion and consideration of how to improve detection and attribution as the OA research field continues moving forward. Here, we refer to OA sensitivity as any biological response (physiological change) of an organism to increasing CO2. An impact of OA is defined as a change in an in situ biological measurement that is attributed to in situ changes in seawater chemistry resulting from increasing anthropogenic CO2. We focus on four groups (seagrasses, pteropods, oysters, and coral reefs), selected for their sensitivity to OA and their ecological and/or economic importance. The authors also have expertise in each of these groups. For each, we summarize the results of laboratory and field-based studies on CO2 sensitivity and the current ability to detect and attribute change in the system to OA. The complications discussed here are not meant to criticize existing studies but to highlight the need for a greater understanding of the impacts of OA in natural ecosystems and for an improved ability to attribute and quantify these impacts. Seagrass Seagrasses are commonly considered potential beneficiaries of OA; they are carbon-limited under current CO2 conditions and increase photosynthesis under higher CO2 concentrations (Koch et al., 2013). This is in contrast to most marine autotrophs, which have developed efficient strategies for utilizing bicarbonate (⁠ HCO3− ⁠), and is due to the relatively recent evolution of marine seagrasses under comparatively higher CO2 concentrations (Beer and Koch, 1996; Zimmerman et al., 1997). Results from mesocosm and in situ manipulations of CO2 indicate increased seagrass productivity, shoot density, and biomass under elevated CO2 conditions (Beer and Koch, 1996; Zimmerman et al., 1997; Hall-Spencer et al., 2008; Fabricius et al., 2011; Campbell and Fourqurean, 2014). However, divergent results have been found in volcanic CO2 seep sites. Seagrasses in the Mediterranean show decreases in density and biomass (Apostolaki et al., 2014) and in Papua New Guinea have up to a fivefold biomass increase (Takahashi et al., 2016) with increasing CO2. In addition, seagrass species live in a complex environment; thus, seagrass response to OA will likely be modulated by interactions with other species. For example, a decrease in calcareous epiphytes on seagrasses at CO2 seeps has been shown (Martin et al., 2008), while the potential for an increase in fleshy epiphytes has also been documented (Campbell and Fourqurean, 2014). Globally, seagrass abundance has declined by ∼30%, which has been attributed to coastal urbanization, rising sea surface temperatures, and water quality degradation (Waycott et al., 2009). To our knowledge, no in situ study has attributed positive effects of anthropogenic OA on seagrass growth, while decreases in species density and range have been observed in response to other anthropogenic stress (e.g. pollution, warming; Koch et al., 2013). Furthermore, theoretical OA refugia created by seagrasses have not yet been observed consistently in situ and are likely dependent on site-specific factors (e.g. residence times, autotroph location relative to water advection, community composition) making successful in situ attribution of benefits to adjacent calcifiers difficult (Anthony et al., 2011, 2013; Unsworth et al., 2012; Mongin et al., 2016). In addition, although photosynthesis by seagrasses decreases CO2 during the day, potentially equal or greater night-time respiration may counteract daytime effects by increasing CO2, resulting in a near-zero daily balance that produces negligible effects on the progression of OA (Koweek et al., 2018; Pacella et al., 2018; Kapsenberg and Cyronak, 2019). While the theoretical benefits of OA on seagrass growth have been well documented in the laboratory, it appears that substantial negative impacts from other anthropogenic stressors may counteract any positive effects of increased CO2 and have likely prevented the isolation and attribution of the potential beneficial responses of OA (Koch et al., 2013). Pteropods Pteropods were one of the first taxonomic groups identified as vulnerable to OA (Orr et al., 2005). Numerous laboratory experiments have documented negative effects of exposure to elevated CO2, including shell dissolution, reduced (or absent) calcification, altered respiration rates, decreased sinking rates, differential gene expression, delayed egg development, and increased mortality (Comeau et al., 2009, 2010a, b; Lischka and Riebesell, 2012, 2017; Manno et al., 2012, 2016; Seibel et al., 2012; Busch et al., 2014; Koh et al., 2015; Maas et al., 2015; Thabet et al., 2015; Moya et al., 2016; Johnson and Hofmann, 2017). However, the response of pteropods to high CO2 is not uniformly negative (Maas et al., 2016), and the outer organic layer of the pteropod shell offers some protection from undersaturated waters (Peck et al., 2016, 2018). OA-related pteropod field observations have focused on a variety of time scales and response metrics. Analysis of pteropod shell collections from the past 100 years in the Mediterranean show declines in shell thickness and density for two different species (Howes et al., 2017). Sediment core studies indicate some evidence for a correlation between fossil pteropod shell dissolution during life and atmospheric CO2 (Wall-Palmer et al., 2012, 2013; Manno et al., 2017). Single-season, in situ studies have shown correlations between carbonate chemistry conditions and pteropod shell dissolution, oxidative stress, relative abundance, and vertical distribution (Bednaršek et al., 2012, 2014, 2017, 2018; Bednaršek and Ohman, 2015; Feely et al., 2016; Engström-Öst et al., 2019). Observations of shell dissolution along natural gradients in aragonite saturation state (Ωar) and snapshots of current pteropod distributions correlated with Ωar have been combined with historical reconstructions of carbonate chemistry to provide hypotheses about recent changes in pteropod abundance due to OA (Bednaršek et al., 2017). While spatial gradient studies show correlations with carbonate chemistry that provide strong evidence for a negative effect of OA on pteropod shell condition, they do not necessarily offer direct evidence of modern OA effects because they substitute space for time and make inferences about historical states without direct observations (McElhany, 2017). Available time-series analyses find no significant relationships between pteropod abundance and carbonate chemistry (Howes et al., 2015; Thibodeau et al., 2018). Recent analyses of pteropod abundance time-series from around the globe show that populations vary in trajectories with some declining, some increasing, and others showing no change; this is counter to what would be expected if the negative effects of OA now dominate population processes, suggesting that other local and regional drivers, including ocean warming, currently influence pteropods more than OA (Ohman et al., 2009; Head and Pepin, 2010; Mackas and Galbraith, 2012; Beare et al., 2013; Beaugrand et al., 2013). While both historical and modern samples suggest that pteropods are sensitive to carbonate chemistry conditions, more evidence is needed to link the progress of OA to impacts on the demographics of pteropod populations. It is possible that there are variable responses of pteropods in situ, time-series are not yet long enough to detect a directional change caused by OA, and/or the chemical thresholds at which ocean carbonate chemistry influences pteropods have not yet been crossed at the ecosystem scale. Oysters Impacts of elevated CO2 on oyster larvae were key in raising concerns about the implications of OA for marine ecosystems (Kelly et al., 2014). Laboratory studies have yielded a more complete understanding of the sensitivity of oysters to acidified conditions, documenting effects in the larval stage such as decreased calcification, reduced growth, delayed metamorphosis, and increased mortality (Miller et al., 2009; Talmage and Gobler, 2009; Watson et al., 2009; Parker et al., 2010, 2011; Dickinson et al., 2012; Waldbusser et al., 2013; Barton et al., 2015; Frieder et al., 2017). Laboratory research has also indicated that juvenile and adult oysters are sensitive to OA, though responses are variable. Some species and populations show changes in metabolism, calcification, and shell strength under OA conditions, with effects on juveniles sometimes carried over from larval exposure (Gazeau et al., 2007; Beniash et al., 2010; Welladsen et al., 2010; Parker et al., 2011, 2012; Hettinger et al., 2012; Sanford et al., 2014; Wright et al., 2014). Carbonate chemistry conditions documented in shellfish hatcheries provide an example of how acidification can be linked to declines in larval performance in an artificial system (Barton et al., 2012; Ellis et al., 2017). Many oyster hatcheries now control seawater conditions (modification of carbonate chemistry, abundance of food, decrease in predation) and oyster producers have long practiced selection/breeding for performance (Barton et al., 2012; Ellis et al., 2017). Curiously, Pacific oyster recruitment still occurs in wild populations exposed to Ωar near threshold limits for calcification found in the laboratory (Ruesink et al., 2018). This apparent contradiction suggests that the influence of carbonate chemistry on oyster populations is complex and likely affected by varying and heterogeneous chemical conditions, other environmental factors, adaptation mechanisms, and/or transgenerational effects (Parker et al., 2010, 2012, 2017a, b; Dickinson et al., 2012; Hettinger et al., 2013; Ruesink et al., 2018). There is limited information about the micro-habitat carbonate chemistry conditions that natural oyster populations experience (Hales et al., 2017), though first principles suggest that they persist in a wide range of conditions given the influence of fluctuations in freshwater inputs, other dynamic physical drivers, and biological activity in their habitat. Over the last 130 years, a global decline in oyster populations has been driven by over-harvesting, competition with non-native species, disease, and other anthropogenic factors (Beck et al., 2011). Any role of OA in these changes in situ is still unclear due to the lack of available demographic data