TY - JOUR AU - Zheng, P. AB - Abstract One hundred forty-four 25-d-old weaning piglets with BW of 6.43 ± 0.39 kg were used in a 28-d trail to evaluate the effects of dietary addition of spray-dried chicken plasma (SDCP) as a replacement for spray-dried porcine plasma (SDPP) on growth performance, nutrient digestibility, diarrhea incidence, small intestinal morphology, digestive enzyme activity, and microflora. Pigs were randomly allotted to 1 of 4 dietary treatments: 1) CON (control; a basal diet), 2) SDPP (containing 5% SDPP), 3) SDPP + SDCP (containing 2.5% SDPP and 2.5% SDCP), and 4) SDCP (containing 5% SDCP). Six pigs from each treatment were randomly selected to collect serum and intestinal samples. Compared with the CON group, both the SDPP and the SDPP + SDCP groups improved final BW of pigs (P < 0.05), but there were no differences among the SDPP, SDPP + SDCP, and SDCP groups. From d 1 to 14 and d 15 to 28, pigs fed the SDPP and SDPP + SDCP diets had a greater (P < 0.05) ADG than pigs fed the CON diet. During the overall period, both ADG and ADFI of pigs in the SDPP and SDPP + SDCP groups were improved (P < 0.05) compared with pigs in the CON group. Furthermore, pigs fed diets containing SDPP or SDCP had a greater (P < 0.05) apparent total tract digestibility (ATTD) of CP, ether extract, Ca, and ash and less (P < 0.05) incidence of diarrhea than pigs fed the CON diet. However, no differences were observed for ATTD and diarrhea incidence between the SDPP and SDCP groups. Compared with the CON group, duodenal villus height and the ratio of villi to crypt were increased (P < 0.05) in the SDPP, SDPP + SDCP, and SDCP groups and jejunal crypt depth was decreased in the SDPP + SDCP and SDCP groups (P < 0.05). Pigs in the SDPP group had greater (P < 0.05) activities of amylase, maltase, and trypsin than pigs in the CON group. However, no significant differences were observed between the SDCP and SDPP groups. Additionally, inclusion of SDCP in diet decreased (P < 0.05) the population of Escherichia coli. In conclusion, these results demonstrated that the addition of SDCP in pigs' diet had an effect similar to SDPP on improving growth performance through the promotion of the small intestinal development, increasing digestive enzymes activities, enhancing ATTD of nutrients, and decreasing diarrhea incidence. INTRODUCTION Piglets often suffer from nutritional, environmental, immunological, and social stresses during the weaning stage (Kim et al., 2012). These abrupt changes were associated with reduced performance and destroyed intestinal morphology (Leonard et al., 2011), which may lead to the loss of the specific activities of brush border enzymes and subsequent decrease in the digestibility of nutrients (Kluess et al., 2010). Furthermore, as a dynamic ecosystem, a disruption in the stability of the intestinal microflora may lead to diarrhea (Floch, 2011). So it is important to develop a feeding strategy to relieve weaning stresses and ensure a smooth transition of postweaned piglets in this risk period (Kim et al., 2012). The addition of spray-dried animal plasma (SDAP) to diets of weaning pigs showed a beneficial effect on growth performance and diarrhea (Van Dijk et al., 2001a; Peace et al., 2011). A recent study also reported that supplying SDAP before weaning prevented transportation-induced changes in physiology and enhanced postweaning weight gain (Wittish et al., 2014). Other studies reported that SDAP improved health status and growth performance of piglets by protecting the integrity and function of intestines (Torrallardona et al., 2003; Nofrarías et al., 2007; Gao et al., 2011) or partly preventing the adhesion of pathogenic bacteria onto the gastrointestinal mucosa (Touchette et al., 2002). Meanwhile, SDAP increased the number of Lactobacillus in the ileal and cecal contents of piglets (Torrallardona et al., 2003). On the other hand, pigs fed SDAP tended to have less enterocyte mitotic activity, implying a better digestive and absorptive function (Van Dijk et al., 2001b). However, SDAP used in previous studies mainly originated from porcine and bovine blood, and little was known about the effects of spray-dried chicken plasma (SDCP) on weaning pigs whose digestive tract system was underdeveloped. Due to their similar compositions, it was hypothesized that feeding SDCP would also benefit weaning pigs. Therefore, the aim of this study was to investigate the protective roles of SDCP on intestinal digestive function of weaning pigs by regulating the secretion of digestive enzymes and small intestinal morphology and also to determine the intestinal selected microflora in ileal and cecal contents. MATERIALS AND METHODS The experimental protocol involved in the present study was approved by the Animal Care and Use Committee of Sichuan Agricultural University (Ya'an, China). The spray-dried porcine plasma (SDPP) and SDCP were provided by a commercial company (Shanghai Genon Biological Products Co., Ltd., Shanghai, China) and the nutrient compositions of SDCP and SDPP used in this study were presented in Table 1. Table 1. Nutrient composition of spray-dried animal plasma (as-fed basis) Item  Spray-dried chicken plasma1  Spray-dried porcine plasma2  GE, MJ/kg  20.12  20.08  DM, %  91.70  90.49  CP, %  71.01  71.51  Ca, %  0.21  0.22  P, %  1.03  0.94  AA, %      Arg  4.57  3.81      His  1.86  3.06      Ile  2.71  2.28      Leu  6.68  6.92      Lys  4.53  5.76      Met  1.64  1.25      Phe  3.24  4.10      Thr  4.12  3.37      Trp  1.38  0.90      Val  4.04  4.63  Item  Spray-dried chicken plasma1  Spray-dried porcine plasma2  GE, MJ/kg  20.12  20.08  DM, %  91.70  90.49  CP, %  71.01  71.51  Ca, %  0.21  0.22  P, %  1.03  0.94  AA, %      Arg  4.57  3.81      His  1.86  3.06      Ile  2.71  2.28      Leu  6.68  6.92      Lys  4.53  5.76      Met  1.64  1.25      Phe  3.24  4.10      Thr  4.12  3.37      Trp  1.38  0.90      Val  4.04  4.63  1Values determined by Animal Nutrition Institute, Sichuan Agricultural University (Ya'an, China). 2Amino acids values provided by Shanghai Genon Biological Products Co., Ltd. (Shanghai, China). Gross energy, DM, CP, Ca, and P were analyzed by Animal Nutrition Institute, Sichuan Agricultural University. View Large Table 1. Nutrient composition of spray-dried animal plasma (as-fed basis) Item  Spray-dried chicken plasma1  Spray-dried porcine plasma2  GE, MJ/kg  20.12  20.08  DM, %  91.70  90.49  CP, %  71.01  71.51  Ca, %  0.21  0.22  P, %  1.03  0.94  AA, %      Arg  4.57  3.81      His  1.86  3.06      Ile  2.71  2.28      Leu  6.68  6.92      Lys  4.53  5.76      Met  1.64  1.25      Phe  3.24  4.10      Thr  4.12  3.37      Trp  1.38  0.90      Val  4.04  4.63  Item  Spray-dried chicken plasma1  Spray-dried porcine plasma2  GE, MJ/kg  20.12  20.08  DM, %  91.70  90.49  CP, %  71.01  71.51  Ca, %  0.21  0.22  P, %  1.03  0.94  AA, %      Arg  4.57  3.81      His  1.86  3.06      Ile  2.71  2.28      Leu  6.68  6.92      Lys  4.53  5.76      Met  1.64  1.25      Phe  3.24  4.10      Thr  4.12  3.37      Trp  1.38  0.90      Val  4.04  4.63  1Values determined by Animal Nutrition Institute, Sichuan Agricultural University (Ya'an, China). 