TY - JOUR AU - Hooley, Christopher AB - Abstract Let $$f(x_1,\ldots ,x_8)$$ be a cubic form in eight variables with rational integral coefficients and non-zero discriminant. Then, assuming a Riemann hypothesis for certain Hasse–Weil $$L$$-functions, we prove that the indeterminate equation $$f(x_1,\ldots ,x_8)=0$$ has a non-zero solution provided that the form satisfy the necessary condition that it have a non-trivial zero in every $$p$$-adic field $${\Bbb {Q}}_p$$. This extends the earlier unconditional results due to Heath–Brown and the author for cubic forms in ten and nine variables. 1. Introduction Homogeneous cubic indeterminate equations   \[f( {{{\bf{{l}}}}}) = f( {{l}_{1}, \dotsc , {l}_{{n}}}) = 0; \quad {{{\bf{{l}}}}} \neq 0\] (1) have been the subject of not a little study, the main purpose of which has been to establish solubility for values of $$n$$ down to good limits when $$f( {{{\bf{{x}}}}})$$ satisfies the obvious necessary condition that it have a non-trivial zero in every $$p$$-adic field $${\Bbb {Q}}_p$$. Being concerned in this memoir with the largely unexplored case where $$f( {{{\bf{{x}}}}})$$ is an octonary form, we therefore begin with a brief resumé of previous work and point out that the proviso of $$p$$-adic solubility becomes superfluous in much of the discussion because it is always met whenever $$n \geq 10$$. Following work by Lewis and Birch, Davenport provided values of $$n$$ in a series of papers that culminated in [2], in which he proved solubility for any form $$f( {{{\bf{{x}}}}})$$ when $$n \geq 16$$; recently, however, this value of $$n$$ has been reduced to $$14$$ by Heath-Brown through an improvement of Davenport's method [7]. But, in the meanwhile, Heath-Brown had turned his attention to non-singular forms (that is, those with non-vanishing discriminants) and, by using the Hardy–Littlewood circle method with Kloosterman refinement, showed that the value $$n=10$$ was attributable to such forms. In that paper ([4], referred to as Ha in what follows (a table giving the designations of certain references is given at the end)), in which trigonometrical sums of the type   \[Q_r ( {{{\bf{{m}}}}},k) = \sum _{\substack {0 p_0$$ and especially when we consider the reduction $$f( {{{\bf{{x}}}}}), {\hbox{mod}\, {p}}$$, of $$f( {{{\bf{{x}}}}})$$ that is the defining form for the reduction $$ {{\cal {{{V}}}}}_p$$ of $$ {{\cal {{{V}}}}}$$. First, since $$D \neq 0$$, for $$p >p_0$$ we have that $$D \not\equiv 0, {\hbox{mod}\, {p}}$$, and that therefore $$ {{\cal {{{V}}}}}_p$$ is non-singular; also by interpreting (3) to the modulus $$p$$ or as a set of equations over $${\Bbb {F}}_p$$ when $$ {{{\bf{{u}}}}}$$ is a vector with components in $${\Bbb {F}}_p$$, we see that the counterpart of the original $$F( {{{\bf{{u}}}}})$$ reached through the elimination process can be written as $$F( {{{\bf{{u}}}}}), {\hbox{mod}\, {p}}$$, or $$F( {{{\bf{{u}}}}})$$ according to our notational conventions, or, in other words, the dual of $$ {{\cal {{{V}}}}}_p$$ is $$( {{\cal {{{V}}}}_{{\mathrm {dual}}}})_p$$. This implies then, in particular, that $$ {{\cal {{{V}}}}}_p ( {{{\bf{{m}}}}}) = {{\cal {{{V}}}}}_p \cap ( {{{\bf{{m}}}}} {{{\bf{{x}}}}} = 0)$$ is singular if and only if $$F( {{{\bf{{m}}}}}) \equiv 0, {\hbox{mod}\, {p}}$$, the previous comments about the number of singularities in a singular section being still applicable. Finally, just as the known absolute irreducibility of $$F( {{{\bf{{u}}}}})$$ is established, so can that of it over $${\Bbb {F}}_p$$ for $$p >p_0$$ be confirmed, although alternatively the latter can be deduced from the former by appealing to Noether's criterion for the absolute irreducibility of forms. Consequently, the singular locus of the dual of $$ {{\cal {{{V}}}}}_p$$ has dimension (projective) not more than $$n-3$$. (In fact it is known that the dimension is exactly $$n-3$$. See the beginning paragraph of §  11.) Another property of the matrix $$ {{{\bf{{M}}}}} ( {{{\bf{{x}}}}})$$ on which we shall draw is stated in the following lemma: Lemma 2 Let$$ {{\cal {{{V}}}}}_{r,p}^{ {\dagger } }$$for$$p >p_0$$be the affine variety defined over$${\Bbb {F}}_p$$consisting of the points$$ {{{\bf{{x}}}}}$$for which$$f( {{{\bf{{x}}}}}) = 0$$and the determinantal rank of$$ {{{\bf{{M}}}}} ( {{{\bf{{x}}}}})$$does not exceed$$r$$. Then  \[\dim \, {{\cal {{{V}}}}}_{r,p}^{ {\dagger } } \leq r-1\] (6)for$$r=1,$$$$n-1,$$and$$n,$$while  \[\dim \, {{\cal {{{V}}}}}_{r,p}^{ {\dagger } } \leq r\] (7)otherwise. That (6) for $$r=n-1$$, $$n$$ and (7) for $$1 \leq r \leq n-2$$ are true is clear from the proof of Lemma 36 in Ic, since the method there is unaffected from the change of $$ {{\cal {{{V}}}}}$$ as a hypersurface with isolated double points to one that is non-singular. We therefore only need to show that $$\dim {{\cal {{{V}}}}}_{r,p}^{ {\dagger } } =1$$ is impossible when $$r=1$$. If the opposite were possible, then there would be a point $$ {{{\bf{{a}}}}}$$ (corresponding to a one-dimensional ray) for which $$f( {{{\bf{{a}}}}}) = 0$$ and $${\mathrm {rank}} {{{\bf{{M}}}}} ( {{{\bf{{a}}}}}) \leq 1$$, wherefore there would be a unimodular transformation of coordinates that takes in turn $$ {{{\bf{{a}}}}}$$ into $$(1,0, \ldots , 0)$$, $$f( {{{\bf{{x}}}}})$$ into a non-singular form   \[f^{(1)} ( {{{\bf{{y}}}}}) = \sum _{{1 \leq i,j,k \leq n}} c_{i,j,k}^{(1)} y_i y_j y_k,\] and the covariant matrix $$ {{{\bf{{M}}}}} ( {{{\bf{{x}}}}})$$ into the Hessian matrix $$ {{{\bf{{M}}}}} ^{(1)} ( {{{\bf{{y}}}}})$$ of $$f^{(1)} ( {{{\bf{{y}}}}})$$. Hence, since $$f^{(1)} (1,0, \ldots , 0) = 0$$, we would infer that $$c_{1,1,1}^{(1)} = 0$$ and then from (2) that   \[\frac {1}{6} {{{\bf{{M}}}}} ^{(1)} (1,0, \ldots , 