and related carbonate chemistry time-series in coastal environments. Tropical coral reefs The expectation that OA will negatively affect tropical coral reef calcification is rooted in thermodynamics (e.g. Plummer and Busenberg, 1987) and early abiogenic CaCO3 precipitation experiments that provided a quantitative framework within which to understand, predict, and interpret biological responses (Burton and Walter, 1987; Morse and Mackenzie, 1990). Subsequent experiments supported the prediction that as Ωar declines, calcification decreases (Langdon et al., 2000; Leclercq et al., 2002; Langdon and Atkinson, 2005) and CaCO3 dissolution increases (Andersson et al., 2007; Andersson and Gledhill, 2013). Field and laboratory-based studies suggest that OA may enhance the bioerosion capabilities of borers, increasing breakdown of the calcium carbonate framework (Tribollet et al., 2009; Wisshak et al., 2012; Silbiger et al., 2014; DeCarlo et al., 2015). Field studies have found correlations between Ωar and net ecosystem calcification (NEC), the net balance of gross ecosystem calcification and dissolution. For example, manipulative short-term, in situ, pulse alkalinization (Albright et al., 2016) and pulse acidification (Albright et al., 2018) experiments across a coral reef flat documented increased and decreased NEC, respectively, providing critical information for how net calcification responds to OA at the ecosystem level. Field observations across natural Ωar gradients report declines in coral skeletal density, coral diversity, colony size, NEC, and increases in bioerosion and dissolution with declining Ωar (Silverman et al., 2007; Manzello et al., 2008; Fabricius et al., 2011; Shamberger et al., 2011; Enochs et al., 2016; Silbiger et al., 2016; Eyre et al., 2018; Mollica et al., 2018). However, there are notable exceptions (e.g. Shamberger et al., 2014; Barkley et al., 2015; DeCarlo et al., 2017; Silbiger et al., 2017). The general expectation, based on theoretical predictions and experimental results, is that OA should have already negatively affected coral reefs (Table 1). However, the current inability to confidently isolate and attribute effects of anthropogenic OA on coral reefs in situ suggests that either the current measurement methods are not sensitive enough to detect expected impacts, or these impacts have been mitigated by other processes or masked by co-varying oceanic changes that have stronger effects. Key insights from the last decade of OA coral reef studies are as follows: Table 1. Summary of marine system responses to OA Marine groups . Summary of experimental findings . Observations of wild populations . Data/analysis that could increase detection in situ . Seagrasses Increased productivity, shoot density, and biomass; changes in community composition No effects attributable directly to OA Improved understanding of the interplay of the factors that drive seagrass abundance and distribution Pteropods Dissolution, reduced calcification, physiological and early life stage impairments, mortality Dissolution in naturally low pH environments; no population effects attributable directly to OA Multi-factor analyses to tease out the role of OA in driving pteropod condition and population dynamics from modern and historical samples Oysters Reduced calcification/growth, physiological effects, and mortality, particularly in larvae and juveniles No effects attributable directly to OA Condition and demography of populations living in different carbonate chemistry environments; studies of the effects of OA throughout the entire life cycle in the context of multiple interacting drivers Coral reef ecosystems Reduced calcification, increased dissolution, and bioerosion Increased bioerosion and dissolution; no effects attributable directly to OA Constrain natural spatiotemporal variability of NEC; understand response to multiple interacting drivers; long-term time-series studies of environmental and reef conditions Marine groups . Summary of experimental findings . Observations of wild populations . Data/analysis that could increase detection in situ . Seagrasses Increased productivity, shoot density, and biomass; changes in community composition No effects attributable directly to OA Improved understanding of the interplay of the factors that drive seagrass abundance and distribution Pteropods Dissolution, reduced calcification, physiological and early life stage impairments, mortality Dissolution in naturally low pH environments; no population effects attributable directly to OA Multi-factor analyses to tease out the role of OA in driving pteropod condition and population dynamics from modern and historical samples Oysters Reduced calcification/growth, physiological effects, and mortality, particularly in larvae and juveniles No effects attributable directly to OA Condition and demography of populations living in different carbonate chemistry environments; studies of the effects of OA throughout the entire life cycle in the context of multiple interacting drivers Coral reef ecosystems Reduced calcification, increased dissolution, and bioerosion Increased bioerosion and dissolution; no effects attributable directly to OA Constrain natural spatiotemporal variability of NEC; understand response to multiple interacting drivers; long-term time-series studies of environmental and reef conditions The expected impacts are based on laboratory/mesocosm CO2 sensitivity experiments, and observations are based on in situ studies (e.g. time-series, natural pH gradients). Data or analyses that may improve the probability of detecting the impacts of OA in situ are suggested. Open in new tab Table 1. Summary of marine system responses to OA Marine groups . Summary of experimental findings . Observations of wild populations . Data/analysis that could increase detection in situ . Seagrasses Increased productivity, shoot density, and biomass; changes in community composition No effects attributable directly to OA Improved understanding of the interplay of the factors that drive seagrass abundance and distribution Pteropods Dissolution, reduced calcification, physiological and early life stage impairments, mortality Dissolution in naturally low pH environments; no population effects attributable directly to OA Multi-factor analyses to tease out the role of OA in driving pteropod condition and population dynamics from modern and historical samples Oysters Reduced calcification/growth, physiological effects, and mortality, particularly in larvae and juveniles No effects attributable directly to OA Condition and demography of populations living in different carbonate chemistry environments; studies of the effects of OA throughout the entire life cycle in the context of multiple interacting drivers Coral reef ecosystems Reduced calcification, increased dissolution, and bioerosion Increased bioerosion and dissolution; no effects attributable directly to OA Constrain natural spatiotemporal variability of NEC; understand response to multiple interacting drivers; long-term time-series studies of environmental and reef conditions Marine groups . Summary of experimental findings . Observations of wild populations . Data/analysis that could increase detection in situ . Seagrasses Increased productivity, shoot density, and biomass; changes in community composition No effects attributable directly to OA Improved understanding of the interplay of the factors that drive seagrass abundance and distribution Pteropods Dissolution, reduced calcification, physiological and early life stage impairments, mortality Dissolution in naturally low pH environments; no population effects attributable directly to OA Multi-factor analyses to tease out the role of OA in driving pteropod condition and population dynamics from modern and historical samples Oysters Reduced calcification/growth, physiological effects, and mortality, particularly in larvae and juveniles No effects attributable directly to OA Condition and demography of populations living in different carbonate chemistry environments; studies of the effects of OA throughout the entire life cycle in the context of multiple interacting drivers Coral reef ecosystems Reduced calcification, increased dissolution, and bioerosion Increased bioerosion and dissolution; no effects attributable directly to OA Constrain natural spatiotemporal variability of NEC; understand response to multiple interacting drivers; long-term time-series studies of environmental and reef conditions The expected impacts are based on laboratory/mesocosm CO2 sensitivity experiments, and observations are based on in situ studies (e.g. time-series, natural pH gradients). Data or analyses that may improve the probability of detecting the impacts of OA in situ are suggested. Open in new tab The metabolism of coral reef organisms strongly affects coral reef seawater chemistry (e.g. Shaw et al., 2012; Cyronak et al., 2014; Shamberger et al., 2014; DeCarlo et al., 2017) and may slow or enhance the acidification of the surrounding open-ocean source water to the reef. Corals and other coral reef organisms modulate the chemistry of their calcifying fluids and may override changes in the chemistry of the seawater source to the site of calcification (Cohen and Holcomb, 2009; Cohen et al., 2009; McCulloch et al., 2012). Coral feeding, availability of dissolved inorganic nutrients, and energetic demands related to reproductive status can mitigate or exacerbate the impact of OA on coral calcification (Langdon and Atkinson, 2005; Cohen and Holcomb, 2009; Holcomb et al., 2010; Edmunds, 2011; Drenkard et al., 2013; Silbiger et al., 2018; Kealoha et al., 2019). Ocean-warming-induced coral bleaching is an important dominant driver of declines in coral growth over the 20th century (Cantin et al., 2010; Courtney et al., 2017; Hughes et al., 2018) that may mask the influence of OA on coral growth histories. Naturally high variability and uncertainty in NEC measurements (Courtney and Andersson, 2019) makes it difficult to determine whether changes in NEC are driven by environmental change or are within the natural variability of the system (Silverman et al., 2014; Shamberger et al., 2018). One consistent response of coral reef organisms and ecosystems across natural gradients