2Amino acids values provided by Shanghai Genon Biological Products Co., Ltd. (Shanghai, China). Gross energy, DM, CP, Ca, and P were analyzed by Animal Nutrition Institute, Sichuan Agricultural University. View Large Experimental Animals and Design One hundred forty-four 25-d-old piglets (Duroc × Landrace × Yorkshire, weaned at 21 ± 1 d and fed the control diet for a 4-d adaptation period; New Hope Group, Sichuan, China) with BW of 6.43 ± 0.39 kg were used in a 28-d experiment. At the beginning of the experiment, pigs were randomly allotted to 1 of 4 dietary treatments with 6 replicate pens (3 males and 3 females per pen) according to their initial BW and sex. The 4 dietary treatments included 1) CON (control; a basal diet), 2) SDPP (containing 5% SDPP), 3) SDPP + SDCP (containing 2.5% SDPP and 2.5% SDCP), and 4) SDCP (containing 5% SDCP). Diets and Feeding Management The diets were formulated to be isoenergetic and isonitrogenous and to meet or exceed the NRC (2012) nutrient requirements. Diets were fed in meal form throughout the experiment. Details of ingredient composition and calculated nutrient level of diets were given in Table 2. Table 2. Compositions and nutrient contents of the experiment diets (as-fed basis)1 Item  CON  SDPP  SDPP + SDCP  SDCP  Ingredient, %      Corn, extruded  30.00  30.00  30.00  30.00      Corn  26.16  29.49  29.40  29.30      Full-fat soybean, extruded  11.40  11.40  11.40  11.40      Soybean meal, dehulled  18.70  10.45  10.54  10.66      Spray-dried chicken plasma  –  –  2.50  5.00      Spray-dried porcine plasma  –  5.00  2.50  –      Dried whey  3.00  3.00  3.00  3.00      Wheat bran  2.00  2.00  2.00  2.00      Sucrose  2.00  2.00  2.00  2.00      Fish meal  3.00  3.00  3.00  3.00      Soya oil  1.00  1.00  1.00  1.00      L-Lysine HCl  0.29  0.22  0.29  0.29      DL-Methionine  0.14  0.10  0.06  0.06      L-Threonine  0.13  0.10  0.08  0.06      Choline chloride  0.10  0.10  0.10  0.10      Limestone  0.70  0.74  0.76  0.80      Dicalcium phosphate  0.80  0.82  0.80  0.75      Salt  0.25  0.25  0.25  0.25      Vitamin premix2  0.03  0.03  0.03  0.03      Mineral premix3  0.30  0.30  0.30  0.30  Calculated nutrient composition      DE, MJ/kg  14.50  14.59  14.50  14.42      CP, %  19.37  19.37  19.37  19.38      Ca,%  0.84  0.84  0.84  0.84      Total P, %  0.62  0.59  0.60  0.59      Available P, %  0.42  0.42  0.42  0.42      Lys, %  1.36  1.35  1.35  1.35      Met, %  0.46  0.44  0.43  0.42      Met + Cys, %  0.80  0.80  0.80  0.80      Thr, %  0.89  0.89  0.89  0.89  Item  CON  SDPP  SDPP + SDCP  SDCP  Ingredient, %      Corn, extruded  30.00  30.00  30.00  30.00      Corn  26.16  29.49  29.40  29.30      Full-fat soybean, extruded  11.40  11.40  11.40  11.40      Soybean meal, dehulled  18.70  10.45  10.54  10.66      Spray-dried chicken plasma  –  –  2.50  5.00      Spray-dried porcine plasma  –  5.00  2.50  –      Dried whey  3.00  3.00  3.00  3.00      Wheat bran  2.00  2.00  2.00  2.00      Sucrose  2.00  2.00  2.00  2.00      Fish meal  3.00  3.00  3.00  3.00      Soya oil  1.00  1.00  1.00  1.00      L-Lysine HCl  0.29  0.22  0.29  0.29      DL-Methionine  0.14  0.10  0.06  0.06      L-Threonine  0.13  0.10  0.08  0.06      Choline chloride  0.10  0.10  0.10  0.10      Limestone  0.70  0.74  0.76  0.80      Dicalcium phosphate  0.80  0.82  0.80  0.75      Salt  0.25  0.25  0.25  0.25      Vitamin premix2  0.03  0.03  0.03  0.03      Mineral premix3  0.30  0.30  0.30  0.30  Calculated nutrient composition      DE, MJ/kg  14.50  14.59  14.50  14.42      CP, %  19.37  19.37  19.37  19.38      Ca,%  0.84  0.84  0.84  0.84      Total P, %  0.62  0.59  0.60  0.59      Available P, %  0.42  0.42  0.42  0.42      Lys, %  1.36  1.35  1.35  1.35      Met, %  0.46  0.44  0.43  0.42      Met + Cys, %  0.80  0.80  0.80  0.80      Thr, %  0.89  0.89  0.89  0.89  1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. 2Provided per kilogram of complete diet: 8,000 IU vitamin A, 2,000 IU vitamin D3, 20 IU vitamin E, 1 mg vitamin K3, 1.5 mg thiamin, 5 mg riboflavin, 2 mg vitamin B6, 0.05 mg vitamin B12, 20 mg nicotinic acid, 15 mg calcium pantothenate, 0.5 mg folic acid, and 0.1 mg biotin. 3Provided per kilogram of complete diet: 100 mg Fe as ferrous sulfate, 100 mg Zn as zinc sulfate, 10 mg Cu as copper sulfate, 20 mg Mn as manganese sulfate, 0.3 mg I as potassium iodide, and 0.30 mg Se as sodium selenite. View Large Table 2. Compositions and nutrient contents of the experiment diets (as-fed basis)1 Item  CON  SDPP  SDPP + SDCP  SDCP  Ingredient, %      Corn, extruded  30.00  30.00  30.00  30.00      Corn  26.16  29.49  29.40  29.30      Full-fat soybean, extruded  11.40  11.40  11.40  11.40      Soybean meal, dehulled  18.70  10.45  10.54  10.66      Spray-dried chicken plasma  –  –  2.50  5.00      Spray-dried porcine plasma  –  5.00  2.50  –      Dried whey  3.00  3.00  3.00  3.00      Wheat bran  2.00  2.00  2.00  2.00      Sucrose  2.00  2.00  2.00  2.00      Fish meal  3.00  3.00  3.00  3.00      Soya oil  1.00  1.00  1.00  1.00      L-Lysine HCl  0.29  0.22  0.29  0.29      DL-Methionine  0.14  0.10  0.06  0.06      L-Threonine  0.13  0.10  0.08  0.06      Choline chloride  0.10  0.10  0.10  0.10      Limestone  0.70  0.74  0.76  0.80      Dicalcium phosphate  0.80  0.82  0.80  0.75      Salt  0.25  0.25  0.25  0.25      Vitamin premix2  0.03  0.03  0.03  0.03      Mineral premix3  0.30  0.30  0.30  0.30  Calculated nutrient composition      DE, MJ/kg  14.50  14.59  14.50  14.42      CP, %  19.37  19.37  19.37  19.38      Ca,%  0.84  0.84  0.84  0.84      Total P, %  0.62  0.59  0.60  0.59      Available P, %  0.42  0.42  0.42  0.42      Lys, %  1.36  1.35  1.35  1.35      Met, %  0.46  0.44  0.43  0.42      Met + Cys, %  0.80  0.80  0.80  0.80      Thr, %  0.89  0.89  0.89  0.89  Item  CON  SDPP  SDPP + SDCP  SDCP  Ingredient, %      Corn, extruded  30.00  30.00  30.00  30.00      Corn  26.16  29.49  29.40  29.30      Full-fat soybean, extruded  11.40  11.40  11.40  11.40      Soybean meal, dehulled  18.70  10.45  10.54  10.66      Spray-dried chicken plasma  –  –  2.50  5.00      Spray-dried porcine plasma  –  5.00  2.50  –      Dried whey  3.00  3.00  3.00  3.00      Wheat bran  2.00  2.00  2.00  2.00      Sucrose  2.00  2.00  2.00  2.00      Fish meal  3.00  3.00  3.00  3.00      Soya oil  1.00  1.00  1.00  1.00      L-Lysine HCl  0.29  0.22  0.29  0.29      DL-Methionine  0.14  0.10  0.06  0.06      L-Threonine  0.13  0.10  0.08  0.06      Choline chloride  0.10  0.10  0.10  0.10      Limestone  0.70  0.74  0.76  0.80      Dicalcium phosphate  0.80  0.82  0.80  0.75      Salt  0.25  0.25  0.25  0.25      Vitamin premix2  0.03  0.03  0.03  0.03      Mineral premix3  0.30  0.30  0.30  0.30  Calculated nutrient composition      DE, MJ/kg  14.50  14.59  14.50  14.42      CP, %  19.37  19.37  19.37  19.38      Ca,%  0.84  0.84  0.84  0.84      Total P, %  0.62  0.59  0.60  0.59      Available P, %  0.42  0.42  0.42  0.42      Lys, %  1.36  1.35  1.35  1.35      Met, %  0.46  0.44  0.43  0.42      Met + Cys, %  0.80  0.80  0.80  0.80      Thr, %  0.89  0.89  0.89  0.89  1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. 2Provided per kilogram of complete diet: 8,000 IU vitamin A, 2,000 IU vitamin D3, 20 IU vitamin E, 1 mg vitamin K3, 1.5 mg thiamin, 5 mg riboflavin, 2 mg vitamin B6, 0.05 mg vitamin B12, 20 mg nicotinic acid, 15 mg calcium pantothenate, 0.5 mg folic acid, and 0.1 mg biotin. 3Provided per kilogram of complete diet: 100 mg Fe as ferrous sulfate, 100 mg Zn as zinc sulfate, 10 mg Cu as copper sulfate, 20 mg Mn as manganese sulfate, 0.3 mg I as potassium iodide, and 0.30 mg Se as sodium selenite. View Large The experiment was performed at the Research Base of the Institute of Animal Nutrition at the Sichuan Agricultural University (Ya'an, China). During the adaptation and experimental periods, all the pigs were housed in a temperature-controlled weaning room with completely slatted floors. Each pen (2.5 by 1.8 m) was equipped with a 1-sided feeder and a stainless-steel nipple drinker to allow the piglets ad libitum access to feed and water. The initial room temperature was maintained at 28°C for the first week and was gradually decreased to 25°C by the end of the trial. All pigs were individually weighed at the beginning (d 1), middle (d 14), and end (d 28) of the experiment after 12 h of fasting, and feed intake per pen was recorded daily throughout the experiment to calculate ADG, ADFI, and G:F. Pigs showing loose feces or liquid feces were considered to have diarrhea. The diarrhea incidence was calculated as follows: diarrhea incidence (%) = A/(B × 28 d) × 100, in which A = total number of pigs per pen with diarrhea and B = number of pigs per pen. Sample Collection Representative feed samples of each dietary treatment were collected for chemical analysis. From d 22 to 28 of the experiment, the pigs were fed diets with added chromic oxide (0.30%) as an indigestible marker to determine the apparent total tract digestibility (ATTD) of DM, CP, GE, fat, ash, Ca, and P. From d 25 to 28, fresh fecal samples were randomly collected from at least 2 pigs in each pen. After collection, 10 mL of a 5% H2SO4 solution was added to each 100 g of wet fecal sample. All feed and fecal samples were stored in plastic bags at –20°C until analysis. On d 14 and 28 after the initiation of the experiment, blood samples were collected into glass tubes without anticoagulant by jugular vein puncture from 6 randomly selected pigs in each treatment. After centrifugation (3,000 × g for 15 min at 4°C), serum samples were collected and stored at –20°C for determination of serum urea nitrogen (SUN). On d 