TY - JOUR AU - Ozgoli, H. A. AB - A mathematical model has been developed to determine the best geometry of a compact heat exchanger in this research study. Accordingly, an objective function was introduced to define the optimized structure of the exchanger. Two main targets were pursued in this regard. First was the rate of existing discrepancy between the possible heat transfer rate in the exchanger and the maximum rate. Second was possible heat transfer consideration between exchanging gasses and incoming air of the furnace. A sample shell and tube heat exchanger of existing tube in a processing industry has been studied and the calculations have been performed to solve the relevant equations. In addition, a comprehensive code to design an optimized compact heat exchanger for heat recovery of the furnaces has been presented. Then, data gathering and model synchronization caused to a preliminary evaluation of model quality. Thus, for increasing accuracy level of mentioned research, along with measurements’ correction program, model modification has been done and new results were calculated. Optimization model analysis showed that by using this approach, not only significant heat conservation can be achieved, but also suggested procedure might be completely economical. Compact heat exchanger, Heat recovery, Optimization, Heat transfer coefficient References 1. Ghadamian H. , Ozgoli H. A. and Esmailie F. , “Optimal Design for Compact Heat Exchanger (CHE) by Heat Transfer Viewpoint as an Air Pre-Heater,” Journal of Mechanics, doi:10.1017/jmech.2015.11, ( 2015 ). 2. Saunders E. A. D. , Heat exchangers: selection, design and construction , Longman scientific & technical Dept. , Harlow ( 1998 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 3. Ozisik M. N. , Heat Transfer: A Basic approach , McGraw-Hill , New York ( 1985 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 4. Coulson J. M. , Richardson J. F. , Backhurst J. R. and Harker J. H. , Chemical Engineering: Fluid Flow, Heat Transfer and Mass Transfer , Butterworth-Heinemann , Oxford ( 1994 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 5. Kays W. M. and London A. L. , Compact Heat Exchangers , McGraw-Hill , New York ( 1984 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 6. Hesselgreaves J. E. , Industrial Compact Exchangers, Compact Heat Exchangers , Pergamon , Oxford ( 2001 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 7. Bejan A. and Kraus A. D. , Heat Transfer Handbook , John Wiley & Sons , New Jersey ( 2003 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 8. Xie G. N. , Sunden B. and Wang Q. W. , “ Optimization of Compact Heat Exchangers by a Genetic Algorithm ,” Journal of Applied Thermal Engineering , 28 , pp. 895 – 906 ( 2008 ). Google Scholar Crossref Search ADS WorldCat 9. Lorenzini G. and Moretti S. , “ Numerical Analysis of Heat Removal Enhancement with Extended Surfaces ,” International Journal of Heat and Mass Transfer , 50 , pp. 746 – 755 ( 2007 ). Google Scholar Crossref Search ADS WorldCat 10. Ariyanfar L. , Ghadamian H. , Baghban Yousefkhani M. and Ozgoli H. A. , “ A Double Pipe Heat Exchanger Design and Optimization for Cooling an Alkaline Fuel Cell System ,” Iranian Journal of Hydrogen & Fuel Cell , 4 , pp. 223 – 231 ( 2015 ). OpenURL Placeholder Text WorldCat 11. Kakaç S. , Bergles A. E. , Mayinger F. and Yüncü H. , Heat Transfer Enhancement of Heat Exchangers , Springer , Berlin ( 1999 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 12. Azhdari A. , Ghadamian H. , Ataei A. and Yoo C. K. , “ A new approach for optimization of combined heat and power generation in edible oil plants ,” Journal of Applied Sciences , 9 , pp. 3813 – 3820 ( 2009 ). Google Scholar Crossref Search ADS WorldCat 13. Xie G. N. , Sunden B. and Wang Q. W. , “ Optimization of compact heat exchangers by a genetic algorithm ,” Applied Thermal Engineering , 28 , pp. 895 – 906 ( 2008 ). Google Scholar Crossref Search ADS WorldCat 14. Ghadamian H. , Hamidi A. A. , Farzaneh H. and Ozgoli H. A. , “ Thermo-Economic Analysis of Absorption Air Cooling System for Pressurized Solid Oxide Fuel Cell/Gas Turbine Cycle ,” Journal of Renewable and Sustainable Energy , 4 , pp. 043115_1 – 043115_14 ( 2012 ). OpenURL Placeholder Text WorldCat 15. Shah IR. K. , Heikal M. R. , Thonon B. and Tochon P. , “ Progress in the