in pH, in both laboratory and field experiments and observations, is an increase in bioerosion and sediment dissolution (e.g. Barkley et al., 2015; DeCarlo et al., 2015; Silbiger and Donahue, 2015; Enochs et al., 2016; Silbiger et al., 2016; Eyre et al., 2018). However, these processes are also influenced by factors such as nutrient inputs and organic matter content of sediments, and deconvolving the various contributions remains challenging. Research needs for OA attribution in biological systems Great strides have been made to understand OA impacts. In this perspective, we highlight that laboratory-based studies have identified a variety of ways that a broad taxonomic range of marine species are sensitive to elevated CO2. Informed by these experimental results, progress is also being made on the detection and attribution of anthropogenic OA impacts in wild populations (Table 1). For example, some biological impacts in situ have been correlated with carbonate chemistry and suggest attribution to OA, such as increased shell dissolution of pteropods (Bednaršek et al., 2014) and decreased shell thickness in planktic foraminifera (de Moel et al., 2009; Moy et al., 2009; Fox et al., 2020; Osborne et al., 2020). However, impacts attributable to OA have yet to be detected on ecosystem-level biological parameters such as population density, trophic interactions, or energy transfer through food webs. To improve our detection and attribution ability, research is needed to determine impacts of OA in situ. For some taxa, like oysters, studies are needed to understand how OA may influence the entire life cycle, since OA has different effects across life stages (Pandori and Sorte, 2019). Other groups discussed (seagrasses, oysters, and coral reefs) require efforts to tease out the influence of OA from other co-varying factors that drive physical and chemical conditions (Table 1). Below, we detail four avenues of research that would improve the ability to detect and attribute impacts of OA on marine ecosystems in situ. Quantify the anthropogenic contribution of CO2 in coastal environments: a challenge for attributing change in biological systems to OA is knowledge of the chemical conditions that a species or community inhabits and how OA has altered them. The majority of long-term ocean pH/pCO2 measurements have been made in the open-ocean, which is relatively stable chemically. Coastal oceans tend to have shorter time-series measurements of pH/pCO2, complex biogeochemical and physical processes, and a higher rate of biological activity, causing larger diel, seasonal, and episodic fluctuations in ocean chemistry (e.g. Hofmann et al., 2011; Guadayol et al., 2014; Chan et al., 2017; Silbiger and Sorte, 2018; Lowe et al., 2019). While the chemical signal of OA has already emerged in open oceans, it will take longer to emerge in coastal ecosystems (Sutton et al., 2019). Therefore, we suggest further studies that employ statistical methods to estimate anthropogenic input of CO2 (Gruber et al., 1996; Feely et al., 2016; Carter et al., 2017). These statistical methods will aid in quantifying chemical changes in the oceans due to OA and linking biological impacts. Global coordination of OA monitoring through the Global Ocean Acidification Observing Network will aid robust data collection and synthesis needed for estimating anthropogenic input of CO2 (Newton et al., 2019; Tilbrook et al., 2019). Attribute biological impacts to OA among other co-varying parameters: marine organisms face multiple changing and co-varying physical and chemical parameters associated with climate change (e.g. OA, warming, hypoxia). Identifying specific biological traits that can be measured in situ and empirically linked to OA impacts is of crucial importance in advancing efforts to detect in situ impacts of OA. Such traits of interest to monitor in situ can be physiological (Strader et al., 2019), structural [e.g. coral skeletal density changes in Mollica et al. (2018); foraminifera test thickness changes in Moy et al. (2009)], or components of population fitness (Falkenberg et al., 2018). Importantly, there is a great need to understand how differential sensitivities to OA exist within a species’ life cycle (Byrne and Przeslawski, 2013). In addition, increased efforts to monitor community-level traits of interests (e.g. population density, biomass) are needed to understand ecological alterations in marine ecosystems due to OA. With all research techniques, a holistic approach of detailed characterization of both biological impacts in conjunction with physical and chemical environmental parameters are needed to achieve such an aim. Understand how ecological-evolutionary dynamics alter OA responses in situ: feedbacks between changing conditions in marine environments and organismal adaptation potential have been highlighted with recent efforts to understand the interplay between ecology and evolution (eco–evo dynamics) in driving demographic responses (Parmesan, 2006; Chevin et al., 2013). These eco–evo dynamics on longer time scales have the potential to facilitate intra-generational adaptation to changing ocean conditions through the interplay of ecological processes such as range shifts (Sunday et al., 2012; Vergés et al., 2014; Pecl et al., 2017), alteration in phenotype such as a modification of microbiome (Botté et al., 2019), as well as epigenetic mechanisms (Putnam et al., 2016; Hofmann, 2017). It is crucial to understand how OA has the potential to alter plasticity of phenotypes, which in turn could either constrain adaptive genetic changes through the persistence of diverse genotypes within the population or promote adaptive genetic changes through allowing for persistence in extreme environments (Hendry, 2016). Phytoplankton, in particular, have been used to test the hypothesis that increased phenotypic plasticity over multiple generations will lead to increased evolution in OA conditions (Collins, 2011; Lohbeck et al., 2012; Schaum and Collins, 2014) and have found increased plasticity as a good indicator of adaptation to increasing CO2 conditions (Schaum and Collins, 2014). Future research could expand on current studies that focus on understanding phenotypic plasticity of organismal physiology (Torda et al., 2017; Donelson et al., 2018; Ryu et al., 2018; Willoughby et al., 2018; Catullo et al., 2019) by using modelling efforts that incorporate eco–evo dynamics of both past and future OA conditions. Characterize ecosystem trajectories through long-term monitoring: understanding how and why species are sensitive to OA has vastly improved, but this is just one aspect of understanding population and ecosystem responses in situ. For example, a species’ population dynamics may be influenced more by OA-induced modifications of ecological interactions than by direct sensitivity (Marshall et al., 2017). In some instances, ecological interactions have been hypothesized to mitigate OA impacts through enhancing adaptive capacity or mitigating the effects of elevated CO2 conditions (Kapsenberg and Cyronak, 2019). To attribute changes in species dynamics or ecological processes to OA, more work is needed to describe how OA impacts scale in situ in space and time. Insights into ecosystem environmental changes can be gained using shell geochemistry as paleo-proxies to document OA effects (Foster and Rae, 2016), and potentially how further changes in ocean conditions are linked to mass extinction and declines in biodiversity (Kiessling and Simpson, 2011; Hennige et al., 2014). Modelling exercises can help elucidate ecological processes, but they cannot replace time-series biological data. Of particular importance are long-term observational studies that pair a detectable chemical signal of OA with biological responses that account for ecological processes and patterns (e.g. yearly population growth patterns, NEC). With detailed datasets, broad comparative trends can be used to understand mechanisms of resilience to disturbance events. For example, comparative data indicate that community resilience to changing conditions can develop from various environmental drivers such as indiscriminate disturbance events of crown-of-thorns starfish in Mo’orea, French Polynesia, and repeated thermal stress in Panama, Eastern Tropical Pacific (Edmunds et al., 2019). The variation in environmental drivers has resulted in differences in reproductive strategies of dominant reef-building corals, coral-algal symbiont communities, functional diversity of herbivorous fishes, and the reef framework (Edmunds et al., 2019), highlighting that comparative approaches can be used to understand how differing environmental drivers (such as OA) can alter ecosystem trajectories. Current challenges in attributing large-scale OA effects on marine systems does not mean that there has been no OA effect to date nor that there will not be one in the future. We are beginning efforts to detect and attribute OA impacts in situ, with experimental results informing field campaigns and observational studies approaching the time of emergence for an OA signal in increasingly variable environments. Knowledge accumulated over the last decade puts us in a better position to design an observation system that could detect the emergence of impacts of OA at species and ecosystem levels. Research on species sensitivity to OA that can be scaled into projected ecosystem-level impacts in a multi-stressor ocean and verified with in situ detection is critical to inform the conservation and sustainable use of ocean ecosystems. Acknowledgements This study is a product of the Ocean Acidification Principal Investigators Meeting (17–19 February 2018), organized by the Ocean Carbon and Biogeochemistry Project Office with support from the National Science Foundation. No new data were analyzed or generated in support of this research. Funding SSD was funded by NSF OCE (grant # 1415268). DSB and PM were supported by the NOAA Ocean Acidification Program and Northwest Fisheries Science Center, MHL was supported by NSF OCE (grant # 1633951), ZIJ was supported by NSF OCE (grant # 1416665) and DOE EERE (grant #DE-EE008518), NJS was supported by NSF OCE (grant # 1924281), ALC was supported by NSF OCE (grant # 1737311), and AA was supported by NSF OCE (grant # 1416518). KEFS, AK, and TLH were supported by Texas A&M University. This is CSUN Marine Biology contribution (# 306). Author contributions All authors conceived the idea for this paper in discussion at a workshop and contributed to the writing of the manuscript. SSD and DSB led the group and contributed the most to the text. References Albright R. , Caldeira L. , Hosfelt J. , Kwiatkowski L. , Maclaren J. K. , Mason B. M. , Nebuchina Y. , et al. 2016 . Reversal of ocean acidification enhances net coral reef calcification . Nature , 531 : 362 – 365 . Google Scholar Crossref Search ADS PubMed WorldCat Albright R. , Takeshita Y. , Koweek D. A. , Ninokawa A. , Wolfe K. , Rivlin T. , Nebuchina Y. , et al. 2018 . Carbon dioxide addition to coral reef waters suppresses net community calcification . Nature , 555 : 516 – 519 . Google Scholar Crossref Search ADS PubMed WorldCat Algueró-Muñiz M. , Alvarez-Fernandez S. , Thor P. , Bach L. T. , Esposito M. , Horn H. G. , Ecker U. , et al. 2017 . Ocean acidification effects on mesozooplankton community development: results from a long-term mesocosm experiment . PLoS One , 12 : e0175851 . Google Scholar Crossref Search ADS PubMed WorldCat Andersson A. J. , Bates N. R. , Mackenzie F. T. 2007 . Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil’s Hole, Bermuda . Aquatic Geochemistry , 13 : 237 – 264 . Google Scholar Crossref Search ADS WorldCat Andersson A. J. , Gledhill D. 2013 . Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification . Annual Review of Marine Science , 5 : 321 – 348 . Google Scholar Crossref Search ADS PubMed WorldCat Andersson A. J. , Kline D. , Edmunds P. , Archer S. , Bednaršek N. , Carpenter R. , Chadsey M. , et al. 2015 . Understanding ocean acidification impacts on organismal to ecological scales . Oceanography , 25 : 16 – 27 . Google Scholar Crossref Search ADS WorldCat Andersson A. J. , Mackenzie F. T. 2012 . Revisiting four scientific debates in ocean acidification research . Biogeosciences , 9 : 893 – 905 . Google Scholar Crossref Search ADS WorldCat Anthony K. R. N. , Diaz-Pulido G. , Verlinden N. , Tilbrook B. , Andersson A. J. 2013 . Benthic buffers and boosters of ocean acidification on coral reefs . Biogeosciences , 10 : 4897 – 4909 . Google Scholar Crossref Search ADS WorldCat Anthony K. R. N. , Kleypas J. A. , Gattuso J.-P. 2011 . Coral reefs modify their seawater carbon chemistry—implications for impacts of ocean acidification . Global Change Biology , 17 : 3655 – 3666 . Google Scholar Crossref Search ADS WorldCat Apostolaki E. T. , Vizzini S. , Hendriks I. E. , Olsen Y. S. 2014 . Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent . Marine Environmental Research , 99 : 9 – 15 . Google Scholar Crossref Search ADS PubMed WorldCat Bach L. T. , Taucher J. , Boxhammer T. , Ludwig A. The Kristineberg KOSMOS Consortium Achterberg E. P. , Algueró-Muñiz M. , et al. 2016 . Influence of ocean acidification on a natural winter-to-summer plankton succession: first insights from a long-term mesocosm study draw attention to periods of low nutrient concentrations . PLoS One , 11 : e0159068 . Google Scholar Crossref Search ADS PubMed WorldCat Barkley H. C. , Cohen A. L. , Golbuu Y. , Starczak V. R. , DeCarlo T. M. , Shamberger K. E. F. 2015 . Changes in coral reef communities across a natural gradient in seawater pH . Science Advances , 1 : e1500328 . Google Scholar Crossref Search ADS PubMed WorldCat Barry J. P. , Lovera C. , Buck K. R. , Peltzer E. T. , Taylor J. R. , Walz P. , Whaling P. J. , et al. 2014 . Use of a free ocean CO2 enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin . Environmental Science & Technology , 48 : 9890 – 9897 . Google Scholar Crossref Search ADS PubMed WorldCat Barton A. , Hales B. , Waldbusser G. G. , Langdon C. , Feely R. A. 2012 . The Pacific oyster, Crassostrea gigas, shows negative correlation to naturally elevated carbon dioxide levels: implications for near-term ocean acidification effects . Limnology and Oceanography , 57 : 698 – 710 . Google Scholar Crossref Search ADS WorldCat Barton A. , Waldbusser G. G. , Feely R. A. , Weisberg S. B. , Newton J. A. , Hales B. , Cudd S. , et al. 2015 . Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response . Oceanography , 25 : 146 – 159 . Google Scholar Crossref Search ADS WorldCat Bates N. , Astor Y. , Church M. , Currie K. , Dore J. , Gonaález-Dávila M. , Lorenzoni L. , et al. 2014 . A time-series view of changing ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification . Oceanography , 27 : 126 – 141 . Google Scholar Crossref Search ADS WorldCat Beare D. , McQuatters-Gollop A. , van der Hammen T. , Machiels M. , Teoh S. J. , Hall-Spencer J. M. 2013 . Long-term trends in calcifying plankton and pH in the North Sea . PLoS One , 8 : e61175 . Google Scholar Crossref Search ADS PubMed WorldCat Beaugrand G. , McQuatters-Gollop A. , Edwards M. , Goberville E. 2013 . Long-term responses of North Atlantic calcifying plankton to climate change . Nature Climate Change , 3 : 263 – 267 . Google Scholar Crossref Search ADS WorldCat Beck M. W. , Brumbaugh R. D. , Airoldi L. , Carranza A. , Coen L. D. , Crawford C. , Defeo O. , et al. 2011 . Oyster reefs at risk and recommendations for conservation, restoration, and management . Bioscience , 61 : 107 – 116 . Google Scholar Crossref Search ADS WorldCat Bednaršek N. , Feely R. A. , Beck M. W. , Glippa O. , Kanerva M. , Engström-Öst J. 2018 . El Niño-related thermal stress coupled with upwelling-related ocean acidification negatively impacts cellular to population-level responses in pteropods along the California current system with implications for increased bioenergetic costs . Frontiers in Marine Science , 5 : 486 . Google Scholar Crossref Search ADS WorldCat Bednaršek N. , Feely R. A. , Reum J. C. P. , Peterson B. , Menkel J. , Alin S. R. , Hales B. 2014 . Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem . Proceedings of the Royal Society B: Biological Sciences , 281 : 20140123 . Google Scholar Crossref Search ADS WorldCat Bednaršek N. , Feely R. A. , Tolimieri N. , Hermann A. J. , Siedlecki S. A. , Waldbusser G. G. , McElhany P. , et al. 2017 . Exposure history determines pteropod vulnerability to ocean acidification along the US West Coast . Scientific Reports , 7 : 4526 . Google Scholar Crossref Search ADS PubMed WorldCat Bednaršek N. , Ohman M. D. 2015 . Changes in pteropod distributions and shell dissolution across a frontal system in the California Current System . Marine Ecology Progress Series , 523 : 93 – 103 . Google Scholar Crossref Search ADS WorldCat Bednaršek N. , Tarling G. A. , Bakker D. C. E. , Fielding S. , Jones E. M. , Venables H. J. , Ward P. , et al. 2012 . Extensive dissolution of live pteropods in the Southern Ocean . Nature Geoscience , 5 : 881 – 885 . Google Scholar Crossref Search ADS WorldCat Beer S. , Koch E. 1996 . Photosynthesis of marine macroalgae and seagrasses in globally changing CO2 environments . Marine Ecology Progress Series , 141 : 199 – 204 . Google Scholar Crossref Search ADS WorldCat Beniash E. , Ivanina A. , Lieb N. S. , Kurochkin I. , Sokolova I. M. 2010 . Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica (Gmelin) . Marine Ecology Progress Series , 419 : 95 – 108 . Google Scholar Crossref Search ADS WorldCat Bindoff N. L. , Cheung W. W. L. , Kairo J. G. , Arístegui J. , Guinder V. A. , Hallberg R. , Hilmi N. , et al. 2019 . Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate . Ed. by Pörtner H.-O. , Roberts D. C. , Masson-Delmotte V. , Zhai P. , Tignor M. , Poloczanska E. , Mintenbeck K. , et al. Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Botté E. S. , Nielsen S. , Abdul Wahab M. A. , Webster J. , Robbins S. , Thomas T. , Webster N. S. 2019 . Changes in the metabolic potential of the sponge microbiome under ocean acidification . Nature Communications , 10 : 4134 . Google Scholar Crossref Search ADS PubMed WorldCat Boyd P. W. , Collins S. , Dupont S. , Fabricius K. , Gattuso J.-P. , Havenhand J. , Hutchins D. A. , et al. 2018 . Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review . Global Change Biology , 24 : 2239 – 2261 . Google Scholar Crossref Search ADS PubMed WorldCat Breitburg D. L. , Hondorp D. , Audemard C. , Carnegie R. B. , Burrell R. B. , Trice M. , Clark V. 2015 . Landscape-level variation in disease susceptibility related to shallow-water hypoxia . PLoS One , 10 : e0116223 . Google Scholar Crossref Search ADS PubMed WorldCat Burton E. A. , Walter L. M. 1987 . Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology , 15 : 111 . Google Scholar Crossref Search ADS WorldCat Busch D. S. , Harvey C. J. , McElhany P. 2013 . Potential impacts of ocean acidification on the Puget Sound food web . ICES Journal of Marine Science , 70 : 823 – 833 . Google Scholar Crossref Search ADS WorldCat Busch D. S. , McElhany P. 2016 . Estimates of the direct effect of seawater pH on the survival rate of species groups in the California Current Ecosystem . PLoS One , 11 : e0160669 . Google Scholar Crossref Search ADS PubMed WorldCat Busch D. S. , O'Donnell M. , Hauri C. , Mach K. , Poach M. , Doney S. , Signorini S. , et al. 2015 . Understanding, characterizing, and communicating responses to ocean acidification: challenges and uncertainties . Oceanography , 25 : 30 – 39 . Google Scholar Crossref Search ADS WorldCat Busch D. S. , , , Maher M. , Thibodeau P. , McElhany P. 2014 . Shell condition and survival of Puget Sound pteropods are impaired by ocean acidification conditions . PLoS One , 9 : e105884 . Google Scholar Crossref Search ADS PubMed WorldCat Byrne M. , Przeslawski R. 2013 . Multistressor impacts of warming and acidification of the ocean on marine invertebrates’ life histories . Integrative and Comparative Biology , 53 : 582 – 596 . Google Scholar Crossref Search ADS PubMed WorldCat Caldeira K. , Wickett M. E. 2003 . Oceanography: anthropogenic carbon and ocean pH . Nature , 425 : 365 – 365 . Google Scholar Crossref Search ADS PubMed WorldCat Campbell J. E. , Fourqurean J. W. 2014 . Ocean acidification outweighs nutrient effects in structuring seagrass epiphyte communities . The Journal of Ecology , 102 : 730 – 737 . Google Scholar Crossref Search ADS WorldCat Cantin N. E. , Cohen A. L. , Karnauskas K. B. , Tarrant A. M. , McCorkle D. C. 2010 . Ocean warming slows coral growth in the central Red Sea . Science , 329 : 322 – 325 . Google Scholar Crossref Search ADS PubMed WorldCat Carter B. R. , Feely R. A. , Mecking S. , Cross J. N. , Macdonald A. M. , Siedlecki S. A. , Talley L. D. , et al. 2017 . Two decades of pacific anthropogenic carbon storage and ocean acidification along global ocean ship-based hydrographic investigations program sections P16 and P02 , Global Biogeochemical Cycles , 31 : 306 – 327 . Google Scholar OpenURL Placeholder Text WorldCat Catullo R. A. , Llewelyn J. , Phillips B. L. , Moritz C. C. 2019 . The potential for rapid evolution under anthropogenic climate change . Current Biology , 29 : R996 – R1007 . Google Scholar Crossref Search ADS PubMed WorldCat Chan F. , Barth J. A. , Blanchette C. A. , Byrne R. H. , Chavez F. , Cheriton O. , Feely R. A. , et al. 2017 . Persistent spatial structuring of coastal ocean acidification in the California Current System . Scientific Reports , 7 : 2526 . Google Scholar Crossref Search ADS PubMed WorldCat Chevin L.