0) = [{c_{1,j,k}^{(1)}}] \quad (1 \leq j,k \leq n)\] is a symmetric matrix of rank not exceeding $$1$$ whose leading element is zero. Forming the symmetric minor of order $$2$$ from this matrix by taking the constituents $$c_{1,1,1}^{(1)}$$, $$c_{1,1,k}^{(1)}$$, $$c_{1,k,1}^{(1)}$$, and $$c_{1,k,k}^{(1)}$$, we deduce that   \[c_{1,1,1}^{(1)} c_{1,k,k}^{(1)} - (c_{1,1,k}^{(1)})^{2} = - (c_{1,1,k}^{(1)})^{2} = 0\] and hence that all the coefficients in $$f^{(1)} ( {{{\bf{{y}}}}})$$ having at least two subscripts equal to $$1$$ are zero. Consequently, we reach the impossible conclusion that $$f^{(1)} ( {{{\bf{{y}}}}})$$ would be a singular form of the shape   \[y_1 Q(y_2, \ldots , y_n) +C(y_2, \ldots , y_n),\] the proof of the lemma being therefore complete. We should add the comment that, if, as seems likely, (6) be actually true for all values of $$r$$ between $$1$$ and $$n$$, then certain aspects of the coming treatment could be significantly simplified. But the proof of this supposition, if true, would seem to be difficult and the most we have achieved in this direction is to establish it for a generic cubic form, that is, one whose coefficients do not satisfy any of a finite number of polynomial equations. This can be done, for example, by confirming that the supposition is vindicated when $$f( {{{\bf{{x}}}}})$$ is a diagonal form. 4. The initial analysis: the application of the Heath-Brown form of the circle method To bring in the analytical method on the assumption of (5) we let   \[\Gamma ( {{{\bf{{t}}}}}) = \prod _{{1 \leq i \leq n}} \gamma (t_i),\] where   \[\gamma (t) = \left\{ \begin {array}{ll}e^{-2 / (1-t^2)} & {\mathrm {if\ }} |{t}| <1, \\ 0 & {\mathrm {if\ }} |{t}| \geq 1, \end {array}\right .\] and then use the discussion in the previous section to choose a real fixed point $$ {{{\bf{{a}}}}}$$ on $$ {{\cal {{{V}}}}} ^{ {\dagger } }$$ that is a sufficiently large scalar multiple $$\lambda {{{\bf{{a}}}}} ^{\prime }$$ of a given real point $$ {{{\bf{{a}}}}} ^{\prime }$$ on $$ {{\cal {{{V}}}}} ^{ {\dagger } }$$ such that $$H( {{{\bf{{a}}}}} ^{\prime }) \neq 0$$. Chosen for their smoothing effects, these entities appear in the sum   \[\Upsilon (X) = \sum _{{f ( {{{\bf{{l}}}}}) = 0}} \Gamma \left({\frac { {{{\bf{{l}}}}} }{X} - {{{\bf{{a}}}}} }\right)\] that counts with a certain weight the number of solutions of the indeterminate equation in (1) in a large hyperparallelepiped with sides of length $$2X$$. This is an example of the sums $$N^{(0)} (F, w)$$ that are the subject of Theorem 2 of Hb and is therefore determined by   \[\Upsilon (X) = \frac {c_N}{N^2} \sum _{ {{{\bf{{m}}}}} } \sum _{k=1}^{\infty } \frac {Q ( {{{\bf{{m}}}}}, k)}{k^n} I_{k}^{(0)} ( {{{\bf{{m}}}}})\] (8) for any value of $$N$$ exceeding $$1,$$ where $$Q ( {{{\bf{{m}}}}}, k)$$ is the important trigonometrical sum   \[\sum _{\substack {0 A_1 N\] (13) by Lemma 4 of Hb because $$f ( {{{\bf{{t}}}}})$$ is bounded over the region of integration. Therefore,   \[\begin {array}{rl} \Upsilon (X) & \geq \frac {1}{2} X^{n-3} \sum _{ {{{\bf{{m}}}}} } \sum _{k \leq A_1 N} \frac {Q ( {{{\bf{{m}}}}}, k)}{k^n} I_{k} ( {{{\bf{{m}}}}}) \\ & = \frac {1}{2} X^{n-3} \left ( \sum _{k \leq A_1 N} \frac {Q (0, k)}{k^n} I_{k} (0) + \sum _{F( {{{\bf{{m}}}}}) \neq 0} \sum _{k \leq A_1 N} \frac {Q ( {{{\bf{{m}}}}}, k)}{k^n} I_{k} ( {{{\bf{{m}}}}}) \right .\\ & \quad \left . + \sum _{\substack { {{{\bf{{m}}}}} \neq 0 \\ {\mathrm {grad}} F( {{{\bf{{m}}}}}) = 0}} \sum _{k \leq A_1 N} \frac {Q ( {{{\bf{{m}}}}}, k)}{k^n} I_{k} ( {{{\bf{{m}}}}}) \right )\\ & = \frac {1}{2} X^{n-3} \{\Upsilon _1 (X) + \Upsilon _2 (X) + \Upsilon _3 (X)\} \quad {\mathrm {say}}, \end {array}\] (14) in virtue of our assumption (5). The most important term in this inequality is $$\Upsilon _1 (X)$$ in the sense that it dominates the right-hand side, although from our point of view the other two terms are the most significant because of the difficulties encountered in their estimation. We therefore focus on $$\Upsilon _2 (X)$$ and $$\Upsilon _3 (X)$$ for the better part of the memoir, leaving the comparatively simple treatment of $$\Upsilon _1 (X)$$ to the end. Moreover, in treating the former sums we shall direct our attention for the most part on their segments $$\Psi _i (Y) = \Psi _i (Y,X)$$ that correspond to those values of $$k$$ in the summations for which $$\frac {1}{2} Y 1$$ throughout the region of integration in $$I_{k} ( {{{\bf{{m}}}}})$$, the measure of points within for which $$|{f( {{{\bf{{t}}}}})}| \leq R$$ being therefore $$O(R)$$. Hence,   \[|{I_{k} ( {{{\bf{{m}}}}})}| \leq \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } |{h(r,f( {{{\bf{{t}}}}}))}| {d} {{{\bf{{t}}}}} = O(1) +O(1) + {O \left({{r \int _{{\substack { |{f( {{{\bf{{t}}}}})}| \geq r \\ ||{ {{{\bf{{t}}}}} - {{{\bf{{a}}}}} }|| \leq 1}}} \frac { {d} {{{\bf{{t}}}}} }{ |{f( {{{\bf{{t}}}}})}| ^2}}}\right)},\] (20) in which equation, by setting   \[g(u) = \int _{{\substack { |{f( {{{\bf{{t}}}}})}| \leq u \\ ||{ {{{\bf{{t}}}}} - {{{\bf{{a}}}}} }|| \leq 1}}} {d} {{{\bf{{t}}}}} = O({u}),\] we see that the integral on the right is equal to   \[\int _{r}^{\infty } \frac { {d} g(u)}{u^2} = {}^{\infty }_{r}{ \left [{{\frac {g(u)}{u^2}}}\right ] } +2 \int _{r}^{\infty } \frac {g(u) \, {d} u}{u^3} = {O \left({{\frac {1}{r}}}\right)} + {O \left({{\frac {1}{r}}}\right)} = {O \left({{\frac {1}{r}}}\right)}.