28, the same pigs were euthanized with a lethal dose of sodium pentobarbital (200 mg/kg of BW) according to Chen et al. (2013). The abdomen was immediately opened for the collection of small intestinal tissues and mucosal samples as well as jejunum, ileum, and cecum digesta samples. Chemical Analyses Approximately 200 g of fecal samples from each pen were dried at 65°C for 48 h and subsequently ground to pass through a 1-mm screen. All feed and fecal samples were analyzed for DM (method 930.15; AOAC, 1995), crude fat (method 920.39; AOAC, 1995), CP (method 990.03; AOAC, 1995), ash (method 923.03; AOAC, 1995), Ca (method 927.02; AOAC, 1995), and P (method 965.05; AOAC, 1995). Gross energy was measured by an automatic adiabatic oxygen bomb calorimeter (Parr Instrument Co., Moline, IL). Chromium concentration was measured after ashing and digestion with phosphoric acid–manganese sulfate and potassium bromate and detection by a flame atomic absorption spectrophotometer (Hitachi Z-5000; Hitachi Ltd., Tokyo, Japan) according to Williams et al. (1962). The ATTD was calculated using the following formula: ATTD (%) = {1 – [(Nf × Cd)/(Nd × Cf)]} × 100, in which Nf = nutrient concentration in feces (% DM), Nd = nutrient concentration in diet (% DM), Cd = chromium concentration in diet (% DM), and Cf = chromium concentration in feces (% DM). Determination of Digestive Enzyme Activities The digesta sample from jejunum was subsequently collected by massaging the tract and stored at –80°C. Then, approximately 10-cm segments of jejunum were opened longitudinally and washed with cold saline solution. Samples of intestinal mucosa were collected, rapidly frozen in liquid nitrogen, and stored at –80°C until analysis. After homogenization of chime and mucosa samples in cold saline solution (1:9, wt/vol) and centrifugation at 2,500 × g for 10 min at 4°C, the supernatants were used for determination of disaccharidase (lactase, sucrose, and maltase) activities by commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The total protein content of mucosa homogenates was determined using the Braford brilliant blue method. Small Intestinal Morphology Measurement Approximately 2-cm segments of middle duodenum, jejunum, and distal ileum were immediately removed, rinsed with a 0.9% cold saline solution, and fixed with 10% formaldehyde–phosphate buffer. The small intestine morphology was measured as described by Shen et al. (2009). Briefly, fixed intestinal segments were dehydrated and embedded in paraffin, cut into 5-μm sections, and stained with hematoxylin and eosin. Villus height and crypt depth were determined with an Olympus CK 40 microscope (Olympus Optical Company, Shenzhen, China). The villus height was measured from the tip to the base, and the crypt depth was measured from the crypt–villus junction to the base. A minimum of 10 well-orientated villi and associated crypts from each intestinal segment were measured. Gut Microbial Population Determination The digesta samples from ileum and cecum were quickly removed, placed into sterile tubes, and stored at –80°C until analysis for microbial populations. Microbial genomic DNA from ileal and cecal digesta samples were isolated using the E.Z.N.A Stool DNA Kit (Omega Bio-Tek, Doraville, GA) in accordance with the manufacturer's instructions. Primers and probe (Table 3) were designed with Primer Premier 5.0 (Premier Biosoft International, Palo Alto, CA) and followed 16S rRNA sequences of maximum species of each genus homology downloaded from the Genbank database (http://www.ncbi.nlm.nih.gov/genbank), European Molecular Biology Laboratory, and DNA Data Bank of Japan To obtain specific amplification, the sequences of all the genera taken from the database were submitted to DNAStar (MegAlign) program (DNASTAR, Inc., Madison, WI). Next, these sequences were submitted to alignment, in which the maximum number of species belonging to one genus was gathered and the regions showing conservations were picked up as genus-specific primers and probes. All the primers and probes used in this experiment were commercially synthesized by Invitrogen (Shanghai, China). Table 3. Sequence of primers and probes used for the real-time PCR analysis of selected microbial populations in ileal and cecal digesta samples Primer  Product size, bp  Nucleotide sequence (5′–3′)  AT1, °C  Reference  Total bacteria  200    64.5  Han et al., 2012      Forward    ACTCCTACGGGAGGCA-GCAG        Reverse    ATTACCGCGGCTGCTGG      Lactobacillus  126    55.7  Qi et al., 2013      Forward    ACTCCTACGGGAGGC-AGCAG        Reverse    CAACAGTTACTCTGAC-ACCCGTTCTTC          Probe    AAGAAGGGTTTCGGC-TCGTAAAACTCTGTT      Escherichia coli  96    57  Qi et al., 2013      Forward    CATGCCGCGTGTATGA-AGAA        Reverse    CGGGTAACGTCAATGA-GCAAA          Probe    AGGTATTAACTTTACT-CCCTTCCTC      Bifidobacterium  121    57  Xiang et al., 2011      Forward    CGCGTCCGGTGTGAAAG        Reverse    CTTCCCGATATCTACAC-ATTCCA          Probe    ATTCCACCGTTACACC-GGGAA      Bacillus  92    57  Qi, H., 2011      Forward    GCAACGAGCGCAACC-CTTGA        Reverse    TCATCCCCACCTTCCT-CCGGT          Probe    CGGTTTGTCACCGGCA-GTCACCT      Primer  Product size, bp  Nucleotide sequence (5′–3′)  AT1, °C  Reference  Total bacteria  200    64.5  Han et al., 2012      Forward    ACTCCTACGGGAGGCA-GCAG        Reverse    ATTACCGCGGCTGCTGG      Lactobacillus  126    55.7  Qi et al., 2013      Forward    ACTCCTACGGGAGGC-AGCAG        Reverse    CAACAGTTACTCTGAC-ACCCGTTCTTC          Probe    AAGAAGGGTTTCGGC-TCGTAAAACTCTGTT      Escherichia coli  96    57  Qi et al., 2013      Forward    CATGCCGCGTGTATGA-AGAA        Reverse    CGGGTAACGTCAATGA-GCAAA          Probe    AGGTATTAACTTTACT-CCCTTCCTC      Bifidobacterium  121    57  Xiang et al., 2011      Forward    CGCGTCCGGTGTGAAAG        Reverse    CTTCCCGATATCTACAC-ATTCCA          Probe    ATTCCACCGTTACACC-GGGAA      Bacillus  92    57  Qi, H., 2011      Forward    GCAACGAGCGCAACC-CTTGA        Reverse    TCATCCCCACCTTCCT-CCGGT          Probe    CGGTTTGTCACCGGCA-GTCACCT      1AT = annealing temperature. View Large Table 3. Sequence of primers and probes used for the real-time PCR analysis of selected microbial populations in ileal and cecal digesta samples Primer  Product size, bp  Nucleotide sequence (5′–3′)  AT1, °C  Reference  Total bacteria  200    64.5  Han et al., 2012      Forward    ACTCCTACGGGAGGCA-GCAG        Reverse    ATTACCGCGGCTGCTGG      Lactobacillus  126    55.7  Qi et al., 2013      Forward    ACTCCTACGGGAGGC-AGCAG        Reverse    CAACAGTTACTCTGAC-ACCCGTTCTTC          Probe    AAGAAGGGTTTCGGC-TCGTAAAACTCTGTT      Escherichia coli  96    57  Qi et al., 2013      Forward    CATGCCGCGTGTATGA-AGAA        Reverse    CGGGTAACGTCAATGA-GCAAA          Probe    AGGTATTAACTTTACT-CCCTTCCTC      Bifidobacterium  121    57  Xiang et al., 2011      Forward    CGCGTCCGGTGTGAAAG        Reverse    CTTCCCGATATCTACAC-ATTCCA          Probe    ATTCCACCGTTACACC-GGGAA      Bacillus  92    57  Qi, H., 2011      Forward    GCAACGAGCGCAACC-CTTGA        Reverse    TCATCCCCACCTTCCT-CCGGT          Probe    CGGTTTGTCACCGGCA-GTCACCT      Primer  Product size, bp  Nucleotide sequence (5′–3′)  AT1, °C  Reference  Total bacteria  200    64.5  Han et al., 2012      Forward    ACTCCTACGGGAGGCA-GCAG        Reverse    ATTACCGCGGCTGCTGG      Lactobacillus  126    55.7  Qi et al., 2013      Forward    ACTCCTACGGGAGGC-AGCAG        Reverse    CAACAGTTACTCTGAC-ACCCGTTCTTC          Probe    AAGAAGGGTTTCGGC-TCGTAAAACTCTGTT      Escherichia coli  96    57  Qi et al., 2013      Forward    CATGCCGCGTGTATGA-AGAA        Reverse    CGGGTAACGTCAATGA-GCAAA          Probe    AGGTATTAACTTTACT-CCCTTCCTC      Bifidobacterium  121    57  Xiang et al., 2011      Forward    CGCGTCCGGTGTGAAAG        Reverse    CTTCCCGATATCTACAC-ATTCCA          Probe    ATTCCACCGTTACACC-GGGAA      Bacillus  92    57  Qi, H., 2011      Forward    GCAACGAGCGCAACC-CTTGA        Reverse    TCATCCCCACCTTCCT-CCGGT          Probe    CGGTTTGTCACCGGCA-GTCACCT      1AT = annealing temperature. View Large Quantitative real-time PCR was conducted with CFX96 Real-Time PCR System (Bio-Rad Laboratories, Inc., Hercules, CA) with optical-grade 96-well plates. For the quantification of total bacteria, the reaction mixture (25 μL) contained 1 μL forward and 1 μL reverse primers (100 nM), 12.5 μL SYBR Premix EX Taq (Takara, Dalian, China), 1 μL template DNA, and 9.5 μL nuclease-free water. The thermal