-M. , Gallet R. , Gomulkiewicz R. , Holt R. D. , Fellous S. 2013 . Phenotypic plasticity in evolutionary rescue experiments . Philosophical Transactions of the Royal Society of London Series B, Biological Sciences , 368 : 20120089 . Google Scholar Crossref Search ADS PubMed WorldCat Cohen A. L. , Holcomb M. 2009 . Why corals care about ocean acidification: uncovering the mechanism . Oceanography , 22 : 118 – 127 . Google Scholar Crossref Search ADS WorldCat Cohen A. L. , McCorkle D. C. , de Putron S. , Gaetani G. A. , Rose K. A. 2009 . Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification . Geochemistry, Geophysics, Geosystems , 10 : Q07005. Google Scholar OpenURL Placeholder Text WorldCat Collins S. 2011 . Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2 . Proceedings of the Royal Society B: Biological Sciences , 278 : 247 – 255 . Google Scholar Crossref Search ADS WorldCat Comeau S. , Gorsky G. , Alliouane S. , Gattuso J.-P. 2010 a. Larvae of the pteropod Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-less . Marine Biology , 157 : 2341 – 2345 . Google Scholar Crossref Search ADS WorldCat Comeau S. , Gorsky G. , Jeffree R. , Teyssié J.-L. , Gattuso J.-P. 2009 . Impact of ocean acidification on a key Arctic pelagic mollusc (Limacina helicina) . Biogeosciences , 6 : 1877 – 1882 . Google Scholar Crossref Search ADS WorldCat Comeau S. , Jeffree R. , Teyssié J.-L. , Gattuso J.-P. 2010 b. Response of the Arctic pteropod Limacina helicina to projected future environmental conditions . PLoS One , 5 : e11362 . Google Scholar Crossref Search ADS PubMed WorldCat Courtney T. A. , Andersson A. J. , 2019 . Evaluating measurements of coral reef net ecosystem calcification rates . Coral Reefs , 38 : 997 – 1006 . Google Scholar Crossref Search ADS WorldCat Courtney T. A. , Lebrato M. , Bates N. R. , Collins A. , de Putron S. J. , Garley R. , Johnson R. , et al. 2017 . Environmental controls on modern scleractinian coral and reef-scale calcification . Science Advances , 3 : e1701356 . Google Scholar Crossref Search ADS PubMed WorldCat Cyronak T. , Santos I. R. , Erler D. V. , Maher D. T. , Eyre B. D. 2014 . Drivers of pCO2 variability in two contrasting coral reef lagoons: the influence of submarine groundwater discharge . Global Biogeochemical Cycles , 28 : 398 – 414 . Google Scholar Crossref Search ADS WorldCat DeCarlo T. M. , Cohen A. L. , Barkley H. C. , Cobban Q. , Young C. , Shamberger K. E. , Brainard R. E. , et al. 2015 . Coral macrobioerosion is accelerated by ocean acidification and nutrients . Geology , 43 : 7 – 10 . Google Scholar Crossref Search ADS WorldCat DeCarlo T. M. , Cohen A. L. , Wong G. T. F. , Shiah F.-K. , Lentz S. J. , Davis K. A. , Shamberger K. E. F. , et al. 2017 . Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification . Journal of Geophysical Research: Oceans , 122 : 745 – 761 . Google Scholar Crossref Search ADS WorldCat de Moel H. , Ganssen G. M. , Peeters F. J. C. , Jung S. J. A. , Kroon D. , Brummer G. J. A. , Zeebe R. E. 2009 . Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification? Biogeosciences , 6 : 1917 – 1925 . Google Scholar Crossref Search ADS WorldCat Dickinson G. H. , Ivanina A. V. , Matoo O. B. , Pörtner H. O. , Lannig G. , Bock C. , Beniash E. , et al. 2012 . Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica . The Journal of Experimental Biology , 215 : 29 – 43 . Google Scholar Crossref Search ADS PubMed WorldCat Donelson J. M. , Salinas S. , Munday P. L. , Shama L. N. S. 2018 . Transgenerational plasticity and climate change experiments: where do we go from here? Global Change Policy , 24 : 13 – 34 . Google Scholar Crossref Search ADS WorldCat Doney S. C. , Fabry V. J. , Feely R. A. , Kleypas J. A. 2009 . Ocean acidification: the other CO2 problem . Annual Review of Marine Science , 1 : 169 – 192 . Google Scholar Crossref Search ADS PubMed WorldCat Doo S. S. , Edmunds P. J. , Carpenter R. C. 2019 . Ocean acidification effects on in situ coral reef metabolism . Scientific Reports , 9 : 12067 . Google Scholar Crossref Search ADS PubMed WorldCat Drenkard E. J. , Cohen A. L. , McCorkle D. C. , de Putron S. J. , Starczak V. R. , Zicht A. E. 2013 . Calcification by juvenile corals under heterotrophy and elevated CO2 . Coral Reefs , 32 : 727 – 735 . Google Scholar Crossref Search ADS WorldCat Duarte C. M. , Hendriks I. E. , Moore T. S. , Olsen Y. S. , Steckbauer A. , Ramajo L. , Carstensen J. , et al. 2013 . Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH . Estuaries and Coasts , 36 : 221 – 236 . Google Scholar Crossref Search ADS WorldCat Edmunds P. J. 2011 . Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp . Limnology and Oceanography , 56 : 2402 – 2410 . Google Scholar Crossref Search ADS WorldCat Edmunds P. J. , Adam T. C. , Baker A. C. , Doo S. S. , Glynn P. W. , Manzello D. P. , Silbiger N. J. , et al. 2019 . Why more comparative approaches are required in time-series analyses of coral reef ecosystems . Marine Ecology Progress Series , 608 : 297 – 306 . Google Scholar Crossref Search ADS WorldCat Edmunds P. J. , Comeau S. , Lantz C. , Andersson A. , Briggs C. , Cohen A. , Gattuso J.-P. , et al. 2016 . Integrating the effects of ocean acidification across functional scales on tropical coral reefs . Bioscience , 66 : 350 – 362 . Google Scholar Crossref Search ADS WorldCat Ellis R. P. , Urbina M. A. , Wilson R. W. 2017 . Lessons from two high CO2 worlds—future oceans and intensive aquaculture . Global Change Biology , 23 : 2141 – 2148 . Google Scholar Crossref Search ADS PubMed WorldCat Engström-Öst J. , Glippa O. , Feely R. A. , Kanerva M. , Keister J. E. , Alin S. R. , Carter B. R. , et al. 2019 . Eco-physiological responses of copepods and pteropods to ocean warming and acidification . Scientific Reports , 9 : 4748 . Google Scholar Crossref Search ADS PubMed WorldCat Enochs I. C. , Manzello D. P. , Kolodziej G. , Noonan S. H. C. , Valentino L. , Fabricius K. E. 2016 . Enhanced macroboring and depressed calcification drive net dissolution at high-CO2 coral reefs . Proceedings of the Royal Society B: Biological Sciences , 283 : 1 – 8 . Google Scholar Crossref Search ADS WorldCat Eyre B. D. , Cyronak T. , Drupp P. , De Carlo E. H. , Sachs J. P. , Andersson A. J. 2018 . Coral reefs will transition to net dissolving before end of century . Science , 359 : 908 – 911 . Google Scholar Crossref Search ADS PubMed WorldCat Fabricius K. E. , Langdon C. , Uthicke S. , Humphrey C. , Noonan S. , De’ath G. , Okazaki R. , et al. 2011 . Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations . Nature Climate Change , 1 : 165 – 169 . Google Scholar Crossref Search ADS WorldCat Falkenberg L. J. , Dupont S. , Bellerby R. G. J. 2018 . Approaches to reconsider literature on physiological effects of environmental change: examples from ocean acidification research . Frontiers of Marine Sciences , 5 : 453 . Google Scholar Crossref Search ADS WorldCat Feely R. A. , Alin S. R. , Carter B. , Bednaršek N. , Hales B. , Chan F. , Hill T. M. , et al. 2016 . Chemical and biological impacts of ocean acidification along the west coast of North America . Estuarine, Coastal and Shelf Science , 183 : 260 – 270 . Google Scholar Crossref Search ADS WorldCat Foster G. L. , Rae J. W. B. 2016 . Reconstructing ocean pH with boron isotopes in foraminifera . Annual Review of Earth and Planetary Sciences , 44 : 207 – 237 . Google Scholar Crossref Search ADS WorldCat Fox L. , Stukins S. , Hill T. , Miller C. G. 2020 . Quantifying the effect of anthropogenic climate change on calcifying plankton . Scientific Reports , 10 : 1620 . Google Scholar Crossref Search ADS PubMed WorldCat Frieder C. A. , Applebaum S. L. , Pan T.-C. F. , Hedgecock D. , Manahan D. T. 2017 . Metabolic cost of calcification in bivalve larvae under experimental ocean acidification . ICES Journal of Marine Science , 74 : 941 – 954 . Google Scholar Crossref Search ADS WorldCat Gattuso J.-P. , Kirkwood W. , Barry J. P. , Cox E. , Gazeau F. , Hansson L. , Hendriks I. , et al. 2014 . Free ocean CO2 enrichment (FOCE) systems: present status and future developments . Biogeosciences Discussions , 11 : 4001 – 4046 . Google Scholar Crossref Search ADS WorldCat Gazeau F. , Quiblier C. , Jansen J. M. , Gattuso J.-P. , Middelburg J. J. , Heip C. H. R. 2007 . Impact of elevated CO2 on shellfish calcification . Geophysical Research Letters , 34 : 181 . Google Scholar Crossref Search ADS WorldCat Gruber N. , Clement D. , Carter B. R. , Feely R. A. , van Heuven S. , Hoppema M. , Ishii M. , et al. 2019 . The oceanic sink for anthropogenic CO2 from 1994 to 2007 . Science , 363 : 1193 – 1199 . Google Scholar Crossref Search ADS PubMed WorldCat Gruber N. , Sarmiento J. L. , Stocker T. F. 1996 . An improved method for detecting anthropogenic CO2 in the oceans . Global Biogeochemical Cycles , 10 : 809 – 837 . Google Scholar Crossref Search ADS WorldCat Guadayol Ò. , Silbiger N. J. , Donahue M. J. , Thomas F. I. M. 2014 . Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef . PLoS One , 9 : e85213 . Google Scholar Crossref Search ADS PubMed WorldCat Hales B. , Suhrbier A. , Waldbusser G. G. , Feely R. A. , Newton J. A. 2017 . The carbonate chemistry of the ‘Fattening Line,’ Willapa Bay, 2011–2014 . Estuaries and Coasts, 40 : 173 – 186 . Hall-Spencer J. M. , Rodolfo-Metalpa R. , Martin S. , Ransome E. , Fine M. , Turner S. M. , Rowley S. J. , et al. 2008 . Volcanic carbon dioxide vents show ecosystem effects of ocean acidification . Nature , 454 : 96 – 99 . Google Scholar Crossref Search ADS PubMed WorldCat Head E. J. H. , Pepin P. 2010 . Spatial and inter-decadal variability in plankton abundance and composition in the Northwest Atlantic (1958–2006) . Journal of Plankton Research , 32 : 1633 – 1648 . Google Scholar Crossref Search ADS WorldCat Hendry A. P. 2016 . Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics . The Journal of Heredity , 107 : 25 – 41 . Google Scholar Crossref Search ADS PubMed WorldCat Hennige S. , Roberts J. M. , Williamson P. (Eds). 2014 . An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity. Technical Series No. 75. Montreal: Secretariat of the Convention on Biological Diversity. 99 pp. Henson S. A. , Beaulieu C. , Ilyina T. , John J. G. , Long M. , Séférian R. , Tjiputra J. , et al. 2017 . Rapid emergence of climate change in environmental drivers of marine ecosystems . Nature Communications , 8 : 14682 . Google Scholar Crossref Search ADS PubMed WorldCat Hettinger A. , Sanford E. , Hill T. M. , Hosfelt J. D. , Russell A. D. , Gaylord B. 2013 . The influence of food supply on the response of Olympia oyster larvae to ocean acidification . Biogeosciences , 10 : 6629 – 6638 . Google Scholar Crossref Search ADS WorldCat Hettinger A. , Sanford E. , Hill T. M. , Russell A. D. , Sato K. N. S. , Hoey J. , Forsch M. , et al. 2012 . Persistent carry-over effects of planktonic exposure to ocean acidification in the Olympia oyster . Ecology , 93 : 2758 – 2768 . Google Scholar Crossref Search ADS PubMed WorldCat Hofmann G. E. 2017 . Ecological epigenetics in marine metazoans . Frontiers in Marine Science , 4 : 4 . Google Scholar Crossref Search ADS WorldCat Hofmann G. E. , Smith J. E. , Johnson K. S. , Send U. , Levin L. A. , Micheli F. , Paytan A. , et al. 2011 . High-frequency dynamics of ocean pH: a multi-ecosystem comparison . PLoS One , 6 : e28983 . Google Scholar Crossref Search ADS PubMed WorldCat Holcomb M. , McCorkle D. C. , Cohen A. L. 2010 . Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786) . Journal of Experimental Marine Biology and Ecology , 386 : 27 – 33 . Google Scholar Crossref Search ADS WorldCat Hönisch B. , Ridgwell A. , Schmidt D. N. , Thomas E. , Gibbs S. J. , Sluijs A. , Zeebe R. , et al. 2012 . The geological record of ocean acidification . Science , 335 : 1058 – 1063 . Google Scholar Crossref Search ADS PubMed WorldCat Howes E. L. , Eagle R. A. , Gattuso J.-P. , Bijma J. 2017 . Comparison of Mediterranean pteropod shell biometrics and ultrastructure from historical (1910 and 1921) and present day (2012) samples provides baseline for monitoring effects of global change . PLoS One , 12 : e0167891 . Google Scholar Crossref Search ADS PubMed WorldCat Howes E. L. , Stemmann L. , Assailly C. , Irisson J. O. , Dima M. , Bijma J. , Gattuso J. P. 2015 . Pteropod time series from the North Western Mediterranean (1967-2003): impacts of pH and climate variability . Marine Ecology Progress Series , 531 : 193 – 206 . Google Scholar Crossref Search ADS WorldCat Hughes T. P. , Anderson K. D. , Connolly S. R. , Heron S. F. , Kerry J. T. , Lough J. M. , Baird A. H. , et al. 2018 . Spatial and temporal patterns of mass bleaching of corals in the Anthropocene . Science , 359 : 80 – 83 . Google Scholar Crossref Search ADS PubMed WorldCat Hurd C. L. , Lenton A. , Tilbrook B. , Boyd P. W. 2018 . Current understanding and challenges for oceans in a higher-CO2 world . Nature Climate Change , 8 , 686 – 694 . Google Scholar Crossref Search ADS WorldCat Johnson K. M. , Hofmann G. E. 2017 . Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification . BMC Genomics , 18 : 812 . Google Scholar Crossref Search ADS PubMed WorldCat Kapsenberg L. , Cyronak T. 2019 . Ocean acidification refugia in variable environments . Global Change Biology , 25 : 3201 – 3214 . Google Scholar Crossref Search ADS PubMed WorldCat Kealoha A. K. , Shamberger K. E. F. , Reid E. C. , Davis K. A. , Lentz S. J. , Brainard R. E. , Oliver T. A. , et al. 2019 . Heterotrophy of oceanic particulate organic matter elevates net ecosystem calcification . Geophysical Research Letters , 46 : 9851 – 9860 . Google Scholar Crossref Search ADS WorldCat Keller K. M. , Joos F. , Raible C. C. 2014 . Time of emergence of trends in ocean biogeochemistry . Biogeosciences , 11 : 3647 – 3659 . Google Scholar Crossref Search ADS WorldCat Kelly R. P. , Cooley S. R. , Klinger T. 2014 . Narratives can motivate environmental action: the Whiskey Creek ocean acidification story . Ambio , 43 : 592 – 599 . Google Scholar Crossref Search ADS PubMed WorldCat Kiessling W. , Simpson C. 2011 . On the potential for ocean acidification to be a general cause of ancient reef crises . Global Change Biology , 17 : 56 – 57 Google Scholar Crossref Search ADS WorldCat Koch M. , Bowes G. , Ross C. , Zhang X.-H. 2013 . Climate change and ocean acidification effects on seagrasses and marine macroalgae . Global Change Biology , 19 : 103 – 132 . Google Scholar Crossref Search ADS PubMed WorldCat Koh H. Y. , Lee J. H. , Han S. J. , Park H. , Shin S. C. , Lee S. G. 2015 . A transcriptomic analysis of the response of the Arctic pteropod Limacina helicina to carbon dioxide-driven seawater acidification . Polar Biology , 38 : 1727 – 1740 . Google Scholar Crossref Search ADS WorldCat Koweek D. A. , Zimmerman R. C. , Hewett K. M. , Gaylord B. , Giddings S. N. , Nickols K. J. , Ruesink J. L. , et al. 2018 . Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow . Ecological Applications , 28 : 1694 – 1714 . Google Scholar Crossref Search ADS PubMed WorldCat Kroeker K. J. , Kordas R. L. , Crim R. N. , Singh G. G. 2010 . Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms . Ecology Letters , 13 : 1419 – 1434 . Google Scholar Crossref Search ADS PubMed WorldCat Kroeker K. J. , Kordas R. L. , Crim R. , Hendriks I. E. , Ramajo L. , Singh G. S. , Duarte C. M. , et al. 2013 . Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming . Global Change Biology , 19 : 1884 – 1896 . Google Scholar Crossref Search ADS PubMed WorldCat Kroeker K. J. , Kordas R. L. , Harley C. D. G. 2017 . Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence . Biology Letters , 13 : 20160802 . Google Scholar Crossref Search ADS PubMed WorldCat Langdon C. , Atkinson M. J. 2005 . Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment . Journal of Geophysical Research: Oceans , 110 : C09S07. Google Scholar OpenURL Placeholder Text WorldCat Langdon C. , Takahashi T. , Sweeney C. , Chipman D. , Goddard J. , Marubini F. , Aceves H. , et al. 2000 . Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef . Global Biogeochemical Cycles , 14 : 639 – 654 . Google Scholar Crossref Search ADS WorldCat Leclercq N. , Gattuso J.-P. , Jaubert J. 2002 . Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure . Limnology and Oceanography , 47 : 558 – 564 . Google Scholar Crossref Search ADS WorldCat Le Quéré C. , Andrew R. M. , Friedlingstein P. , Sitch S. , Pongratz J. , Manning A. C. , Korsbakken J. I. , et al. 2018 . Global carbon budget . Earth System Science Data , 10 : 405 – 448 . Google Scholar Crossref Search ADS WorldCat Lischka S. , Riebesell U. 2012 . Synergistic effects of ocean acidification and warming on overwintering pteropods in the Arctic . Global Change Biology , 18 : 3517 – 3528 . Google Scholar Crossref Search ADS WorldCat Lischka S. , Riebesell U. 2017 . Metabolic response of Arctic pteropods to ocean acidification and warming during the polar night/twilight phase in Kongsfjord (Spitsbergen) . Polar Biology , 40 : 1211 – 1227 . Google Scholar Crossref Search ADS WorldCat Lohbeck K. T. , Riebesell U. , Reusch T. B. H. 2012 . Adaptive evolution of a key phytoplankton species to ocean acidification , Nature Geoscience , 5 : 346 – 351 . Google Scholar Crossref Search ADS WorldCat Lowe A. T. , Bos J. , Ruesink J. 2019 . Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the northeast pacific coastal ocean . Scientific Reports , 9 : 963 . Google Scholar Crossref Search ADS PubMed WorldCat Maas A. E. , Lawson G. L. , Tarrant A. M. 2015 . Transcriptome-wide analysis of the response of the thecosome pteropod Clio pyramidata to short-term CO2 exposure. Comparative biochemistry and physiology. Part D . Genomics & Proteomics , 16 : 1 – 9 . Google Scholar OpenURL Placeholder Text WorldCat Maas A. E. , Lawson G. L. , Wang Z. A. 2016 . The metabolic response of thecosome pteropods from the North Atlantic and North Pacific Oceans to high CO2 and low O2 . Biogeosciences Discussions , 13 : 6191 – 6143 . Google Scholar Crossref Search ADS WorldCat Mackas D. L. , Galbraith M. D. 2012 . Pteropod time-series from the NE Pacific . ICES Journal of Marine Science , 69 : 448 – 459 . Google Scholar Crossref Search ADS WorldCat Manno C. , Bednaršek N. , Tarling G. A. , Peck V. L. , Comeau S. , Adhikari D. , Bakker D. C. E. , et al. 2017 . Shelled pteropods in peril: assessing vulnerability in a high CO2 ocean . Earth-Science Reviews , 169 : 132 – 145 . Google Scholar Crossref Search ADS WorldCat Manno C. , Morata N. , Primicerio R. 2012 . Limacina retroversa’s response to combined effects of ocean acidification and sea water freshening . Estuarine, Coastal and Shelf Science , 113 : 163 – 171 . Google Scholar Crossref Search ADS WorldCat Manno C. , Peck V. L. , Tarling G. A. 2016 . Pteropod eggs released at high pCO2 lack resilience to ocean acidification . Scientific Reports , 6 : 25752 . Google Scholar Crossref Search ADS PubMed WorldCat Manzello D. P. , Kleypas J. A. , Budd D. A. , Eakin C. M. , Glynn P. W. , Langdon C. 2008 . Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world . Proceedings of the National Academy of Sciences , 105 : 10450 – 10455 . Google Scholar Crossref Search ADS WorldCat Marshall K. N. , Kaplan I. C. , Hodgson E. E. , Hermann A. , Busch D. S. , McElhany P. , Essington T. E. , et al. 2017 . Risks of ocean acidification in the California current food web and fisheries: ecosystem model projections . Global Change Biology , 23 : 1525 – 1539 . Google Scholar Crossref Search ADS PubMed WorldCat Martin S. , Rodolfo-Metalpa R. , Ransome E. , Rowley S. , Buia M.