\] The first part of the lemma then follows. Also   \[\begin {array}{rl} k \frac{\partial I_{k} ( {{{\bf{{m}}}}})}{\partial k} & = \frac {k}{N} \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \Gamma ( { {{{\bf{{t}}}}} - {{{\bf{{a}}}}} }) \frac {\partial h(r,f( {{{\bf{{t}}}}}))}{\partial r} e^{-2 \pi i X {{{\bf{{m}}}}} {{{\bf{{t}}}}} / k} \, {d} {{{\bf{{t}}}}} \\ & \quad + \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \left({ \frac {2 \pi i X {{{\bf{{m}}}}} {{{\bf{{t}}}}} }{k}}\right) \Gamma ( { {{{\bf{{t}}}}} - {{{\bf{{a}}}}} }) h(r,f( {{{\bf{{t}}}}})) e^{-2 \pi i X {{{\bf{{m}}}}} {{{\bf{{t}}}}} / k} \, {d} {{{\bf{{t}}}}} \\ & = r I_{k}^{ * } ( {{{\bf{{m}}}}}) +I_{k}^{ * * } ( {{{\bf{{m}}}}}) \quad {\mathrm {say}}, \end {array}\] (21) which equation may be expressed as   \[ {O \left({{r \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \left| {\frac {\partial h(r,f( {{{\bf{{t}}}}}))}{\partial r}}\right| {d} {{{\bf{{t}}}}} }}\right)} + {O \left({{\frac {X ||{ {{{\bf{{m}}}}}||}} {k} \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } |{h(r,f( {{{\bf{{t}}}}}))}| {d} {{{\bf{{t}}}}} }}\right)}.\] Here,   \[I_{k}^{ * * } ( {{{\bf{{m}}}}}) = {O \left({{\frac {X ||{ {{{\bf{{m}}}}} } ||}{k}}}\right)} = O(1)\] by the estimations connected with (20) above, while   \[I_{k}^{ * } ( {{{\bf{{m}}}}}) = {O \left({{\frac {r}{r}}}\right)} = O(1)\] by using (19) instead of (18) within the method used to establish the first part of the lemma; the proof of the second part of the lemma is therefore complete. The next properties we require of $$I_{k} ( {{{\bf{{m}}}}})$$ lie deeper than Lemma 3 and are established with the aid of the following estimates for certain integrals containing exponential sums that were partially obtained in Ib. Lemma 4 Let  \[H (u, {{{\bf{{v}}}}}_{1}) = \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) \,e^{2 \pi i (u f( {{{\bf{{t}}}}}) + {{{\bf{{v}}}}}_{1} {{{\bf{{t}}}}})} {d} {{{\bf{{t}}}}}\]and  \[H_1 (u, {{{\bf{{v}}}}}_{1}) = \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \left({{\sum _{1 \leq i \leq n}} t_i \frac{\partial \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}})}{\partial t_i}}\right) e^{2 \pi i (u f( {{{\bf{{t}}}}}) + {{{\bf{{v}}}}}_{1} {{{\bf{{t}}}}})} {d} {{{\bf{{t}}}}}.\]Then  \[H (u, {{{\bf{{v}}}}}_{1}), H_1 (u, {{{\bf{{v}}}}}_{1}) = \left\{ \begin {array}{ll}O({ |{u}| ^{- ({1}/{2})n} \log ^{n} 2 |{u}| }) & {\mathrm {if\ }} |{u}| \geq 1, \\ O({e^{- A_2 ||{ {{{\bf{{v}}}}}_{1}}||^{{1}/{2}}}}) & {\mathrm {if\ }} ||{ {{{\bf{{v}}}}}_{1}}|| >A_3 |{u}|, \\ O(1) & {\mathrm {always}}, \end {array}\right .\]where$$A_3$$can be taken to exceed$$1$$. The bounds for $$H (u, {{{\bf{{v}}}}}_{1})$$ are given in Lemma 7 of Ib, while those for $$H_1 (u, {{{\bf{{v}}}}}_{1})$$ are obtained in a similar manner. We shall use Fourier's integral theorem to express the functions   \[\left. h(r, f( {{{\bf{{t}}}}})), \frac{\partial h(r, f( {{{\bf{{t}}}}}))}{\partial r},y \frac{\partial h(r,y)}{\partial y}\right|_{y = f( {{{\bf{{t}}}}})}\] in terms of Fourier transforms for points $$ {{{\bf{{t}}}}}$$ within the region $$||{ {{{\bf{{t}}}}} - {{{\bf{{a}}}}} }|| \leq 1$$. But, since the nature of $$h(r,y)$$ and its partial derivatives is such that their transforms are divergent when these are taken with respect to all $$y$$, we replace $$h(r,y)$$ by an infinitely differentiable function $$h_1 (r,y)$$ that equals $$h(r,y)$$ for values of $$y$$ that include those taken by $$f( {{{\bf{{t}}}}})$$ in the above-mentioned region of $$ {{{\bf{{t}}}}}$$ but that vanishes for all sufficiently large $$y$$. To be precise, since $$|{f( {{{\bf{{t}}}}})}| A +1$$. Hence, by (22),   \[p_1 (u) = O \left\{\frac {1}{u^{M}} \int _{0}^{A+1} \left(r + \frac {1}{r^{M+1}} {{\min}^{{2}}} \ \left(1, \frac {r}{y}\right)\right) \ dy\right\} = O \left(\frac {1}{(r u)^{M}}\right)\] (25) for $$u \neq 0$$, while also   \[p_1 (u) = O \left(\int _{-A-1}^{A+1} |{h_1 (r,y)}| {d} y\right) = O \left\{ \int _{0}^{A+1} \left(r + \frac {1}{r} {{\min}^{{2}}} \ \left(1, \frac {r}{y}\right)\right)dy\right\} = O(1)\] (26) always. In like manner the respective Fourier transforms $$p_2 (u)$$ and $$p_3 (u)$$ of $$r {\partial {^{{}}}{h_1 (r,y)} / \partial {{r}^{{}}}}$$ and $$y {\partial {^{{}}}{h_1 (r,y)} / \partial {{y}^{{}}}}$$ are subject to the bounds in the right sides of (25) and (26) because of (23) and (24). We are ready to supplement Lemma 3 by more delicate estimates, to which end it is temporarily convenient to suppose that   \[||{ {{{\bf{{v}}}}} }|| >A_3\] (27) in contrast with (16) where $$A = A_3$$ in the statement of Lemma 4. Then, since   \[h_1 (r,y) = \int _{-\infty }^{\infty } p_1 (u) \,e^{- 2 \pi i u y} \, {d} u\] and $$h (r, f( {{{\bf{{t}}}}})) = h_1 (r, f( {{{\bf{{t}}}}}))$$ within the region of integration in $$I_{k} ( {{{\bf{{m}}}}})$$, we have   \[\begin {array}{rl} I_{k} ( {{{\bf{{m}}}}}) & = \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) e^{- 2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} } \int _{-\infty }^{\infty } p_1 (u) e^{- 2 \pi i u f( {{{\bf{{t}}}}})} \, {d} u \, {d} {{{\bf{{t}}}}} \\ & = \int _{-\infty }^{\infty } p_1 (u) \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) e^{- 2 \pi i {\{ }u f( {{{\bf{{t}}}}}) + {{{\bf{{v}}}}} {{{\bf{{t}}}}} {\} }} \, {d} {{{\bf{{t}}}}} \, {d} u \\ & = \int _{-\infty }^{\infty } p_1 (u) H(-u, - {{{\bf{{v}}}}}) \, {d} u, \end {array}\] there being two cases to consider according as   \[\frac {1}{r} <\frac {||{ {{{\bf{{v}}}}} }|| }{A_3} \quad {\mathrm {or}}\quad \frac {1}{r} \geq \frac {||{ {{{\bf{{v}}}}} }|| }{A_3}.