Numerical Analysis of Compact Heat Exchanger Surfaces ,” Journal of Advances in Heat Transfer , 34 , pp. 363 – 443 ( 2001 ). Google Scholar Crossref Search ADS WorldCat 16. Ozgoli H. A. , Ghadamian H. , Roshandel R. and Moghadasi M. , “ Alternative Biomass Fuels Consideration Exergy and Power Analysis for Hybrid System Includes PSOFC and GT Integration ,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects , 37 , pp. 1962 – 1970 ( 2015 ). Google Scholar Crossref Search ADS WorldCat 17. Yousefi M. , Enayatifar R. , Darus A. N. and Abdullahm A. H. , “ A robust learning based evolutionary approach for thermal-economic optimization of compact heat exchangers ,” International Communications in Heat and Mass Transfer , 39 , pp. 1605 – 1615 ( 2012 ). Google Scholar Crossref Search ADS WorldCat 18. Shi X. , Che D. , Agnew B. and Gao J. , “ An investigation of the performance of compact heat exchanger for latent heat recovery from exhaust flue gases ,” International Journal of Heat and Mass Transfer , 54 , pp. 606 – 615 ( 2011 ). Google Scholar Crossref Search ADS WorldCat 19. Li Q. , Flamant G. , Yuan X. , Neveu P. and Luo L. , “ Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers ,” Renewable and Sustainable Energy Reviews , 15 , pp. 4855 – 4875 ( 2011 ). Google Scholar Crossref Search ADS WorldCat 20. Rabbani M. , Dincer I. , Naterer G. F. and Aydin M. , “ Determining parameters of heat exchangers for heat recovery in a CueCl thermochemical hydrogen production cycle ,” International Journal of Hydrogen Energy , 37 , pp. 11021 – 11034 ( 2012 ). Google Scholar Crossref Search ADS WorldCat 21. Glazar V. , Frankovic B. and Trp A. , “ Experimental and Numerical Study of the Compact Heat Exchanger with Different Microchannel Shapes ,” International Journal of Refrigeration , 51 , pp. 144 – 153 ( 2015 ). Google Scholar Crossref Search ADS WorldCat 22. Kilkovsky B. , Stehlik P. , Jegla Z. , Tovazhnyansky L. L. , Arsenyeva O. and Kapustenko P. O. , “ Heat exchangers for energy recovery in waste and biomass to energy technologies e I. Energy recovery from flue gas ,” Applied Thermal Engineering , 64 , pp. 213 – 223 ( 2014 ). Google Scholar Crossref Search ADS WorldCat 23. Michel A. and Kugi A. , “ Model based control of compact heat exchangers independent of theheat transfer behavior ,” Journal of Process Control , 24 , pp. 286 – 298 ( 2014 ). Google Scholar Crossref Search ADS WorldCat 24. Zhou G. Y. , Wu E. and Tu S. T. , “ Optimum selection of compact heat exchangers using non-structural fuzzy decision method ,” Applied Energy , 113 , pp. 1801 – 1809 ( 2014 ). Google Scholar Crossref Search ADS WorldCat 25. Franco A. and Giannini N. , “ Optimum Thermal Design of Modular Compact Heat Exchangers Structure for Heat Recovery Steam Generators ,” Journal of Applied Thermal Engineering , 25 , pp. 1293 – 1313 ( 2005 ). Google Scholar Crossref Search ADS WorldCat 26. Yamashita J. and Utaka Y. , “ Improved performance of secondary heat exchanger for latent heat recovery from flue gas using mini-tubes ,” Applied Thermal Engineering , 67 , pp. 230 – 239 ( 2014 ). Google Scholar Crossref Search ADS WorldCat 27. Hillier F. S. and Lieberman G. J. , Introduction to Mathematical Programming , McGraw Hill , New York ( 1995 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 28. Rao S. S. Optimization Theory and Applications , Wiley Eastern , New Delhi ( 1994 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 29. Brooke A. , Kendrick D. and Meeraus A. , GAMS: A User's Guide , the Scientific Press , Redwood City ( 1988 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 30. Incropera F. P. , Fundamentals of Heat and Mass Aransfer , John Wiley & Sons , Hoboken ( 2007 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC This content is only available as a PDF. Author notes * (h.ghadamian@merc.ac.ir) © The Society of Theoretical and Applied Mechanics 2016 The Society of Theoretical and Applied Mechanics © The Society of Theoretical and Applied Mechanics 2016 TI - Energy Consumption Minimization of an Industrial Furnace by Optimization of Recuperative Heat Exchange JO - Journal of Mechanics DO - 10.1017/jmech.2016.85 DA - 2016-12-01 UR - https://www.deepdyve.com/lp/oxford-university-press/energy-consumption-minimization-of-an-industrial-furnace-by-ddCVmbYaFW SP - 767 EP - 775 VL - 32 IS - 6 DP - DeepDyve ER -