cycling conditions were an initial predenaturation step at 95°C for 10 s, 40 cycles of denaturation at 95°C for 5 s, annealing at 64.5°C for 25 s, and extension at 72°C for 60 s. For the quantification of Lactobacillus, Escherichia coli, Bifidobacterium, and Bacillus, real-time PCR was conducted in a reaction volume of 20 μL with 1 μL probe enhancer solution, 0.3 μL probe (100 nM), 1 μL forward and 1 μL reverse primers (100 nM), 8 μL RealMasterMix (Tiangen, Beijing, China), 1 μL template DNA, and 7.7 μL nuclease-free water. The PCR conditions involved 10 s at 95°C and 50 cycles for 5 s at 95°C, 25 s at annealing temperature (Table 3), and 60 s at 72°C. The threshold cycle (CT) values and baseline settings were determined by automatic analysis settings, and the copy numbers of the target group for each reaction were calculated from the standard curves. To quantify the copy numbers of total bacteria, E. coli, Lactobacillus, Bifidobacterium, and Bacillus, respective standard curves were generated by constructing standard plasmids containing the 16s rRNA genes, as described by Han et al. (2012). Deoxyribonucleic acid concentrations of standard plasmids were detected using a spectrophotometer (Beckman Coulter DU 800; Beckman Coulter, Fullerton, CA). A series of 10-fold dilution (1 × 109 to 1 × 101 copies/μL) of plasmids DNA were used to construct their respective standard curves. Each standard curve was generated by a linear regression of the plotted points with the logarithm of template copy numbers as the abscissa and the CT values as the ordinate. The gene copy numbers were calculated by the following formula: (DNA concentration in μg/μL × 6.0233 × 1023 copies/mol)/(DNA size (bp) × 600 × 106). Statistical Analysis All data were analyzed as a randomized complete block design using the GLM of SAS (SAS Inst. Inc., Cary, NC) with pen as the experimental unit. The results were presented as mean and SEM. Statistical differences among treatment were determined by Tukey's multiple-range test. For significance determination, the α-level was set as 0.05. A probability level of P ≤ 0.05 was considered significant, whereas P < 0.10 was considered a tendency. RESULTS Growth Performance and Diarrhea Ratio Final BW of pigs in the SDPP and SDPP + SDCP groups were greater (P < 0.05) than those of pigs in the CON group (Table 4), but there was no difference among pigs in the SDPP, SDPP + SDCP, and SDCP groups. From d 1 to 14, ADG and ADFI of pigs in the SDPP and SDPP + SDCP groups were greater (P < 0.05) than those of pigs in the CON group, whereas no difference was detected for ADG between pigs in the SDPP and SDCP groups. But the ADFI of pigs in the SDCP group was less (P < 0.05) than those of pigs in the SDPP group. The concentration of SUN in pigs in the SDPP, SDPP + SDCP, and SDCP groups tended to decrease (P < 0.1) compared with that of pigs in the CON group. From d 15 to 28, ADG of pigs in the SDPP and SDPP + SDCP groups were greater (P < 0.05) than those of pigs in the CON group, and there seemed to be no difference among pigs in the SDPP, SDPP + SDCP, and SDCP groups. Meanwhile, pigs in the SDPP, SDPP + SDCP, and SDCP groups had less (P < 0.05) concentration of SUN than pigs in the CON group. During the overall period, pigs in the SDPP and SDPP + SDCP groups tended (P < 0.1) to have an improved G:F and had a greater (P < 0.05) ADG and ADFI compared with pigs in the CON group. Table 4. Effects of spray-dried animal plasma on growth performance and serum urea nitrogen (SUN) in weaning pigs1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Initial BW, kg  6.42  6.42  6.43  6.43  0.09  0.99  Final BW, kg  13.79b  14.88a  14.62a  14.35ab  0.35  <0.05  d 1 to 14      ADG, g  177b  223a  209a  198ab  12  <0.05      ADFI, g  279c  336a  324ab  304bc  13  <0.05      G:F  0.63  0.66  0.64  0.65  0.02  0.60      SUN, mmol/L  3.07  2.11  2.50  2.68  0.14  0.09  d 15 to 28      ADG, g  350b  381a  375a  368ab  10  <0.05      ADFI, g  585  617  618  607  14  0.07      G:F  0.59  0.62  0.61  0.61  0.08  0.45      SUN, mmol/L  3.36a  2.94b  2.55c  2.88bc  0.12  <0.05  d 1 to 28      ADG, g  263b  302a  293a  283ab  8  <0.05      ADFI, g  432b  475a  471a  456ab  11  <0.05      G:F  0.61  0.64  0.62  0.62  0.09  0. 09  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Initial BW, kg  6.42  6.42  6.43  6.43  0.09  0.99  Final BW, kg  13.79b  14.88a  14.62a  14.35ab  0.35  <0.05  d 1 to 14      ADG, g  177b  223a  209a  198ab  12  <0.05      ADFI, g  279c  336a  324ab  304bc  13  <0.05      G:F  0.63  0.66  0.64  0.65  0.02  0.60      SUN, mmol/L  3.07  2.11  2.50  2.68  0.14  0.09  d 15 to 28      ADG, g  350b  381a  375a  368ab  10  <0.05      ADFI, g  585  617  618  607  14  0.07      G:F  0.59  0.62  0.61  0.61  0.08  0.45      SUN, mmol/L  3.36a  2.94b  2.55c  2.88bc  0.12  <0.05  d 1 to 28      ADG, g  263b  302a  293a  283ab  8  <0.05      ADFI, g  432b  475a  471a  456ab  11  <0.05      G:F  0.61  0.64  0.62  0.62  0.09  0. 09  a–cMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. View Large Table 4. Effects of spray-dried animal plasma on growth performance and serum urea nitrogen (SUN) in weaning pigs1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Initial BW, kg  6.42  6.42  6.43  6.43  0.09  0.99  Final BW, kg  13.79b  14.88a  14.62a  14.35ab  0.35  <0.05  d 1 to 14      ADG, g  177b  223a  209a  198ab  12  <0.05      ADFI, g  279c  336a  324ab  304bc  13  <0.05      G:F  0.63  0.66  0.64  0.65  0.02  0.60      SUN, mmol/L  3.07  2.11  2.50  2.68  0.14  0.09  d 15 to 28      ADG, g  350b  381a  375a  368ab  10  <0.05      ADFI, g  585  617  618  607  14  0.07      G:F  0.59  0.62  0.61  0.61  0.08  0.45      SUN, mmol/L  3.36a  2.94b  2.55c  2.88bc  0.12  <0.05  d 1 to 28      ADG, g  263b  302a  293a  283ab  8  <0.05      ADFI, g  432b  475a  471a  456ab  11  <0.05      G:F  0.61  0.64  0.62  0.62  0.09  0. 09  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Initial BW, kg  6.42  6.42  6.43  6.43  0.09  0.99  Final BW, kg  13.79b  14.88a  14.62a  14.35ab  0.35  <0.05  d 1 to 14      ADG, g  177b  223a  209a  198ab  12  <0.05      ADFI, g  279c  336a  324ab  304bc  13  <0.05      G:F  0.63  0.66  0.64  0.65  0.02  0.60      SUN, mmol/L  3.07  2.11  2.50  2.68  0.14  0.09  d 15 to 28      ADG, g  350b  381a  375a  368ab  10  <0.05      ADFI, g  585  617  618  607  14  0.07      G:F  0.59  0.62  0.61  0.61  0.08  0.45      SUN, mmol/L  3.36a  2.94b  2.55c  2.88bc  0.12  <0.05  d 1 to 28      ADG, g  263b  302a  293a  283ab  8  <0.05      ADFI, g  432b  475a  471a  456ab  11  <0.05      G:F  0.61  0.64  0.62  0.62  0.09  0. 09  a–cMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. View Large Nutrient Digestibility The ATTD of CP for pigs in the SDPP and SDPP + SDCP groups were greater (P < 0.05) than that of pigs in the CON group (Table 5), and the ATTD of ether extract (EE) for pigs in the SDPP group was also greater (P < 0.05) than that of pigs in the CON group. Meanwhile, pigs in the SDPP, SDPP + SDCP, and SDCP groups had greater (P < 0.05) ATTD of Ca and ash than pigs in the CON group. No differences in ATTD of CP, EE, Ca, and ash were detected among pigs in the SDPP, SDPP + SDCP, and SDCP groups. Moreover, pigs in the SDPP, SDPP + SDCP, and SDCP groups also had a lower (P < 0.05) diarrhea incidence compared with pigs in the CON group. Table 5. Effects of spray-dried animal plasma on diarrhea incidence and the apparent total tract digestibility of nutrients in weaning pigs1 Item, %  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  DM  86.36  87.17  86.85  87.25  0.37  0.33  CP  81.7b  83.4a  84.4a  83.1ab  0.6  <0.05  GE  86.0  86.3  86.4  86.3  0.3  0.83  Ether extract  57.6b  64.5a  61.5ab  61.8ab  1.6  <0.05  Ca  59.3b  63.8a  63.3a  63.0a  0.6  <0.05  P  51.4  56.1  54.2  55.9  1.5  0.12  Ash  57.0b  62.5a  61.6a  61.4a  1.1  <0.05  Diarrhea incidence  12.0a  6.3b  6.8b  6.8b  1.1  <0.05  Item, %  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  DM  86.36  87.17  86.85  87.25  0.37  0.33  CP  81.7b  83.4a  84.4a  83.1ab  0.6  <0.05  GE  86.0  86.3  86.4  86.3  0.3  0.83  Ether extract  57.6b  64.5a  61.5ab  61.8ab  1.6  <0.05  Ca  59.3b  63.8a  63.3a  63.0a  0.6  <0.05  P  51.4  56.1  54.2  55.9  1.5  0.12  Ash  57.0b  62.5a  61.6a  61.4a  1.1  <0.05  Diarrhea incidence  12.0a  6.3b  6.8b  6.8b  1.1  <0.05  a,bMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. View Large