\] (28) In the former case, since $$A_3^{-1} ||{ {{{\bf{{v}}}}} }|| \geq 1$$ by (27), we have from (25), (26), and Lemma 4 that   \[\begin {array}{rl} I_k ( {{{\bf{{m}}}}}) & = {O \left({{\int _{0}^{A_3^{-1} ||{ {{{\bf{{v}}}}}} ||} e^{- A_2 ||{ {{{\bf{{v}}}}} }||^{{1}/{2}}} {d} v}}\right)} + {O \left({\frac {1}{r^{M}} \int _{A_{3}^{-1} ||{ {{{\bf{{v}}}}} }|| }^{\infty } \frac {\log ^n 2u}{u^{M + ({1}/{2}) n}} {d} u}\right)} \\ & = O(e^{- A ||{ {{{\bf{{v}}}}} }||^{{1}/{2}}}) + {O \left({{\frac {\log ^n 2 ||{ {{{\bf{{v}}}}} }|| }{||{ {{{\bf{{v}}}}} }||^{({1}/{2}) n - 1} \ (r ||{ {{{\bf{{v}}}}} }||)^{M}}}}\right)} \\ & = {O \left({{\frac {\log ^n 2 ||{ {{{\bf{{v}}}}}}||}{|| { {{{\bf{{v}}}}} }||^{({1}/{2}) n - 1} (r ||{ {{{\bf{{v}}}}} }||)^{M}}}}\right)} \end {array}\] (29) for any positive integer $$M$$. But in the latter case   \[\begin {array}{rl} I_k ( {{{\bf{{m}}}}}) & = {O \left({{\int _{0}^{A_3^{-1} ||{ {{{\bf{{v}}}}} } ||} e^{- A_2 ||{ {{{\bf{{v}}}}} }||^{{1}/{2}}} {d} u}}\right)} + {O \left({{\int _{A_3^{-1} ||{ {{{\bf{{v}}}}}}||}^{\infty } \frac {\log ^n 2u}{u^{({1}/{2}) n}} {d} u}}\right)} \\ & = {O \left({{\frac {\log ^n 2 ||{ {{{\bf{{v}}}}} } ||}{||{ {{{\bf{{v}}}}} }||^{({1}/{2}) n - 1}}}}\right)} \end {array}\] (30) by similar reasoning. Here by (17) and the definition of $$ {{{\bf{{v}}}}}$$ in (16) we note that (29) or (30) is apposite for $$||{ {{{\bf{{m}}}}} }|| >A_3 k / X$$ according as $$||{ {{{\bf{{m}}}}} }|| >A_3 N / X$$ or $$||{ {{{\bf{{m}}}}} }|| \leq A_3 N / X$$, although the division between the cases is obviously subject to some latitude. To bound $$k {\partial {^{{}}}{I_k ( {{{\bf{{m}}}}})} / \partial {{k,}^{{}}}}$$ we return to (21), in which the constituent   \[r I_k^{ * } ( {{{\bf{{m}}}}}) = \int _{- \infty }^{\infty } r p_2(u) H(-u, - {{{\bf{{v}}}}}) \, {d} u\] is governed by bounds of type (29) or (30) because the transforms $$p_1(u)$$ and $$r p_2(u)$$ exhibit similar behaviour. On the other hand, to obtain like bounds for the second piece $$I_k^{ * * } ( {{{\bf{{m}}}}})$$ is a matter of some subtlety and depends in part on an artifice discovered by Heath-Brown and used by him in a slightly different context in §8 of Hb. Temporarily writing $$\Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) h(r, f( {{{\bf{{t}}}}}))$$ as $$g( {{{\bf{{t}}}}})$$ in the integrand of $$I_k^{ * * } ( {{{\bf{{m}}}}})$$, we consider   \[{\mathrm {div}} g( {{{\bf{{t}}}}}) e^{- 2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} } {{{\bf{{t}}}}}\] and find that it is   \[(-2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}}) g( {{{\bf{{t}}}}}) e^{-2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} } +n g( {{{\bf{{t}}}}}) e^{-2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} } + ( {{{\bf{{t}}}}}. {\mathrm {grad}} g( {{{\bf{{t}}}}})) e^{-2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} },\] where   \[\begin {array}{rl} {{{\bf{{t}}}}}. {\mathrm {grad}} g( {{{\bf{{t}}}}}) & = ( {{{\bf{{t}}}}}. {\mathrm {grad}} \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}})) h(r, f( {{{\bf{{t}}}}})) + \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) {{{\bf{{t}}}}}. {\mathrm {grad}} f( {{{\bf{{t}}}}}) \left.\frac{\partial h(r,y)}{\partial y}\right|_{y = f( {{{\bf{{t}}}}})} \\ & = ( {{{\bf{{t}}}}}. {\mathrm {grad}} \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}})) h(r, f( {{{\bf{{t}}}}})) +3 \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) y \left. \frac{\partial h(r,y)}{\partial y}\right|_{y = f( {{{\bf{{t}}}}})} \end {array}\] since $$f( {{{\bf{{t}}}}})$$ is a form of degree $$3$$. Therefore, by the divergence theorem, we deduce that   \[\begin {array}{rl} I_k^{ * * } ( {{{\bf{{m}}}}}) & = n \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) h(r, f( {{{\bf{{t}}}}})) \,e^{-2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} } \, {d} {{{\bf{{t}}}}} \\ & \quad +3 \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) \ y \left.\frac {\partial h(r,y)}{\partial y}\right|_{y = f( {{{\bf{{t}}}}})} \,e^{-2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} } \, {d} {{{\bf{{t}}}}} \\ & \quad + \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } {{{\bf{{t}}}}}. {\mathrm {grad}} \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) h(r, f( {{{\bf{{t}}}}})) \,e^{-2 \pi i {{{\bf{{v}}}}} {{{\bf{{t}}}}} } \, {d} {{{\bf{{t}}}}}, \end {array}\] the first term on the right-hand side of which is $$-n I_k ( {{{\bf{{m}}}}})$$ and therefore bounded through (29) or (30). The other two terms are limited through the same bounds by using the previous Fourier integral method in conjunction with the stated bounds for $$p_1(u)$$ and $$p_3(u)$$ and the appropriate parts of Lemma 4, whereupon by (21) we see that $$I_k ( {{{\bf{{m}}}}})$$ and $$k {\partial {^{{}}}{I_k ( {{{\bf{{m}}}}})} / \partial {{k}^{{}}}}$$ can be majorized in the same way when (27) applies. What we have obtained from Lemma 3 onwards is best summarized by the introduction of the function   \[J ( {{{\bf{{m}}}}}, Y) = \left\{ \begin {array}{ll}1 & {\mathrm {if\ }} ||{ {{{\bf{{m}}}}} }|| \leq Y / X, \\ \log ^n (2 X ||{ {{{\bf{{m}}}}} }|| / Y) (Y / X ||{ {{{\bf{{m}}}}} }||)^{({1}/{2}) n -1} & {\mathrm {if\ }} Y / X <||{ {{{\bf{{m}}}}} }|| \leq N / X, \\ \log ^n (2 X ||{ {{{\bf{{m}}}}} }|| / Y) (Y / X ||{ {{{\bf{{m}}}}}}||)^{({1}/{2}) n -1} (N / X ||{ {{{\bf{{m}}}}} }||)^{M} & {\mathrm {if\ }} ||{ {{{\bf{{m}}}}} }|| >N / X, \end {array}\right .\] where $$M$$ is any given large integer. Then, for $$\frac {1}{2} Y \leq k 0$$it is given that  \[\Gamma (y, {{\mathrm {{q}}}}) = \sum _{{0 <||{ {{{\bf{{m}}}}} }|| \leq y}} G( {{{\bf{{m}}}}}, {{\mathrm {{q}}}}) < \left({D_1( {{\mathrm {{q}}}}) +D_2( {{\mathrm {{q}}}}) y^{n_1}}\right) \log ^{n_2} (y {{\mathrm {{q}}}} +2),\]where$$D_1( {{\mathrm {{q}}}}), D_2( {{\mathrm {{q}}}}) >0$$and$$ {({n_1}, {n_2})} = {({n}, {0})}$$or$$ {({n - \frac {5}{2}}, {1})}$$. Then  \[\begin {array}{rl} \sum _{ { {{{\bf{{m}}}}} \neq 0}} ||{ {{{\bf{{m}}}}} }||^{\epsilon } G( {{{\bf{{m}}}}}, {{\mathrm {{q}}}}) J ( {{{\bf{{m}}}}}, Y) & = {O \left({{\frac { {{\min}^{{({1}/{2}) n - 1}}} (X, Y) X^{\epsilon } D_1( {{\mathrm {{q}}}})}{X^{({1}/{2}) n - 1}}}}\right)} \\ & \quad + {O \left({{\frac {Y^{({1}/{2}) n - 1} X^{\epsilon } N^{n_1 - ({1}/{2}) n +1} D_2( {{\mathrm {{q}}}})}{X^{n_1}}}}\right)}. \end {array}\] This is verified by a tedious but familiar process whereby the sum is split up into segments wherein $$ {{{\bf{{m}}}}}$$ is subject to a condition of the type $$2^{a} U \leq ||{ {{{\bf{{m}}}}} }|| <2^{a+1} U$$; here, $$U = 1$$ if $$Y \leq X$$ but $$U = Y / X$$ if $$Y >X$$. 