-C. , Gattuso J.-P. , Hall-Spencer J. 2008 . Effects of naturally acidified seawater on seagrass calcareous epibionts . Biology Letters , 4 : 689 – 692 . Google Scholar Crossref Search ADS PubMed WorldCat McCulloch M. , Falter J. , Trotter J. , Montagna P. 2012 . Coral resilience to ocean acidification and global warming through pH up-regulation . Nature Climate Change , 2 : 623 – 627 . Google Scholar Crossref Search ADS WorldCat McElhany P. 2017 . CO2 sensitivity experiments are not sufficient to show an effect of ocean acidification . ICES Journal of Marine Science , 74 : 926 – 928 . Google Scholar Crossref Search ADS WorldCat Miller A. W. , Reynolds A. C. , Sobrino C. , Riedel G. F. 2009 . Shellfish face uncertain future in high CO2 world: influence of acidification on oyster larvae calcification and growth in estuaries . PLoS One , 4 : e5661 . Google Scholar Crossref Search ADS PubMed WorldCat Mollica N. R. , Guo W. , Cohen A. L. , Huang K.-F. , Foster G. L. , Donald H. K. , Solow A. R. 2018 . Ocean acidification affects coral growth by reducing skeletal density . Proceedings of the National Academy of Sciences of the United States of America , 115 : 1754 – 1759 . Google Scholar Crossref Search ADS PubMed WorldCat Mongin M. , Baird M. E. , Hadley S. , Lenton A. 2016 . Optimising reef-scale CO2 removal by seaweed to buffer ocean acidification . Environmental Research Letters , 11 : 034023 . Google Scholar Crossref Search ADS WorldCat Morse J. W. , Mackenzie F. T. 1990 . Geochemistry of Sedimentary Carbonates . Elsevier, New York . 707 pp. Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Mostofa K. M. G. , Liu C.-Q. , Zhai W. , Minella M. , Vione D. , Gao K. , Minakata D. , et al. 2016 . Reviews and Syntheses: ocean acidification and its potential impacts on marine ecosystems . Biogeosciences , 13 : 1767 – 1786 . Google Scholar Crossref Search ADS WorldCat Moy A. D. , Howard W. R. , Bray S. G. , Trull T. W. 2009 . Reduced calcification in modern Southern Ocean planktonic foraminifera . Nature Geoscience , 2 : 276 – 280 . Google Scholar Crossref Search ADS WorldCat Moya A. , Howes E. L. , Lacoue-Labarthe T. , Forêt S. , Hanna B. , Medina M. , Munday P. L. , et al. 2016 . Near-future pH conditions severely impact calcification, metabolism and the nervous system in the pteropod Heliconoides inflatus. Global Change Biology , 22 : 3888 – 3900 . Google Scholar Crossref Search ADS PubMed WorldCat Munday P. L. , Warner R. R. , Monro K. , Pandolfi J. M. , Marshall D. J. 2013 . Predicting evolutionary responses to climate change in the sea . Ecology Letters , 16 : 1488 – 1500 . Google Scholar Crossref Search ADS PubMed WorldCat Newton J. , Chai F. , Dai M. 2019 . Progress and planning in understanding ocean acidification . Eos , 100 : doi: 10.1029/2019eo128617. Google Scholar OpenURL Placeholder Text WorldCat Ohman M. D. , Lavaniegos B. E. , Townsend A. W. 2009 . Multi-decadal variations in calcareous holozooplankton in the California Current System: thecosome pteropods, heteropods, and foraminifera . Geophysical Research Letters , 36 : C03038. Google Scholar OpenURL Placeholder Text WorldCat Orr J. C. , Fabry V. J. , Aumont O. , Bopp L. , Doney S. C. , Feely R. A. , Gnanadesikan A. , et al. 2005 . Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms . Nature , 437 : 681 – 686 . Google Scholar Crossref Search ADS PubMed WorldCat Osborne E. B. , Thunell R. C. , Gruber N. , Feely R. A. , Benitez-Nelson C. R. 2020 . Decadal variability in twentieth-century ocean acidification in the California Current Ecosystem . Nature Geoscience , 13 , 43– 49 . Google Scholar OpenURL Placeholder Text WorldCat Pacella S. R. , Brown C. A. , Waldbusser G. G. , Labiosa R. G. , Hales B. 2018 . Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification . Proceedings of the National Academy of Sciences of the United States of America , 115 : 3870 – 3875 . Google Scholar Crossref Search ADS PubMed WorldCat Pandori L. L. M. , Sorte C. J. B. 2019 . The weakest link: sensitivity to climate extremes across life stages of marine invertebrates . Oikos , 128 : 621 – 629 . Google Scholar Crossref Search ADS WorldCat Parker L. M. , O’Connor W. A. , Byrne M. , Coleman R. A. , Virtue P. , Dove M. , Gibbs M. , et al. 2017 a. Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors . Biology Letters , 13 : 20160798 . Google Scholar Crossref Search ADS PubMed WorldCat Parker L. M. , O’Connor W. A. , Raftos D. A. , Pörtner H.-O. , Ross P. M. 2015 . Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification . PLoS One , 10 : e0132276 . Google Scholar Crossref Search ADS PubMed WorldCat Parker L. M. , Ross P. M. , O’Connor W. A. 2010 . Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters . Marine Biology , 157 : 2435 – 2452 . Google Scholar Crossref Search ADS WorldCat Parker L. M. , Ross P. M. , O’Connor W. A. 2011 . Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification , Marine Biology, 158 : 689 – 697 . Parker L. M. , Ross P. M. , O’Connor W. A. , Borysko L. , Raftos D. A. , Pörtner H.-O. 2012 . Adult exposure influences offspring response to ocean acidification in oysters . Global Change Biology , 18 : 82 – 92 . Google Scholar Crossref Search ADS WorldCat Parker L. M. , Scanes E. , O’Connor W. A. , Coleman R. A. , Byrne M. , Pörtner H.-O. , Ross P. M. 2017 b. Ocean acidification narrows the acute thermal and salinity tolerance of the Sydney rock oyster Saccostrea glomerata . Marine Pollution Bulletin , 122 : 263 – 271 . Google Scholar Crossref Search ADS PubMed WorldCat Parmesan C. 2006 . Ecological and evolutionary responses to recent climate change . Annual Review of Ecology, Evolution, and Systematics , 37 : 637 – 669 . Google Scholar Crossref Search ADS WorldCat Peck V. L. , Oakes R. L. , Harper E. M. , Manno C. , Tarling G. A. 2018 . Pteropods counter mechanical damage and dissolution through extensive shell repair . Nature Communications , 9 : 264 . Google Scholar Crossref Search ADS PubMed WorldCat Peck V. L. , Tarling G. A. , Manno C. , Harper E. M. , Tynan E. 2016 . Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification . Deep Sea Research Part II: Topical Studies in Oceanography , 127 : 41 – 52 . Google Scholar Crossref Search ADS WorldCat Pecl G. T. , Araújo M. B. , Bell J. D. , Blanchard J. , Bonebrake T. C. , Chen I.-C. , Clark T. D. , et al. 2017 . Biodiversity redistribution under climate change: impacts on ecosystems and human well-being . Science , 355 : eaai9214 . Google Scholar Crossref Search ADS PubMed WorldCat Plummer L. N. , Busenberg E. 1987 . Thermodynamics of aragonite-strontianite solid solutions: results from stoichiometric solubility at 25 and 76°C . Geochimica et Cosmochimica Acta , 51 : 1393 – 1411 . Google Scholar Crossref Search ADS WorldCat Putnam H. M. , Davidson J. M. , Gates R. D. 2016 . Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals . Evolutionary Applications , 9 : 1165 – 1178 . Google Scholar Crossref Search ADS PubMed WorldCat Putnam H. M. , Gates R. D. 2015 . Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions . The Journal of Experimental Biology , 218 : 2365 – 2372 . Google Scholar Crossref Search ADS PubMed WorldCat Reimer J. J. , Wang H. , Vargas R. , Cai W.-J. 2017 . Multidecadal fCO2 increase along the United States southeast coastal margin . Journal of Geophysical Research: Oceans , 122 : 10061 – 10072 . Google Scholar Crossref Search ADS WorldCat Riebesell U. , Aberle-Malzahn N. , Achterberg E. P. , Algueró-Muñiz M. , Alvarez-Fernandez S. , Arístegui J. , Bach L. T. , et al. 2018 . Toxic algal bloom induced by ocean acidification disrupts the pelagic food web . Nature Climate Change , 8 : 1082 – 1086 . Google Scholar Crossref Search ADS WorldCat Riebesell U. , Bach L. T. , Bellerby R. G. J. , Rafael Bermúdez Monsalve J. , Boxhammer T. , Czerny J. , Larsen A. , et al. 2017 . Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification . Nature Geoscience , 10 : 19 – 23 . Google Scholar Crossref Search ADS WorldCat Riebesell U. , Gattuso J.-P. 2015 . Lessons learned from ocean acidification research . Nature Climate Change , 5 : 12 – 14 . Google Scholar Crossref Search ADS WorldCat Ruesink J. L. , Sarich A. , Trimble A. C. 2018 . Similar oyster reproduction across estuarine regions differing in carbonate chemistry . ICES Journal of Marine Science , 75 : 340 – 350 . Google Scholar Crossref Search ADS WorldCat Ryu T. , Veilleux H. D. , Donelson J. M. , Munday P. L. , Ravasi T. 2018 . The epigenetic landscape of transgenerational acclimation to ocean warming . Nature Climate Change , 8 : 504 – 509 . Google Scholar Crossref Search ADS WorldCat Sanford E. , Gaylord B. , Hettinger A. , Lenz E. A. , Meyer K. , Hill T. M. 2014 . Ocean acidification increases the vulnerability of native oysters to predation by invasive snails . Proceedings of the Royal Society B: Biological Sciences , 281 : 20132681 . Google Scholar Crossref Search ADS WorldCat Schaum C. E. , Collins S. 2014 . Plasticity predicts evolution in a marine alga . Proceedings of the Royal Society B: Biological Sciences , 281 : 20141486 . Google Scholar Crossref Search ADS WorldCat Seibel B. A. , Maas A. E. , Dierssen H. M. 2012 . Energetic plasticity underlies a variable response to ocean acidification in the pteropod, Limacina helicina antarctica . PLoS One , 7 : e30464 . Google Scholar Crossref Search ADS PubMed WorldCat Shamberger K. E. F. , Cohen A. L. , Golbuu Y. , McCorkle D. C. , Lentz S. J. , Barkley H. C. 2014 . Diverse coral communities in naturally acidified waters of a Western Pacific Reef . Geophysical Research Letters , 41 : 499 – 504 . Google Scholar Crossref Search ADS WorldCat Shamberger K. E. F. , Feely R. A. , Sabine C. L. , Atkinson M. J. , DeCarlo E. H. , Mackenzie F. T. , Drupp P. S. , et al. 2011 . Calcification and organic production on a Hawaiian coral reef . Marine Chemistry , 127 : 64 – 75 . Google Scholar Crossref Search ADS WorldCat Shamberger K. E. F. , Lentz S. J. , Cohen A. L. 2018 . Low and variable ecosystem calcification in a coral reef lagoon under natural acidification . Limnology and Oceanography , 63 : 714 – 730 . Google Scholar Crossref Search ADS WorldCat Shaw E. C. , McNeil B. I. , Tilbrook B. 2012 . Impacts of ocean acidification