Table 5. Effects of spray-dried animal plasma on diarrhea incidence and the apparent total tract digestibility of nutrients in weaning pigs1 Item, %  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  DM  86.36  87.17  86.85  87.25  0.37  0.33  CP  81.7b  83.4a  84.4a  83.1ab  0.6  <0.05  GE  86.0  86.3  86.4  86.3  0.3  0.83  Ether extract  57.6b  64.5a  61.5ab  61.8ab  1.6  <0.05  Ca  59.3b  63.8a  63.3a  63.0a  0.6  <0.05  P  51.4  56.1  54.2  55.9  1.5  0.12  Ash  57.0b  62.5a  61.6a  61.4a  1.1  <0.05  Diarrhea incidence  12.0a  6.3b  6.8b  6.8b  1.1  <0.05  Item, %  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  DM  86.36  87.17  86.85  87.25  0.37  0.33  CP  81.7b  83.4a  84.4a  83.1ab  0.6  <0.05  GE  86.0  86.3  86.4  86.3  0.3  0.83  Ether extract  57.6b  64.5a  61.5ab  61.8ab  1.6  <0.05  Ca  59.3b  63.8a  63.3a  63.0a  0.6  <0.05  P  51.4  56.1  54.2  55.9  1.5  0.12  Ash  57.0b  62.5a  61.6a  61.4a  1.1  <0.05  Diarrhea incidence  12.0a  6.3b  6.8b  6.8b  1.1  <0.05  a,bMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. View Large Small Intestinal Morphology The small intestinal morphology data, including villus height, crypt depth, and the ratio of villi to crypt, are presented in Table 6. In the duodenum, pigs in the SDPP, SDPP + SDCP, and SDCP groups exhibited greater (P < 0.05) villus height and the ratio of villus height to crypt depth compared with pigs in the CON group. No differences were observed for villus height and the ratio of villus height to crypt depth between pigs in the SDPP and SDCP groups. In the jejunum, the crypt depth of pigs in the SDPP + SDCP and SDCP groups were decreased (P < 0.05) compared with pigs in the CON group, and the ratio of ratio of villus height to crypt depth in pigs in the SDPP and SDCP groups was also greater (P < 0.05) than in pigs in the CON group. However, no difference was observed between pigs in the SDCP and SDPP groups. In the ileum, pigs fed SDPP, SDPP + SDCP, and SDCP tended to have an increased villus height compared with pigs in the CON group (P < 0.1). Table 6. Effects of spray-dried animal plasma on small intestinal morphology1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Duodenum      Villus height, μm  284b  417a  381a  385a  14  <0.05      Crypt depth, μm  206.2  216.1  217.9  205.0  6.63  0.41      Villus:crypt  1.38b  1.93a  1.75a  1.89a  0.07  <0.05  Jejunum      Villus height, μm  324  372  351  346  12  0.08      Crypt depth, μm  205.5a  199.9ab  176.1c  181.0bc  7.3  <0.05      Villus:crypt  1.58b  1.87a  2.00a  1.93a  0.08  <0.05  Ileum      Villus height, μm  223  240  271  246  11  0.06      Crypt depth, μm  166  166  177  168  11  0.87      Villus:crypt  1.36  1.46  1.55  1.47  0.07  0.38  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Duodenum      Villus height, μm  284b  417a  381a  385a  14  <0.05      Crypt depth, μm  206.2  216.1  217.9  205.0  6.63  0.41      Villus:crypt  1.38b  1.93a  1.75a  1.89a  0.07  <0.05  Jejunum      Villus height, μm  324  372  351  346  12  0.08      Crypt depth, μm  205.5a  199.9ab  176.1c  181.0bc  7.3  <0.05      Villus:crypt  1.58b  1.87a  2.00a  1.93a  0.08  <0.05  Ileum      Villus height, μm  223  240  271  246  11  0.06      Crypt depth, μm  166  166  177  168  11  0.87      Villus:crypt  1.36  1.46  1.55  1.47  0.07  0.38  a–cMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma; villus:crypt = villus height:crypt depth. View Large Table 6. Effects of spray-dried animal plasma on small intestinal morphology1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Duodenum      Villus height, μm  284b  417a  381a  385a  14  <0.05      Crypt depth, μm  206.2  216.1  217.9  205.0  6.63  0.41      Villus:crypt  1.38b  1.93a  1.75a  1.89a  0.07  <0.05  Jejunum      Villus height, μm  324  372  351  346  12  0.08      Crypt depth, μm  205.5a  199.9ab  176.1c  181.0bc  7.3  <0.05      Villus:crypt  1.58b  1.87a  2.00a  1.93a  0.08  <0.05  Ileum      Villus height, μm  223  240  271  246  11  0.06      Crypt depth, μm  166  166  177  168  11  0.87      Villus:crypt  1.36  1.46  1.55  1.47  0.07  0.38  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Duodenum      Villus height, μm  284b  417a  381a  385a  14  <0.05      Crypt depth, μm  206.2  216.1  217.9  205.0  6.63  0.41      Villus:crypt  1.38b  1.93a  1.75a  1.89a  0.07  <0.05  Jejunum      Villus height, μm  324  372  351  346  12  0.08      Crypt depth, μm  205.5a  199.9ab  176.1c  181.0bc  7.3  <0.05      Villus:crypt  1.58b  1.87a  2.00a  1.93a  0.08  <0.05  Ileum      Villus height, μm  223  240  271  246  11  0.06      Crypt depth, μm  166  166  177  168  11  0.87      Villus:crypt  1.36  1.46  1.55  1.47  0.07  0.38  a–cMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma; villus:crypt = villus height:crypt depth. View Large Activities of Digestive Enzymes in Jejunum Pigs fed SDPP had greater (P < 0.05) activities of amylase and maltase compared with pigs in the CON group, but there were no differences observed among pigs in the SDPP, SDPP + SDCP, and SDCP groups (Table 7). The activity of trypsin was also improved in pigs in the SDPP, SDPP + SDCP, and SDCP groups compared with pigs in the CON group (P < 0.05). However, there were no difference in the activities of lipase, sucrose, and lactase among the dietary treatments. Table 7. Effects of spray-dried animal plasma on jejunal digestive enzymes activities1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Digesta      Amylase, units/mgprot2  257b  388a  292b  319ab  24  <0.05      Lipase, units/gprot3  603  777  657  692  64  0.29      Trypsin, units/gprot  47.7b  64.2a  62.2a  58.8a  2.1  <0.05  Mucosa      Sucrase, units/mgprot  56.7  68.9  61.9  59.4  3.5  0.12      Maltase, units/mgprot  155b  185a  170ab  171ab  6.2  <0.05      Lactase, units/mgprot  52.9  60.7  57.7  60.5  4.3  0.54  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Digesta      Amylase, units/mgprot2  257b  388a  292b  319ab  24  <0.05      Lipase, units/gprot3  603  777  657  692  64  0.29      Trypsin, units/gprot  47.7b  64.2a  62.2a  58.8a  2.1  <0.05  Mucosa      Sucrase, units/mgprot  56.7  68.9  61.9  59.4  3.5  0.12      Maltase, units/mgprot  155b  185a  170ab  171ab  6.2  <0.05      Lactase, units/mgprot  52.9  60.7  57.7  60.5  4.3  0.54  a,bMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. 2mgprot = milligrams of protein. 3gprot = grams of protein. View Large Table 7. Effects of spray-dried animal plasma on jejunal digestive enzymes activities1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Digesta      Amylase, units/mgprot2  257b  388a  292b  319ab  24  <0.05      Lipase, units/gprot3  603  777  657  692  64  0.29      Trypsin, units/gprot  47.7b  64.2a  62.2a  58.8a  2.1  <0.05  Mucosa      Sucrase, units/mgprot  56.7  68.9  61.9  59.4  3.5  0.12      Maltase, units/mgprot  155b  185a  170ab  171ab  6.2  <0.05      Lactase, units/mgprot  52.9  60.7  57.7  60.5  4.3  0.54  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Digesta      Amylase, units/mgprot2  257b  388a  292b  319ab  24  <0.05      Lipase, units/gprot3  603  777  657  692  64  0.29      Trypsin, units/gprot  47.7b  64.2a  62.2a  58.8a  2.1  <0.05  Mucosa      Sucrase, units/mgprot  56.7  68.9  61.9  59.4  3.5  0.12      Maltase, units/mgprot  155b  185a  170ab  171ab  6.2  <0.05      Lactase, units/mgprot  52.9  60.7  57.7  60.5  4.3  0.54  a,bMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. 2mgprot = milligrams of protein. 