6. The sum $$Q( {{{\bf{{m}}}}}, k)$$: first section The trigonometrical sum $$Q( {{{\bf{{m}}}}}, k)$$ defined by (9) is of the utmost importance to the investigation because of its presence in the fundamental inequality (14). It is the same as the sum $$Q_0 ( {{{\bf{{m}}}}}, k)$$ in Ib and Ic (or $$S_0 ( {{{\bf{{m}}}}}, k)$$ in Ha) and becomes the sum (35) in our Ia when $$n=6$$ and $$f ( {{{\bf{{x}}}}}) = g ( {{{\bf{{x}}}}}) = x_1^3 +x_2^3 +x_3^3 - x_4^3 - x_5^3 - x_6^3$$. We may therefore often speed our treatment either by citing results from these papers or by abbreviating some of the procedures therefrom. Yet our problems require us to delve much deeper into the properties of these sums than hitherto, particularly in the case where the modulus $$k$$ contains prime power factors with moderately large exponents. Estimates for both individual sums and sums of their moduli will be needed. Leaving the latter till later, we sketch the development of the theory of these sums until we reach the point when new results are to be considered. In doing this we shall involve the entities $$\nu (k)$$ and $$\nu ( {{{\bf{{m}}}}}, k)$$ that are defined, respectively, as the number of incongruent solutions, $$ {\hbox{mod}\, {k}}$$, of the congruence $$f( {{{\bf{{l}}}}}) \equiv 0$$, $$ {\hbox{mod}\, {k}}$$, and the simultaneous congruences $$f( {{{\bf{{l}}}}}) \equiv {{{\bf{{m}}}}} {{{\bf{{l}}}}} \equiv 0$$, $$ {\hbox{mod}\, {k}}$$; associated with $$\nu (k)$$ is $$\nu ^{\prime }(k)$$, which is the number of primitive incongruent solutions, $$ {\hbox{mod}\, {k}}$$, of $$f( {{{\bf{{l}}}}}) \equiv 0$$, $$ {\hbox{mod}\, {k}}$$, or, in other words, those for which $$ {({ {{{\bf{{l}}}}} }, {k})} = 1$$. Taken from §10 of Ib, where the functional symbol $$\rho$$ is used instead of $$\nu$$ here, there are then the useful estimates   \[\nu ^{\prime } (p^{\alpha }) = p^{(n-1)(\alpha - 1)} \nu ^{\prime } (p) \quad (p \nmid D), \quad \nu (p^{\alpha }) = O(p^{(n-1) \alpha })\] (32) that we shall need. The next result, which means we can often restrict attention to the case where $$k$$ is a prime power $$p^{\alpha }$$, is of a familiar type and can be proved, for example, in the same way as Lemma 5 in Ia (which relates to the special case where $$f( {{{\bf{{x}}}}})$$ is the form $$g( {{{\bf{{x}}}}})$$ above). Lemma 6 The sum$$Q ( {{{\bf{{m}}}}}, k)$$is a$$($$properly$$)$$multiplicative function of$$k,$$viz, if$$ {({k^{\prime }}, {k^{\prime \prime }})} = 1,$$then$$Q ( {{{\bf{{m}}}}}, k^{\prime } k^{\prime \prime }) = Q ( {{{\bf{{m}}}}}, k^{\prime }) Q ( {{{\bf{{m}}}}}, k^{\prime \prime })$$. As in §5 of Ia, the method starts to unfold through the equation   \[\begin {array}{rl} Q( {{{\bf{{m}}}}}, p^{\alpha }) & = \sum _{0 <{{{\bf{{l}}}}} \leq p^{\alpha }} \left({{\sum _{0 1$$ and $$p \nmid {{{\bf{{m}}}}}$$, with the equation   \[Q ( {{{\bf{{m}}}}}, p^{\alpha }) = \frac {p^{\alpha }}{\phi (p^{\alpha })} {\{ } p^{\alpha } \nu _1 ( {{{\bf{{m}}}}}, p^{\alpha }) - p^{\alpha -1} \nu _2 ( {{{\bf{{m}}}}}, p^{\alpha }) {\} },\] where $$\nu _1 ( {{{\bf{{m}}}}}, p^{\alpha })$$ and $$\nu _2 ( {{{\bf{{m}}}}}, p^{\alpha -1})$$ are, respectively, the number of incongruent solutions, $$ {\hbox{mod}\, {p^{\alpha }}}$$, of the simultaneous conditions   \[f( {{{\bf{{l}}}}}) \equiv 0, {\hbox{mod}\, {p^{\alpha }}}; \quad {{{\bf{{m}}}}} {{{\bf{{l}}}}} \equiv 0, {\hbox{mod}\, {p^{\alpha }}}; \quad {{{\bf{{l}}}}} {{\not\equiv }} 0, {\hbox{mod}\, {p}}\] (36)α and   \[f( {{{\bf{{l}}}}}) \equiv 0, {\hbox{mod}\, {p^{\alpha }}}; \quad {{{\bf{{m}}}}} {{{\bf{{l}}}}} \equiv 0, {\hbox{mod}\, {p^{\alpha -1}}}; \quad {{{\bf{{l}}}}} {{\not\equiv }} 0, {\hbox{mod}\, {p}}.\] (37)α Next, departing slightly from the procedure in Ia, let us divide each sum $$\nu _i ( {{{\bf{{m}}}}}, p^{\alpha })$$ into the sums $$\nu _i^{ \mathrm {{(A)}} } ( {{{\bf{{m}}}}}, p^{\alpha })$$, $$\nu _i^{ \mathrm {{(B)}} } ( {{{\bf{{m}}}}}, p^{\alpha })$$ by imposing the extra restriction that $$ {{{\bf{{l}}}}}$$ correspond, respectively, to a non-singular or singular point of $$ {{\cal {{{V}}}}}_p^{ {\dagger } } ( {{{\bf{{m}}}}})$$, viz. that $${\mathrm {grad}} f( {{{\bf{{l}}}}})$$ be non-proportional, $$ {\hbox{mod}\, {p}}$$, or (non-trivially) proportional, $$ {\hbox{mod}\, {p}}$$, to $$ {{{\bf{{m}}}}}$$. Then, if we compare $$\nu _1^{ \mathrm {{(A)}} } ( {{{\bf{{m}}}}}, p^{\alpha })$$ and $$\nu _2^{ \mathrm {{(A)}} } ( {{{\bf{{m}}}}}, p^{\alpha })$$ with $$\nu _1 ( {{{\bf{{m}}}}}, p^{\alpha -1})$$ by the method used to establish Lemma 7 in Ia, we find that   \[\nu _2^{ \mathrm {{(A)}} } ( {{{\bf{{m}}}}}, p^{\alpha }) = p^{\alpha -1} \nu _1^{ \mathrm {{(A)}} } ( {{{\bf{{m}}}}}, p^{\alpha -1}), \quad \nu _1^{ \mathrm {{(A)}} } ( {{{\bf{{m}}}}}, p^{\alpha }) = p^{\alpha -2} \nu _1^{ \mathrm {{(A)}} } ( {{{\bf{{m}}}}}, p^{\alpha -1}) \] (38) with the consequence that   \[Q ( {{{\bf{{m}}}}}, p^{\alpha }) = \frac {p}{p-1} {\{ } p^{\alpha } \nu _1^{ \mathrm {{(B)}} } ( {{{\bf{{m}}}}}, p^{\alpha }) - p^{\alpha -1} \nu _2^{ \mathrm {{(B)}} } ( {{{\bf{{m}}}}}, p^{\alpha })) {\} }.\] (39) In particular, we have the following: Lemma 10 For$$\alpha >1$$and$$F( {{{\bf{{m}}}}}) {{\not\equiv }} 0,$$$$ {\hbox{mod}\, {p}},$$  \[Q( {{{\bf{{m}}}}}, p^{\alpha }) = 0.