in naturally variable coral reef flat ecosystems . Journal of Geophysical Research: Oceans , 117 : 1 – 14 . Google Scholar OpenURL Placeholder Text WorldCat Silbiger N. J. , Donahue M. J. 2015 . Secondary calcification and dissolution respond differently to future ocean conditions . Biogeosciences , 12 : 567 – 578 . Google Scholar Crossref Search ADS WorldCat Silbiger N. J. , Donahue M. J. , Brainard R. E. 2017 . Environmental drivers of coral reef carbonate production and bioerosion: a multi-scale analysis . Ecology , 98 : 2547 – 2560 . Google Scholar Crossref Search ADS PubMed WorldCat Silbiger N. J. , Guadayol Ò. , Thomas F. I. M. , Donahue M. J. 2014 . Reefs shift from net accretion to net erosion along a natural environmental gradient . Marine Ecology Progress Series , 515 : 33 – 44 . Google Scholar Crossref Search ADS WorldCat Silbiger N. J. , Guadayol Ò. , Thomas F. I. M. , Donahue M. J. 2016 . A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability . PLoS One , 11 : e0153058 . Google Scholar Crossref Search ADS PubMed WorldCat Silbiger N. J. , Nelson C. E. , Remple K. , Sevilla J. K. , Quinlan Z. A. , Putnam H. M. , Fox M. D. , et al. 2018 . Nutrient pollution disrupts key ecosystem functions on coral reefs . Proceedings of the Royal Society B: Biological Sciences , 285 : 20172718 . Google Scholar Crossref Search ADS WorldCat Silbiger N. J. , Sorte C. J. B. 2018 . Biophysical feedbacks mediate carbonate chemistry in coastal ecosystems across spatiotemporal gradients . Scientific Reports , 8 : 796 . Google Scholar Crossref Search ADS PubMed WorldCat Silverman J. , Lazar B. , Erez J. 2007 . Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef . Journal of Geophysical Research , 112 : C05004. Google Scholar OpenURL Placeholder Text WorldCat Silverman J. , Schneider K. , Kline D. I. , Rivlin T. , Rivlin A. , Hamylton S. , Lazar B. , et al. 2014 . Community calcification in Lizard Island, Great Barrier Reef: a 33 year perspective . Geochimica et Cosmochimica Acta , 144 : 72 – 81 . Google Scholar Crossref Search ADS WorldCat Strader M. E. , Wong J. M. , Kozal L. C. , Leach T. S. , Hofmann G. E. 2019 . Parental environments alter DNA methylation in offspring of the purple sea urchin, Strongylocentrotus purpuratus . Journal of Experimental Marine Biology and Ecology , 517 : 54 – 64 . Google Scholar Crossref Search ADS WorldCat Sunday J. M. , Bates A. E. , Dulvy N. K. 2012 . Thermal tolerance and the global redistribution of animals . Nature Climate Change , 2 , 686 – 690 . Google Scholar Crossref Search ADS WorldCat Sutton A. J. , Feely R. A. , Maenner-Jones S. , Musielwicz S. , Osborne J. , Dietrich C. , Monacci N. , et al. 2019 . Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of anthropogenic trends . Earth System Science Data , 11 : 421 – 439 . Copernicus GmbH. Google Scholar Crossref Search ADS WorldCat Sutton A. J. , Sabine C. L. , Feely R. A. , Cai W.-J. , Cronin M. F. , McPhaden M. J. , Morell J. M. , et al. 2016 . Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds . Biogeosciences , 13 : 5065 – 5083 . Google Scholar Crossref Search ADS WorldCat Sutton A. J. , Wanninkhof R. , Sabine C. L. , Feely R. A. , Cronin M. F. , Weller R. A. 2017 . Variability and trends in surface seawater pCO2 and CO2 flux in the Pacific Ocean . Geophysical Research Letters , 44 : 5627 – 5636 . Google Scholar Crossref Search ADS WorldCat Takahashi M. , Noonan S. H. C. , Fabricius K. E. , Collier C. J. 2016 . The effects of long-term in situ CO2 enrichment on tropical seagrass communities at volcanic vents . ICES Journal of Marine Science , 73 : 876 – 886 . Google Scholar Crossref Search ADS WorldCat Talmage S. C. , Gobler C. J. 2009 . The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and Eastern oysters (Crassostrea virginica) . Limnology and Oceanography , 54 : 2072 – 2080 . Google Scholar Crossref Search ADS WorldCat Thabet A. A. , Maas A. E. , Lawson G. L. , Tarrant A. M. 2015 . Life cycle and early development of the thecosomatous pteropod Limacina retroversa in the Gulf of Maine, including the effect of elevated CO2 levels . Marine Biology , 162 : 2235 – 2249 . Google Scholar Crossref Search ADS WorldCat Thibodeau P. S. , Steinberg D. K. , Stammerjohn S. E. , Hauri C. 2018 . Environmental controls on pteropod biogeography along the Western Antarctic Peninsula . Limnology and Oceanography , 64 : S240 – S256 . Google Scholar OpenURL Placeholder Text WorldCat Tilbrook B. , Jewett E. B. , DeGrandpre M. D. , Hernandez-Ayon J. M. , Feely R. A. , Gledhill D. K. , Hansson L. , et al. 2019 . An enhanced ocean acidification observing network: from people to technology to data synthesis and information exchange . Frontiers in Marine Science , 6 : 337 . Google Scholar Crossref Search ADS WorldCat Torda G. , Donelson J. M. , Aranda M. , Barshis D. J. , Bay L. , Berumen M. L. , Bourne D. G. , et al. 2017 . Rapid adaptive responses to climate change in corals . Nature Climate Change , 7 : 627 – 636 . Google Scholar Crossref Search ADS WorldCat Tribollet A. , Godinot C. , Atkinson M. , Langdon C. 2009 . Effects of elevated pCO2 on dissolution of coral carbonates by microbial euendoliths . Global Biogeochemical Cycles , 23 : doi: 10.1029/2008gb003286. Google Scholar OpenURL Placeholder Text WorldCat Turk D. , Wang H. , Hu X. , Gledhill D. K. , Wang Z. A. , Jiang L. , Cai W.-J. 2019 . Time of emergence of surface ocean carbon dioxide trends in the North American coastal margins in support of ocean acidification observing system design . Frontiers in Marine Science , 6 : 91 . Google Scholar Crossref Search ADS WorldCat Unsworth R. K. F. Collier C. J. Henderson G. M. McKenzie L. J. 2012 . Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification . Environmental Research Letters , 7 : 024026 . Google Scholar Crossref Search ADS WorldCat Vergés A. , Steinberg P. D. , Hay M. E. , Poore A. G. B. , Campbell A. H. , Ballesteros E. , Heck K. L. , et al. 2014 . The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts . Proceedings of the Royal Society B: Biological Sciences , 281 : 20140846 . Google Scholar Crossref Search ADS WorldCat Waldbusser G. G. , Brunner E. L. , Haley B. A. , Hales B. , Langdon C. J. , Prahl F. G. 2013 . A developmental and energetic basis linking larval oyster shell formation to acidification sensitivity: Larval shell and acidification . Geophysical Research Letters , 40 : 2171 – 2176 . Google Scholar Crossref Search ADS WorldCat Waldbusser G. G. , Hales B. , Langdon C. J. , Haley B. A. , Schrader P. , Brunner E. L. , Gray M. W. , et al. 2014 . Saturation-state sensitivity of marine bivalve larvae to ocean acidification . Nature Climate Change , 5 : 273 – 280 . Google Scholar Crossref Search ADS WorldCat Wall-Palmer D. , Hart M. B. , Smart C. W. , Sparks R. S. J. , Le Friant A. , Boudon G. , Deplus C. , et al. 2012 . Pteropods from the Caribbean Sea: variations in calcification as an indicator of past ocean carbonate saturation . Biogeosciences , 9 : 309 – 315 . Google Scholar Crossref Search ADS WorldCat Wall-Palmer D. , Smart C. W. , Hart M. B. 2013 . In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation . Quaternary Science Reviews , 81 : 29 – 34 . Google Scholar Crossref Search ADS WorldCat Watson S.-A. , Southgate P. C. , Tyler P. A. , Peck L. S. 2009 . Early larval development of the Sydney rock oyster Saccostrea glomerata under near-future predictions of CO2-driven ocean acidification . Journal of Shellfish Research , 28 : 431 – 437 . Google Scholar Crossref Search ADS WorldCat Waycott M. , Duarte C. M. , Carruthers T. J. B. , Orth R. J. , Dennison W. C. , Olyarnik S. , Calladine A. , et al. 2009 . Accelerating loss of seagrasses across the globe threatens coastal ecosystems . Proceedings of the National Academy of Sciences of the United States of America , 106 : 12377 – 12381 . Google Scholar Crossref Search ADS PubMed WorldCat Weisberg S. B. , Bednaršek N. , Feely R. A. , Chan F. , Boehm A. B. , Sutula M. , Ruesink J. L. , et al. 2016 . Water quality criteria for an acidifying ocean: challenges and opportunities for improvement . Ocean & Coastal Management , 126 : 31 – 41 . Google Scholar Crossref Search ADS WorldCat Welladsen H. M. , Southgate P. C. , Heimann K. 2010 . The effects of exposure to near-future levels of ocean acidification on shell characteristics of Pinctada fucata (Bivalvia: Pteriidae) . Molluscan Research , 30 : 125 – 130 . Google Scholar OpenURL Placeholder Text WorldCat Willoughby J. R. , Harder A. M. , Tennessen J. A. , Scribner K. T. , Christie M. R. 2018 . Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity . Molecular Ecology , 27 : 4041 – 4051 . Google Scholar Crossref Search ADS PubMed WorldCat Wisshak M. , Schönberg C. H. L. , Form A. , Freiwald A. 2012 . Ocean acidification accelerates reef bioerosion . PLoS One , 7 : e45124 . Google Scholar Crossref Search ADS PubMed WorldCat Wong J. M. , Johnson K. M. , Kelly M. W. , Hofmann G. E. 2018 . Transcriptomics reveal transgenerational effects in purple sea urchin embryos: adult acclimation to upwelling conditions alters the response of their progeny to differential pCO2 levels . Molecular Ecology , 27 : 1120 – 1137 . Google Scholar Crossref Search ADS PubMed WorldCat Wright J. M. , Parker L. M. , O’Connor W. A. , Williams M. , Kube P. , Ross P. M. 2014 . Populations of pacific oysters Crassostrea gigas respond variably to elevated CO2 and predation by Morula marginalba . Biological Bulletin , 226 : 269 – 281 . Google Scholar Crossref Search ADS WorldCat Zimmerman R. C. , Kohrs D. G. , Steller D. L. , Alberte R. S. 1997 . Impacts of CO2 enrichment on productivity and light requirements of eelgrass . Plant Physiology , 115 : 599 – 607 . Google Scholar Crossref Search ADS PubMed WorldCat © International Council for the Exploration of the Sea 2020. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. © International Council for the Exploration of the Sea 2020. TI - The challenges of detecting and attributing ocean acidification impacts on marine ecosystems JF - ICES Journal of Marine Science DO - 10.1093/icesjms/fsaa094 DA - 2020-12-01 UR - https://www.deepdyve.com/lp/oxford-university-press/the-challenges-of-detecting-and-attributing-ocean-acidification-fYKGVbirGS SP - 2411 EP - 2422 VL - 77 IS - 7-8 DP - DeepDyve ER -