3gprot = grams of protein. View Large Selected Microbial Populations in Ileum and Cecum Populations of total bacteria, E. coli, Lactobacillus, Bacillus, and Bifidobacterium in ileal and cecal digesta were presented in Table 8. The addition of SDCP decreased (P < 0.05) the populations of E. coli in ileum and cecum compared with pigs in the CON group, and pigs in the SDPP and SDPP + SDCP groups had a numerically lesser population of E. coli than pigs in the CON group. The population of Lactobacillus in pigs in the SDPP + SDCP group was increased compared with pigs in the CON and SDPP groups (P < 0.05), and no difference was detected between pigs in the SDPP and SDCP groups. However, there were no effects of dietary treatments on the population of total bacterial, Bacillus, and Bifidobacterium in ileum and cecum. Table 8. Effects of spray-dried animal plasma on the selected microbial populations (log cfu/g of wet digesta) in ileal and cecal digesta of weaning pigs1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Ileum      Total bacteria  9.90  9.72  9.76  9.72  0.13  0.75      Escherichia coli  7.56a  6.76ab  6.53ab  5.92b  0.37  <0.05      Lactobacillus  6.60  6.55  6.89  6.33  0.19  0.27      Bacillus  8.16  8.33  8.76  8.92  0.23  0.09      Bifidobacterium  6.10  6.00  6.40  6.03  0.11  0.45  Cecum      Total bacteria  11.39  11.35  11.47  11.24  0.08  0.28      Escherichia coli  9.03a  8.13ab  8.26ab  7.36b  0.37  <0.05      Lactobacillus  7.32b  7.42b  8.26a  7.68ab  0.23  <0.05      Bacillus  9.08  9.01  9.29  9.33  0.10  0.07      Bifidobacterium  7.11  6.54  6.88  6.72  0.17  0.14  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Ileum      Total bacteria  9.90  9.72  9.76  9.72  0.13  0.75      Escherichia coli  7.56a  6.76ab  6.53ab  5.92b  0.37  <0.05      Lactobacillus  6.60  6.55  6.89  6.33  0.19  0.27      Bacillus  8.16  8.33  8.76  8.92  0.23  0.09      Bifidobacterium  6.10  6.00  6.40  6.03  0.11  0.45  Cecum      Total bacteria  11.39  11.35  11.47  11.24  0.08  0.28      Escherichia coli  9.03a  8.13ab  8.26ab  7.36b  0.37  <0.05      Lactobacillus  7.32b  7.42b  8.26a  7.68ab  0.23  <0.05      Bacillus  9.08  9.01  9.29  9.33  0.10  0.07      Bifidobacterium  7.11  6.54  6.88  6.72  0.17  0.14  a,bMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. View Large Table 8. Effects of spray-dried animal plasma on the selected microbial populations (log cfu/g of wet digesta) in ileal and cecal digesta of weaning pigs1 Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Ileum      Total bacteria  9.90  9.72  9.76  9.72  0.13  0.75      Escherichia coli  7.56a  6.76ab  6.53ab  5.92b  0.37  <0.05      Lactobacillus  6.60  6.55  6.89  6.33  0.19  0.27      Bacillus  8.16  8.33  8.76  8.92  0.23  0.09      Bifidobacterium  6.10  6.00  6.40  6.03  0.11  0.45  Cecum      Total bacteria  11.39  11.35  11.47  11.24  0.08  0.28      Escherichia coli  9.03a  8.13ab  8.26ab  7.36b  0.37  <0.05      Lactobacillus  7.32b  7.42b  8.26a  7.68ab  0.23  <0.05      Bacillus  9.08  9.01  9.29  9.33  0.10  0.07      Bifidobacterium  7.11  6.54  6.88  6.72  0.17  0.14  Item  CON  SDPP  SDPP + SDCP  SDCP  SEM  P-value  Ileum      Total bacteria  9.90  9.72  9.76  9.72  0.13  0.75      Escherichia coli  7.56a  6.76ab  6.53ab  5.92b  0.37  <0.05      Lactobacillus  6.60  6.55  6.89  6.33  0.19  0.27      Bacillus  8.16  8.33  8.76  8.92  0.23  0.09      Bifidobacterium  6.10  6.00  6.40  6.03  0.11  0.45  Cecum      Total bacteria  11.39  11.35  11.47  11.24  0.08  0.28      Escherichia coli  9.03a  8.13ab  8.26ab  7.36b  0.37  <0.05      Lactobacillus  7.32b  7.42b  8.26a  7.68ab  0.23  <0.05      Bacillus  9.08  9.01  9.29  9.33  0.10  0.07      Bifidobacterium  7.11  6.54  6.88  6.72  0.17  0.14  a,bMeans in a row with different letter differ (P < 0.05). n = 6. 1CON = control; SDCP = spray-dried chicken plasma; SDPP = spray-dried porcine plasma. View Large DISCUSSION Dietary addition with SDAP during the nursery phase had beneficial effects on both growth and performance of pigs (Kats et al., 1994; Bosi et al., 2001; Gao et al., 2011). However, others have reported no significant effects of SDAP on ADG of weaning pigs (Nofrarías et al., 2007). In our study, both SDCP and SDPP increased ADG and ADFI during phase 1 and the whole experimental period and also improved the ADG during phase 2. Feeding 5% SDCP during phase 1 resulted in a 12.2% increase in ADG and a 9.3% increase in ADFI. The current findings were generally in line with many reports reviewed by Van Dijk et al. (2001a), who summarized that the mean changes of ADG and ADFI in the first 2 wk caused by SDAP were 26.8 and 24.5%, respectively. The improvements of ADG and ADFI by SDCP, which were numerically less than those by SDPP, were similar to those of Van der Peet-Schwering and Binnendijk (1997), who reported that the addition of spray-dried bovine plasma improved ADG and ADFI by 16.7 and 8.0%, respectively. The relatively enrichment of CP and partial AA in SDCP may lead to better performance. Meanwhile, the effect of SDPP + SDCP on ADG and ADFI of pigs was medium between SDPP and SDCP, implying that the similar effects of SDPP and SDCP could not be explained separately from its nutrient composition, and supported the point that SDAP may have some nonnutritional properties that were advantageous to piglets. Although the unknown matters in SDAP were not measured in our study, previous research demonstrated that the performance of pigs fed with a high-molecular-weight fraction of SDAP was increased, but not with the medium- and low-molecular-weight fractions (Pierce et al., 2005). On the other hand, recent evidence showed that the improvements of ADG and ADFI by autoclaved SDAP indicated that the immunoglobins only partially contributed to the benefits of SDAP (Gao et al., 2011). The different results of SDPP and SDCP on growth performance in weaning pig may be due to the addition of SDPP and SDCP from different animal sources and manufactures as well as differences in immunoglobins, growth factors, glycoproteins, and other unknown compounds. Serum urea nitrogen has been used as a measurement of dietary protein utilization. In our study, pigs fed SDPP and SDCP had a lower concentration of SUN, which implied that more dietary protein was utilized. Previous studies have demonstrated that feeding SDAP to early-weaned pigs improved the efficiency of dietary protein utilization partly by reducing intestinal AA catabolism (Jiang et al., 2000). No effects of SDPP and SDCP on G:F were detected during phase 1 and 2, but a tendency to an improved G:F was observed during the overall period, which could be explained by a lower activation of the immune system. This would lead to fewer nutrients being used for immune response and therefore a higher availability of feed for weight gain (Stahly, 1996; Williams et al., 1997). Only limited research on the effects of SDAP on nutrient digestibility in piglets has been published. Pendergraft et al. (1993) reported that SDAP had greater DM and nitrogen digestibility than wheat gluten in diets fed to piglets. Mateo and Stein (2007) also reported that the apparent and standardized ileal digestibility of indispensable AA in SDAP by weaning pigs all exceeded 85.0%. In addition, SDAP improved the digestibilities of DM, OM, CP, fat, and fiber in dogs (Quigley et al., 2004). Conversely, Bosi et al. (2001) reported lower ileal CP digestibility in early-weaned pigs fed SDAP compared with hydrolyzed casein. In our present study, pigs fed SDPP and SDCP had improved ATTD of CP, EE, Ca, and ash and decreased diarrhea incidence, which indicated that greater nutrient digestibility of SDPP and SDCP may related to the improved intestinal digestive and absorptive functions. Early weaning was commonly associated with a reduction in villous height and an increase in crypt depth, which generally contributed to the poor performance (Pluske et al., 1997). Montagne et al. (2003) reported that the ratio of ratio of villus height to crypt depth was an important parameter to evaluate the nutrient digestion and absorption capacity. In the present study, pigs in the SDCP group had greater villous length and the ratio of ratio of villus height to crypt depth in duodenum and jejunum and less crypt depth in jejunum compared with pigs in the CON group, and no significant difference was observed between the SDCP and SDPP groups on intestinal morphology. Similarly, previous studies also reported that small intestinal morphology was improved in pigs fed SDAP (Owusu-Asiedu et al., 2003; Gao et al., 2011). Conversely, others showed that no trophic effect on small intestinal morphology of weaning pigs fed SDAP (Van Dijk et al., 2002; Nofrarías et al., 2007). Furthermore, we concluded that the increased feed intakes induced by SDPP and SDCP were related to an improvement of intestinal health status. At present, pigs fed SDCP and SDPP showed a greater villous height, which was in accordance with Pluske et al. (1997), who found a linear relationship between DMI and villous height. On the other hand, higher growth performance and ATTD of nutrients inversely supported the greater intestinal morphology. Different results may be due to the differences in SDAP addition level, housing environment (conventional or experimental), diet composition, age of weaning, and sample measurement. The