\] This completes our initial discussion, in which it must be observed that there is no restriction on $$p$$. Yet when we go on to derive further estimates for $$Q( {{{\bf{{m}}}}}, p^{\alpha })$$ for various values of $$\alpha$$ exceeding $$2$$ we shall often have to insist that $$p >p_0$$, a matter normally of little importance because in the opposite case the sum is bounded provided $$\alpha$$ be limited by a number such as $$6$$. 7. The sums $$Q( {{{\bf{{m}}}}}, p^{\alpha })$$ for $$p \nmid {{{\bf{{m}}}}};$$ the case $$\alpha =3$$ For the case $$\alpha = 3,$$ we shall require the following: Lemma 11 Let$$q ( {{x}_{1}, \dotsc , {x}_{{M}}})$$and$$l ( {{x}_{1}, \dotsc , {x}_{{M}}})$$be a quadratic and a linear form over$${\Bbb {F}}_p$$and suppose the rank of the symmetric matrix appertaining to$$q ( {{x}_{1}, \dotsc , {x}_{{M}}})$$is$$r$$. Then the number$$w(p)$$of solutions over$${\Bbb {F}}_p$$of the equation  \[\phi ( {{x}_{1}, \dotsc , {x}_{{M}}}) = q ( {{x}_{1}, \dotsc , {x}_{{M}}}) +l ( {{x}_{1}, \dotsc , {x}_{{M}}}) +m = 0\]is equal to  \[p^{M-1} +O(p^{M - ({1}/{2}) r}).\] This estimate, which alternatively can be expressed in the language of congruences, can be derived after several transformations of the unknowns by means of estimates for Gaussian sums. Yet it is swifter to avail ourselves of the theory of equations over finite fields, the relevant portion of which can be found, for example, in our article [11]. The case $$r \leq 2$$ being trivial because $$w(p) = O(p^{M-1})$$ or $$O(p^{M})$$ according as $$q( {{x}_{1}, \dotsc , {x}_{{n}}})$$ is non-zero or zero, we first form in the opposite instance the homogeneous completion   \[\psi ( {{x}_{1}, \dotsc , {x}_{{M+1}}}) = q( {{x}_{1}, \dotsc , {x}_{{M}}}) +x_{M+1} l( {{x}_{1}, \dotsc , {x}_{{M}}}) +m x_{M+1}^{2}\] of $$\phi ( {{x}_{1}, \dotsc , {x}_{{M}}})$$ and, using the language of [11, §2], consider the connection between the (projective) dimensions $$d_1$$, $$d_2$$ of the singular loci of the equations$$\psi ( {{x}_{1}, \dotsc , {x}_{{M+1}}}) = 0$$ and $$q( {{x}_{1}, \dotsc , {x}_{{M}}}) = 0$$. The latter equation being formed by setting $$x_{M+1} = 0$$ in the former we find by the reasoning in [11] that $$d_1 \leq d_2 +1$$ and hence that   \[d_1 \leq M - r \leq M - 2,\] (40) since the equality $$d_2 = M - r - 1$$ follows from the identity of the matrices associated with $$q( {{x}_{1}, \dotsc , {x}_{{M}}})$$ and $${\mathrm {grad}} q( {{x}_{1}, \dotsc , {x}_{{M}}})$$. From (40) it follows that $$d_1$$ is actually the dimension of the singular locus of the projective hypersurface $$\psi ( {{x}_{1}, \dotsc , {x}_{{M+1}}}) = 0$$, and we deduce from [11, §5] that   \[w(p) = p^{M-1} +O({p^{(M - 1 +M - r +1)/2}}) = p^{M-1} +O({p^{M - ({1}/{2})r}}),\] as asserted. Before advancing further, we remark that in the estimation of $$Q( {{{\bf{{m}}}}}, p^{\alpha })$$ when $$p \nmid {{{\bf{{m}}}}}$$ we can actually assume that   \[( {{m}_{1}, \dotsc , {m}_{{n}}}) = 1\] (41) because it is easily seen from (9) that $$Q (\lambda {{{\bf{{m}}}}}, p^{\alpha }) = Q ( {{{\bf{{m}}}}}, p^{\alpha })$$ when $$p \nmid \lambda$$ and hence when $$\lambda \equiv \overline {( {{m}_{1}, \dotsc , {m}_{{n}}})}$$, $$ {\hbox{mod}\, {p}}$$. In treating $$Q ( {{{\bf{{m}}}}}, p^{\alpha })$$ by (39) for $$p \nmid {{{\bf{{m}}}}}$$ and $$p >p_0$$, we shall throughout omit the superscript from $$\nu _1^{ \mathrm {{(B)}} } ( {{{\bf{{m}}}}}, p^{\alpha })$$ and $$\nu _2^{ \mathrm {{(B)}} } ( {{{\bf{{m}}}}}, p^{\alpha })$$ for ease of notation and assume, as we may, that $$F( {{{\bf{{m}}}}}) \equiv 0$$, $$ {\hbox{mod}\, {p}}$$. Also, by a singular solution of   \[f( {{{\bf{{l}}}}}) \equiv 0, {\hbox{mod}\, {p}}; \quad {{{\bf{{m}}}}} {{{\bf{{l}}}}} \equiv 0, {\hbox{mod}\, {p}},\] (42) we mean in an affine sense any vector $$ {{{\bf{{l}}}}} = ( {{l}_{1}, \dotsc , {l}_{{n}}}) \neq 0$$ that represents projectively a singularity of $$ {{\cal {{{V}}}}}_p ( {{{\bf{{m}}}}})$$. Thus, in defining $$\nu _1 ( {{{\bf{{m}}}}}, p^{\alpha })$$ and $$\nu _2 ( {{{\bf{{m}}}}}, p^{\alpha })$$ with their new meaning we use the sets of conditions (36)$$_{\alpha }^{\prime }$$ and (37)$$_{\alpha }^{\prime }$$ that are formed by adding to (36)$$_{\alpha }$$ and (37)$$_{\alpha }$$ the condition that $$ {{{\bf{{l}}}}}$$ be a singular solution of (42). Each solution of (36)$$_{3}^{\prime }$$ and (37)$$_{3}^{\prime }$$ stems in an obvious manner from a solution $$ {{{\bf{{l}}}}}_2$$, $$ {\hbox{mod}\, {p^2}}$$, of (36)$$_{2}^{\prime }$$ that in turn is derived from a singular solution $$ {{{\bf{{l}}}}}_1$$ of (42). To assess how many incongruent solutions $$ {{{\bf{{l}}}}}_2$$, $$ {\hbox{mod}\, {p^2}}$$ originate from a given $$ {{{\bf{{l}}}}}_1$$ we express $$ {{{\bf{{l}}}}}_2$$ as $$ {{{\bf{{l}}}}}_1 + {{{\bf{{r}}}}} p$$, where $$0 <{{{\bf{{r}}}}} \leq p$$, and obtain the conditions   \[\begin {array}{rl} f( {{{\bf{{l}}}}}_2) & \equiv f( {{{\bf{{l}}}}}_1) +p {\mathrm {grad}} f( {{{\bf{{l}}}}}_1). {{{\bf{{r}}}}} \equiv 0, {\hbox{mod}\, {p^2}}, \\ {{{\bf{{m}}}}} {{{\bf{{l}}}}}_2 & \equiv {{{\bf{{m}}}}} {{{\bf{{l}}}}}_1 +p {{{\bf{{m}}}}} {{{\bf{{r}}}}} \equiv 0, {\hbox{mod}\, {p^2}}, \end {array}\] which are tantamount to   \[\begin {array}{rl} {\mathrm {grad}} f( {{{\bf{{l}}}}}_1). {{{\bf{{r}}}}} & \equiv - f( {{{\bf{{l}}}}}_1)/p, {\hbox{mod}\, {p}}, \\ {{{\bf{{m}}}}} {{{\bf{{r}}}}} & \equiv - {{{\bf{{m}}}}} {{{\bf{{l}}}}}_{1}/p, {\hbox{mod}\, {p}}. \end {array}\] Since $$ {{{\bf{{m}}}}}$$ and $${\mathrm {grad}} f( {{{\bf{{l}}}}}_1)$$ are proportional, $$ {\hbox{mod}\, {p}}$$, there are therefore either $$p^{n-1}$$ solutions in $$ {{{\bf{{r}}}}}$$ or none, and we therefore confine attention to the $$ {{{\bf{{l}}}}}_1$$ that give rise to the former situation. Let us consider the contribution to $$\nu _2 ( {{{\bf{{m}}}}}, p^3)$$ that is created by one of the vectors $$ {{{\bf{{l}}}}}_2$$ above. This, by the very argument used to get the second part of (38), is $$p^{n-1}$$ since $$p \nmid D$$ and therefore the effect of a non-excluded $$ {{{\bf{{l}}}}}_1$$ on $$\nu _2 ( {{{\bf{{m}}}}}, p^3)$$ is   \[p^{2n - 2}.\] (43) The estimation of $$\nu _1 ( {{{\bf{{m}}}}}, p^3)$$ necessitates a transformation of (36)$$_{\alpha }^{\prime }$$. Since $$ {{h.c.f.}({ {{m}_{1}, \dotsc , {m}_{{n}}} })} = 1$$ by the legitimate assumption (41), there is a unimodular matrix $$ {{{\bf{{P}}}}}$$ with rational integral constituents having $$ {{m}_{1}, \dotsc , {m}_{{n}}}$$ as the first row, by which we form the substitution   \[ {{{\bf{{P}}}}} {{{\bf{{x}}}}} = {{{\bf{{X}}}}} ^{ {\dagger } }\] (44) that throws $$f( {{{\bf{{x}}}}})$$ into a polynomial $$h( {{{\bf{{X}}}}} ^{ {\dagger } })$$ and $$ {{{\bf{{m}}}}} {{{\bf{{x}}}}}$$ into $$X_{1}^{ {\dagger } }$$. To utilize this let (Not to be confused with the Hessian $$H( {{{\bf{{x}}}}})$$ for which italic font is used.) $${\mathrm {H}} ( {{{\bf{{X}}}}}) = {\mathrm {H}} (X_2, \ldots , X_n) = h (0, X_2, \ldots , X_n)$$ and let $$(L_1^{ {\dagger } }, L_2, \ldots , L_n)$$ be the transform of $$( {{l}_{1}, \dotsc , {l}_{{n}}})$$, then writing $$ {{{\bf{{L}}}}} = (L_2, \ldots , L_n)$$ so that, moreover, $$ {{{\bf{{L}}}}}_i$$ is to correspond to any vector designated by $$ {{{\bf{{l}}}}}_i$$ in our present or future processes. Then the equations (36)$$_{\alpha }^{\prime }$$ are equivalent to the triplet of conditions   \[{\mathrm {H}} ( {{{\bf{{L}}}}}) \equiv 0, {\hbox{mod}\, {p^{\alpha }}}, \quad {{{\bf{{L}}}}} {{\not\equiv }} 0, {\hbox{mod}\, {p}}, \quad L_1^{ {\dagger } } \equiv 0, {\hbox{mod}\, {p^{\alpha }}},\] the last of which may obviously be ignored by simply assigning the value zero to $$L_1^{ {\dagger } }$$ throughout. As explained in § 3 the number of projective points represented by singular solutions $$ {{{\bf{{l}}}}}_1$$ of (42) is $$O(1)$$ for a given vector $$ {{{\bf{{m}}}}}$$ for which $$F( {{{\bf{{m}}}}}) \equiv 0$$, $$ {\hbox{mod}\, {p}}$$, and $$ {{{\bf{{m}}}}} {{\not\equiv }} 0$$, $$ {\hbox{mod}\, {p}}$$. Let (Because $$ {{{\bf{{M}}}}} ( {{{\bf{{l}}}}}_1) = 0$$ would imply that $${\mathrm {grad}} f( {{{\bf{{l}}}}}_1) = 0$$. We shall later see that in fact $$r \geq 2$$ but this is immaterial until we later discuss the significance of the number $$r$$.) $$r \geq 1$$ be the minimal value of the rank, $$ {\hbox{mod}\, {p}}$$, of the Hessian matrix $$ {{{\bf{{M}}}}} ( {{{\bf{{l}}}}}_1)$$ for those $$ {{{\bf{{l}}}}}_1$$ that produce a contribution to $$\nu _1 ( {{{\bf{{m}}}}}, p^2)$$. Then, translating into the language of the transformed coordinates, we need to count the zeros of $${\mathrm {H}} ( {{{\bf{{L}}}}})$$, $$ {\hbox{mod}\, {p^3}}$$, that are congruent to a given valid $$ {{{\bf{{L}}}}}_1$$, $$ {\hbox{mod}\, {p}}$$, which we have already shown to have the property that actually $${\mathrm {H}} ( {{{\bf{{L}}}}}_1) \equiv 0$$, $$ {\hbox{mod}\, {p^2}},$$ because of the way $$ {{{\bf{{l}}}}}_1$$ was chosen. Thus, writing (Note that $$ {{{\bf{{s}}}}}$$ has $$n-1$$ components.)   \[ {{{\bf{{L}}}}}_3 = {{{\bf{{L}}}}}_1 +p {{{\bf{{s}}}}} \quad {\mathrm {for\ }} 0 <{{{\bf{{s}}}}} \leq p^2\] (45) and designating the Hessian matrix of $${\mathrm {H}} ( {{{\bf{{L}}}}})$$ by $$ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}})$$, we require that (Note $$\frac {1}{2} {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1)$$ has integral constituents. Note also the comment in §2.)   \[{\mathrm {H}} ( {{{\bf{{L}}}}}_3) \equiv {\mathrm {H}} ( {{{\bf{{L}}}}}_1) +p {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1). {{{\bf{{s}}}}} + \frac {1}{2} p^2 {{{\bf{{s}}}}} ^{\prime } {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}} \equiv 0, {\hbox{mod}\, {p^3}},\] in which $${\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1) \equiv 0$$, $$ {\hbox{mod}\, {p}}$$, because $$ {{{\bf{{L}}}}}_1$$ is a singularity of the hypersurface $${\mathrm {H}} ( {{{\bf{{X}}}}}) \equiv 0$$, $$ {\hbox{mod}\, {p}}$$. Hence,   \[ {{{\bf{{s}}}}} ^{\prime } {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}} +2 ({\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1) / p). {{{\bf{{s}}}}} +2 {\mathrm {H}} ( {{{\bf{{L}}}}}_1) / p^2 \equiv 0, {\hbox{mod}\, {p}}.\] (46) To exploit this congruence through Lemma 11, we must consider the rank $$r_1$$ of $$ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1)$$, $$ {\hbox{mod}\, {p}}$$. This matrix is obtained by removing the first row and first column of the Hessian matrix $$ {{{\bf{{M}}}}} ( {{{\bf{{L}}}}}_1^{ {\dagger } })$$, which, being the transform of $$ {{{\bf{{M}}}}} ( {{{\bf{{l}}}}}_1)$$ under the substitution (44), has rank not less than $$r$$. Hence, $$r_1 \geq r - 2$$ and $$r_1 \geq 0$$. Consequently, by Lemma 11, the number of solutions of (46) subject to the inequality in (45) is   \[p^{n-1} {\{ } p^{n-2} +O(p^{n-1-({1}/{2}) r_1}) {\} } = p^{2n-3} +O(p^{2n-1-({1}/{2})r}).\] We go back to (39), which shows through (43) and the above equality that the effect of a single eligible solution on $$Q( {{{\bf{{m}}}}}, p^3)$$ is   \[\frac {p}{p-1} (p^{2n} +O(p^{2n+2-({1}/{2})r}) - p^{2n}) = O(p^{2n+2-({1}/{2})r}).\] Since each qualifying projective solution of (42) gives rise to $$p-1$$ incongruent affine counterparts and since $$ {{\cal {{{V}}}}}_p ( {{{\bf{{m}}}}})$$ has a bounded number of projective singularities, we deduce the following: Lemma 12 Suppose$$p >p_0$$. Then, if$$F( {{{\bf{{m}}}}}) \equiv 0,$$$$ {\hbox{mod}\, {p}},$$and$$r$$be defined as above, we have  \[Q ( {{{\bf{{m}}}}}, p^3) = O (p^{2n+3-({1}/{2})r}).