enzyme activities in the digestive tract were considered important factors that would influence intestinal health and nutrient digestibility (Yang et al., 2010). Van Dijk et al. (2002) found that weaning increased enterocyte mitotic activity at d 4 and 7 after weaning compared with unweaned pigs. An improved enterocyte mitotic activity resulted in an increased number of immature enterocytes, which led to an immature digestive and absorptive function (Wild and Murray, 1992). Immature enterocytes had less brush-border enzyme activities than mature enterocyte (Smith, 1985). The activity of brush-border enzymes was a measurement of digestive function of small intestine (Pluske et al., 1997). In our study, pigs in the SDPP, SDPP + SDCP, and SDCP groups had greater activity of maltase in jejunum and no statistically significant difference between the SDCP and SDPP groups. Our results were in accordance with those of Jiang et al. (2000), who reported that pigs fed SDPP tended to have less mitotic activity, which indicated that SDPP may increase the activity of brush-border enzymes. Van Dijk et al. (2002) also reported that no significant difference was detected between SDPP and casein on the activities of lactase, maltase, and sucrase activities in weaning pigs. Meanwhile, greater activities of amylase and trypsin induced by SDPP and SDCP indicated the adaption of dietary changes in protein, fat, or carbohydrates of weaning pigs. Moreover, Garriga et al. (2005) also confirmed that SDAP increased brush-border Na+-coupled glucose and galactose transporter (SGLT1) maximal transport capacity and improved the intestinal capability to absorb D-glucose in rats challenged with Staphylococcus aureus enterotoxin B. Therefore, the increased digestive enzymes activities by SDCP and SDPP may have contributed to the improvement of nutrient digestibility and reduced diarrhea incidence by enhancing pigs' digestive and absorptive function. Diarrhea caused by infectious pathogens is a vital problem in weaning pigs and possibly leads to mortality (Wang et al., 2011). The populations and species of microbes in the gastrointestinal tract affected the nutrient digestibility and gut health conditions (Yang et al., 2010). Lactobacilli are considered beneficial gut bacteria, whereas E. coli are often considered harmful intestinal bacteria, which cause gut health problems such as diarrhea. The addition of SDAP has been reported to reduce diarrhea incidence and improve gut health in pigs (Van der Peet-Schwering and Binnendijk, 1995). In our study, SDCP significantly reduced the populations of E. coli in ileal and cecal digesta, which may contributed to the reduced diarrhea. Bosi et al. (2001) reported that SDAP decreased the mortality and the K88-specific IgA in the saliva of the pigs challenged with 1010 cfu of E. coli K88, showing a protective mechanism of SDAP against the challenge, which was in accordance with our results. Torrallardona et al. (2003) reported that addition of SDAP increased the number of lactobacilli but had no significant effect on the number of E. coli, which indicated that different SDAP had different modes of action. It was inferred that SDAP may have an antimicrobial effect through its immunoglobulin fraction (Gatnau et al., 1995) or by preventing the adhesion of pathogenic bacteria onto the gastrointestinal mucosa (Touchette et al., 2002). Balan et al. (2013) also showed that dietary supplementation with ovine serum immunoglobulins could change the intestinal environment by a specific enrichment of lactobacilli and reduction of enterobacteria in rat. Moreover, the dramatic reduction in the number of E. coli would reduce the amount of lipopolysaccharide in intestine and blood, which may indirectly relieve intestinal injury and improve the feed intake (Liu et al., 2008). Additionally, a nonspecific protective function of SDAP prevented the adhesion of pathogenic E. coli onto the gastrointestinal mucosa due to the presence of the glycoprotein (Nollet et al., 1999). In conclusion, our results demonstrated that the addition of SDCP in pig diets had effects similar to SDPP. Both improved growth performance, promoted the small intestine morphology, increased digestive enzyme activities, enhanced the ATTD of nutrients, reduced the population of E. coli, and decreased diarrhea incidence. Footnotes 1 This study was supported by a China Pig Modern Industrial Technology System Grant (CARS-36) and Shanghai Genon Biological Product Company, Shanghai, China. LITERATURE CITED AOAC 1995. Official methods of analysis. 16th ed. AOAC Int., Washington, DC. Balan P. Han K.-S. Lawley B. Moughan P. J. 2013. Orally administered ovine serum immunoglobulins modulate the intestinal levels of Lactobacillus and enterobacteria in the growing rat. J. Anim. Sci.  91: 3724– 3732. doi: https://doi.org/10.2527/jas.2012-6028 Google Scholar CrossRef Search ADS PubMed  Bosi P. Han I. K. Jung H. J. Neo K. N. Perini S. Castellazzi A. M. Casini L. Creston D. Gremokolini C. 2001. Effect of different spray dried plasmas on growth, ileal digestibility, nutrient deposition, immunity and health of early-weaned pigs challenged with E. coli K88*. Asian-Australas. J. Anim. Sci.  14: a1138– a1143. Google Scholar CrossRef Search ADS   Chen H. Mao X. B. He J. Yu B. Huang Z. Q. Yu J. Zheng P. Chen D. W. 2013. Dietary fibre affects intestinal mucosal barrier function and regulates intestinal bacteria in weaning piglets. Br. J. Nutr.  110: 1837– 1848. doi: https://doi.org/10.1017/S0007114513001293 Google Scholar CrossRef Search ADS PubMed  Floch M. H. 2011. Intestinal microecology in health and wellness. J. Clin. Gastroenterol.  45: S108– S110. doi: https://doi.org/10.1097/MCG.0b013e3182309276 Google Scholar CrossRef Search ADS PubMed  Gao Y. Y. Jiang Z. Y. Lin Y. C. Zheng C. T. Zhou G. L. Chen F. 2011. Effects of spray-dried animal plasma on serous and intestinal redox status and cytokines of neonatal piglets. J. Anim. Sci.  89: 150– 157. doi: https://doi.org/10.2527/jas.2010-2967 Google Scholar CrossRef Search ADS PubMed  Garriga C. Pérez-Bosque A. Amat C. Campbell J. M. Russell L. Polo J. Planas J. M. Moretó M. 2005. Spray-dried porcine plasma reduces the effects of staphylococcal enterotoxin B on glucose transport in rat intestine. J. Nutr.  135: 1653– 1658. Google Scholar CrossRef Search ADS PubMed  Gatnau R. Cain C. Drew M. Zimmerman D. R. 1995. Mode of action of spray-dried porcine plasma in weaning pigs. J. Anim. Sci.  73( Suppl. 1): 82 ( Abstr). Han G. Q. Xiang Z. T. Yu B. Chen D. W. Qi H. W. Mao X. B. Chen H. Mao Q. Huang Z. Q. 2012. Effects of different starch sources on Bacillus spp. in intestinal tract and expression of intestinal development related genes of weanling piglets. Mol. Biol. Rep.  39: 1869– 1876. doi: https://doi.org/10.1007/s11033-011-0932-x Google Scholar CrossRef Search ADS PubMed  Jiang R. Chang X. Stoll B. Fan M. Z. Arthington J. Weaver E. Campbell J. Burrin D. G. 2000. Dietary plasma protein reduces small intestinal growth and lamina propria cell density in early weaned pigs. J. Nutr.  130: 21– 26. Google Scholar CrossRef Search ADS PubMed  Kats L. J. Nelssen J. L. Tokach M. D. Goodband R. D. Hansen J. A. Laurin J. L. 1994. The effect of spray-dried porcine plasma on growth performance in the early-weaned pig. J. Anim. Sci.  72: 2075– 2081. Google Scholar CrossRef Search ADS PubMed  Kim J. Hansen C. F. Mullan B. P. Pluske J. R. 2012. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol.  173: 3– 16. doi: https://doi.org/10.1016/j.anifeedsci.2011.12.022 Google Scholar CrossRef Search ADS   Kluess J. Schoenhusen U. Souffrant W. B. Jones P. H. Miller B. G. 2010. Impact of diet composition on ileal digestibility and small intestinal morphology in early-weaned pigs fitted with a T-cannula. Animal  4: 586– 594. doi: https://doi.org/10.1017/S1751731109991455 Google Scholar CrossRef Search ADS PubMed  Leonard S. G. Sweeney T. Bahar B. Lynch B. P. O'Doherty J. V. 2011. Effects of dietary seaweed extract supplementation in sows and post-weaned pigs on performance, intestinal morphology, intestinal microflora and immune status. Br. J. Nutr.  106: 688– 699. doi: https://doi.org/10.1017/S0007114511000997 Google Scholar CrossRef Search ADS PubMed  Liu Y. Huang J. Hou Y. Zhu H. Zhao S. Ding B. Yin Y. Yi G. Shi J. Fan W. 2008. Dietary arginine supplementation alleviates intestinal mucosal disruption induced by Escherichia coli lipopolysaccharide in weaned pigs. Br. J. Nutr.  100: 552– 560. doi: https://doi.org/10.1017/S0007114508911612 Google Scholar CrossRef Search ADS PubMed  Mateo C. D. Stein H. H. 2007. Apparent and standardized ileal digestibility of amino acids in yeast extract and spray dried plasma protein by weanling pigs. Can. J. Anim. Sci.  87: 381– 383. doi: https://doi.org/10.4141/CJAS06011 Google Scholar CrossRef Search ADS   Montagne L. Pluske J. R. Hampson D. J. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim. Feed Sci. Technol.  108: 95– 117. doi: https://doi.org/10.1016/S0377-8401(03)00163-9 Google Scholar CrossRef Search ADS   Nofrarías M. Manzanilla E. G. Pujols J. Gibert X. Majó N. Segalés J. Gasa J. 2007. Spray-dried porcine plasma affects intestinal morphology and immune cell subsets of weaned pigs. Livest. Sci.  108: 299– 302. doi: https://doi.org/10.1016/j.livsci.2007.01.103 Google Scholar CrossRef Search ADS   Nollet H. Deprez P. Van Driessche E. Muylle E. 1999. Protection of just weaned pigs against infection with F18+Escherichia coli by non-immune plasma powder. Vet. Microbiol.  65: 37– 45. doi: https://doi.org/10.1016/S0378-1135(98)00282-X Google Scholar CrossRef Search ADS PubMed  NRC 2012. Nutrient requirements of swine, 11th rev. ed. Natl. Acad. Press, Washington, DC. Owusu-Asiedu A. Nyachoti C. M. Marquardt R. R. 2003. Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody, zinc oxide, fumaric acid, or antibiotic. J. Anim. Sci.  81: 1790– 1798. Google Scholar CrossRef Search ADS PubMed  Peace R. M. Campbell J. Polo J. Crenshaw J. Russell L. Moeser A. 2011. Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs. J. Nutr.  141: 1312– 1317. doi: https://doi.org/10.3945/jn.110.136796 Google Scholar CrossRef Search ADS PubMed  Pendergraft J. S. Hancock J. D. Hines R. H. Mills C. G. Burnham L. L. 1993. Effects of wheat gluten and plasma protein on growth performance and digestibility of nutrients in nursery pigs. In: 1993 Kansas State Univ. Swine Day Report,  Kansas State Univ., Manhattan. p. 58– 62. Google Scholar CrossRef Search ADS   Pierce J. L. Cromwell G. L. Lindemann M. D. Russell L. E. Weaver E. M. 2005. Effects of spray-dried animal plasma and immunoglobulins on performance of early weaned pigs. J. Anim. Sci.  83: 2876– 2885. Google Scholar CrossRef Search ADS PubMed  Pluske J. R. Hampson D. J. Williams I. H. 1997. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci.  51: 215– 236. doi: https://doi.org/10.1016/S0301-6226(97)00057-2 Google Scholar CrossRef Search ADS   Qi H. W. 2011. Effects of different protein sources on intestinal microflora and intestinal health of weaned piglets. PhD Diss., Sichuan Agricultural University, Ya'an, China. Qi H. W. Xiang Z. T. Han G. Q. Yu B. Huang Z. Q. Chen D. W. 2013. Effects of different dietary protein sources on cecal microflora in rats. Afr. J. Biotechnol.  10: 3704– 3708. Quigley J. D. Campbell J. M. Polo J. Russell L. E. 2004. Effects of spray-dried animal plasma on intake and apparent digestibility in dogs. J. Anim. Sci.  82: 1685– 1692. Google Scholar CrossRef Search ADS PubMed  Shen Y. B. Piao X. S. Kim S. W. Wang L. Liu P. Yoon I. Zhen Y. G. 2009. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J. Anim. Sci.  87: 2614– 2624. doi: https://doi.org/10.2527/jas.2008-1512 Google Scholar CrossRef Search ADS PubMed  Smith M. W. 1985. Expression of digestive and absorptive function in differentiating enterocytes. Annu. Rev. Physiol.  47: 247– 260. doi: https://doi.org/10.1146/annurev.ph.47.030185.001335 Google Scholar CrossRef Search ADS PubMed  Stahly T. 1996. Impact of immune system activation on growth and optimal dietary regimens of pigs. In: Garnsworthy P. C. Wiseman J. Haresign W. editors, Recent advances in animal nutrition.  Nottingham Univ. Press, Nottingham, UK. p. 197– 206. Torrallardona D. Conde M. R. Badiola I. Polo J. Brufau J. 2003. Effect of fishmeal replacement with spray-dried animal plasma and colistin on intestinal structure, intestinal microbiology, and performance of weanling pigs challenged with Escherichia coli K99. J. Anim. Sci.  81: 1220– 1226. Google Scholar CrossRef Search ADS PubMed  Touchette K. J. Carroll J. A. Allee G. L. Matteri R. L. Dyer C. J. Beausang L. A. Zannelli M. E. 2002. Effect of spray-dried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. J. Anim. Sci.  80: 494– 501. Google Scholar CrossRef Search ADS PubMed  Van der Peet-Schwering C. M. C. Binnendijk G. P. 1995. The effect of spray-dried porcine plasma in diets with different protein sources on the performance of weanling piglets. In: Report P1. Praktijkkonder-zoek Varkenshouderij,  Rosmalen, The Netherlands. p. 137. Van der Peet-Schwering C. M. C. Binnendijk G. P. 1997. Spray-dried porcine and bovine plasma and animal and plant protein in diets of weaned piglets. In: Report P1. Praktijkkonder-zoek Varkenshouderij,  Rosmalen, The Netherlands. p. 185. Van Dijk A. J. Everts H. Nabuurs M. J. A. Margry R. J. C. F. Beynen A. C. 2001a. Growth performance of weanling pigs fed spray-dried animal plasma: A review. Livest. Prod. Sci.  68: 263– 274. doi: https://doi.org/10.1016/S0301-6226(00)00229-3 Google Scholar CrossRef Search ADS   Van Dijk A. J. Niewold T. A. Margry R. J. van den Hoven S. G. Nabuurs M. J. Stockhofe-Zurwieden N. Beynen A. C. 2001b. Small intestinal morphology in weaned piglets fed a diet containing spray-dried porcine plasma. Res. Vet. Sci.  71: 17– 22. doi: https://doi.org/10.1053/rvsc.2001.0478 Google Scholar CrossRef Search ADS   Van Dijk A. J. Niewold T. A. Nabuurs M. J. Van Hees J. De Bot P. Stockhofe-Zurwieden N. Ubbink-Blanksma M. Beynen A. C. 2002. Small intestinal morphology and disaccharidase activities in early-weaned piglets fed a diet containing spray-dried porcine plasma. J. Vet. Med., A  49: 81– 86. doi: https://doi.org/10.1046/j.1439-0442.2002.jv415.x Google Scholar CrossRef Search ADS   Wang D. Piao X. S. Zeng Z. K. Lu T. Zhang Q. Li P. F. Xue L. F. Kim S. W. 2011. Effects of keratinase on performance, nutrient utilization, intestinal morphology, intestinal ecology and inflammatory response of weaned piglets fed diets with different levels of protein. Asian-Australas. J. Anim. Sci.  24: 1718– 1728. Wild G. E. Murray D. 1992. Alterations in quantitative distribution of Na, K-ATPase activity along crypt-villus axis in animal model of malabsorption characterized by hyperproliferative crypt cytokinetics. Dig. Dis. Sci.  37: 417– 425. doi: https://doi.org/10.1007/BF01307737 Google Scholar CrossRef Search ADS PubMed  Williams C. H. David D. J. Iismaa O. 1962. The determination of chromic oxide in faeces sample by atomic absorption spectrophotometry. J. Agric. Sci.  59: 381– 385. doi: https://doi.org/10.1017/S002185960001546X Google Scholar CrossRef Search ADS   Williams N. Stahly T. S. Zimmerman D. R. 1997. Effect of chronic immune system activation on the rate, efficiency, and composition of growth and lysine needs of pigs fed from 6 to 27 kg. J. Anim. Sci.  75: 2463– 2471. Google Scholar CrossRef Search ADS PubMed  Wittish L. M. McElroy A. P. Harper A. F. Estienne M. J. 2014. Performance and physiology of pigs administered spray-dried plasma protein during the late suckling period and transported after weaning. J. Anim. Sci.  92: 4390– 4399. doi: https://doi.org/10.2527/jas.2014-7738 Google Scholar CrossRef Search ADS PubMed  Xiang Z. T. Qi H. W. Han G. Q. Liu J. B. Huang Z. Q. Yu B. Chen D. W. 2011. Real-time TaqMan polymerase chain reaction to quantify the effects of different sources of dietary starch on Bifidobacterium in the intestinal tract of piglets. Afr. J. Biotechnol.  10: 5059– 5067. doi: https://doi.org/10.5897/AJB11.242 Google Scholar CrossRef Search ADS   Yang Y. Kiarie E. Slominski B. A. Brûlé-Babel A. Nyachoti C. M. 2010. Amino acid and fiber digestibility, intestinal bacterial profile, and enzyme activity in growing pigs fed dried distillers grains with solubles-based diets. J. Anim. Sci.  88: 3304– 3312. doi: https://doi.org/10.2527/jas.2009-2318 Google Scholar CrossRef Search ADS PubMed  American Society of Animal Science TI - Spray-dried chicken plasma improves intestinal digestive function and regulates intestinal selected microflora in weaning piglets JO - Journal of Animal Science DO - 10.2527/jas.2014-8820 DA - 2015-06-01 UR - https://www.deepdyve.com/lp/oxford-university-press/spray-dried-chicken-plasma-improves-intestinal-digestive-function-and-csRWeaChDS SP - 2967 EP - 2976 VL - 93 IS - 6 DP - DeepDyve ER -