\] Alternatively, it is clear that $$Q ( {{{\bf{{m}}}}}, p^3) = 0$$ when $$r$$ is not defined, namely, when no $$ {{{\bf{{l}}}}}_1$$ gives rise to an $$ {{{\bf{{l}}}}}_2$$. 8. The sums $$Q( {{{\bf{{m}}}}}, p^{\alpha })$$ for $$p \nmid {{{\bf{{m}}}}};$$ the case $$\alpha \geq 4$$ When $$\alpha$$ goes beyond $$3$$ the method of estimating $$Q( {{{\bf{{m}}}}}, p^{\alpha })$$ changes although we extend the structure of the zeros $$ {{{\bf{{L}}}}}_{\alpha }$$, $$ {\hbox{mod}\, {p^{\alpha }}}$$, of $${\mathrm {H}} ( {{{\bf{{X}}}}})$$ that stem successfully from an eligible zero $$ {{{\bf{{L}}}}}_1$$, $$ {\hbox{mod}\, {p}}$$, by way of eligible zeros $$ {{{\bf{{L}}}}}_2$$, $$ {\hbox{mod}\, {p^2}}, \ldots$$, to $$ {{{\bf{{L}}}}}_{\alpha -1}$$, $$ {\hbox{mod}\, {p^{\alpha -1}}}$$, where $$ {{{\bf{{L}}}}}_i \equiv {{{\bf{{L}}}}}_{i-1}$$, $$ {\hbox{mod}\, {p^{i-1}}}$$. If a zero $$ {{{\bf{{L}}}}}_{\alpha -1}$$ stem from $$ {{{\bf{{L}}}}}_{\alpha -2}$$, then for some $$ {{{\bf{{s}}}}}$$ we would have   \[{\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2} + {{{\bf{{s}}}}} p^{\alpha -2}) \equiv {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}) +p^{\alpha -2} {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}). {{{\bf{{s}}}}} \equiv {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}) \equiv 0, {\hbox{mod}\, {p^{\alpha -1}}},\] the requirement of which is met either always or never; in the former case $$ {{{\bf{{L}}}}}_{\alpha -2}$$ is itself a vector $$ {{{\bf{{L}}}}}_{\alpha -1}$$ and gives rise to $$p^{n-1}$$ vectors, incongruent to the modulus $$p^{\alpha -1}$$, of this type, whereas in the latter case we ignore the vector $$ {{{\bf{{L}}}}}_{\alpha -2}$$ because it is not the forbear of an $$ {{{\bf{{L}}}}}_{\alpha -1}$$. Then the contribution to $$\nu _1 ( {{{\bf{{m}}}}}, p^{\alpha -1})$$ derived from a single eligible $$ {{{\bf{{L}}}}}_{\alpha -2}$$ via its offspring $$ {{{\bf{{L}}}}}_{\alpha -1}$$ is $$p^{n-1}$$, whence by a previous argument the influence of this $$ {{{\bf{{L}}}}}_{\alpha -2}$$ on $$\nu _2 ( {{{\bf{{m}}}}}, p^{\alpha })$$ is   \[p^{n-1} p^{n-1} = p^{2n-2}.\] (47) To think about the contribution of the above eligible vector $$ {{{\bf{{L}}}}}_{\alpha -2}$$ to $$\nu _1 ( {{{\bf{{m}}}}}, p^{\alpha })$$ by way of the vectors $$ {{{\bf{{L}}}}}_{\alpha -2} + {{{\bf{{s}}}}} p^{\alpha -2}$$, we must form the conditions   \[{\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}) +p^{\alpha -2} {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}). {{{\bf{{s}}}}} \equiv 0, {\hbox{mod}\, {p^{\alpha }}}, \quad 0 <{{{\bf{{s}}}}} \leq p^2,\] (48) because $$2 (\alpha -2) \geq \alpha$$ when $$\alpha >3$$. There thus results the congruence   \[({\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}) / p). {{{\bf{{s}}}}} \equiv - {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}) / p^{\alpha -1}, {\hbox{mod}\, {p}},\] that has $$p^{n-2}$$ incongruent solutions in $$ {{{\bf{{s}}}}}$$, $$ {\hbox{mod}\, {p}}$$, unless $${\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}) \equiv 0$$, $$ {\hbox{mod}\, {p^2}}$$, in which event it has $$p^{n-1}$$ or no solutions. In the earlier situation the number of solutions of (48) is $$p^{2n-3}$$ and we deduce from (39) and (47) that the impact of the zero $$ {{{\bf{{L}}}}}_{\alpha -2}$$ on $$Q ( {{{\bf{{m}}}}}, p^{\alpha })$$ is   \[\frac {p}{p-1} (p^{2n-3 + \alpha } - p^{2n-3 + \alpha }) = 0.\] Yet in the other case it is obviously $$O (p^{2n-2 + \alpha }),$$ so that we need to know how many $$ {{{\bf{{L}}}}}_{\alpha -2}$$ can arise for which   \[{\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -2}) \equiv 0, {\hbox{mod}\, {p^2}}.\] (49) But each $$ {{{\bf{{L}}}}}_{\alpha -2}$$ is congruent, $$ {\hbox{mod}\, {p^2}}$$, to a vector $$ {{{\bf{{L}}}}}_2 = {{{\bf{{L}}}}}_1 +p {{{\bf{{s}}}}}$$ with $$0 <{{{\bf{{s}}}}} \leq p$$. We therefore require that   \[{\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{1}) +p {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}} \equiv 0, {\hbox{mod}\, {p^2}},\] namely that   \[ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}} \equiv - {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{1}) / p, {\hbox{mod}\, {p}},\] the number of whose solutions in $$ {{{\bf{{s}}}}}$$, $$ {\hbox{mod}\, {p}}$$, does not exceed   \[p^{n-1 - r_1} \leq p^{n+1 - r}.\] Consequently, the number of qualifying incongruent $$ {{{\bf{{L}}}}}_{\alpha -2}$$, $$ {\hbox{mod}\, {p^{\alpha -2}}}$$, satisfying (49) amounts to   \[O({p^{(n-1) (\alpha -4)} p^{n+1 - r}})\] and we altogether achieve the bound   \[Q ( {{{\bf{{m}}}}}, p^{\alpha }) = O({p^{2n-2 + \alpha + (n-1) (\alpha -4) +n+1 - r +1}}) = O({p^{n \alpha - n+4 - r}})\] because $$p-1$$ vectors $$ {{{\bf{{L}}}}}_1$$ arise from each singular point of $$ {{\cal {{{V}}}}}_p ( {{{\bf{{m}}}}})$$. We thus have the following lemma: Lemma 13 Under the conditions laid down in the statement of Lemma 12, we have  \[Q ( {{{\bf{{m}}}}}, p^{\alpha }) = O({p^{n \alpha - n+4 - r}})\]when$$\alpha \geq 4$$. A comment similar to that made after Lemma 12 is applicable. By the contravariance of the form $$F( {{{\bf{{u}}}}}),$$ we see through an examination of the substitution (44) that $$F( {{{\bf{{m}}}}}) \equiv 0$$, $$ {\hbox{mod}\, {p^2}}$$, if the congruence $${\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_2) \equiv 0$$, $$ {\hbox{mod}\, {p^2}}$$, be granted. However, the consequential improvement in the estimate in the lemma to zero when $$p {{\parallel } } F( {{{\bf{{m}}}}})$$ is of no tangible benefit in the calculations that follow. This lemma will only be used when $$\alpha = 4$$ and must be replaced by a more accurate result for values of $$\alpha$$ exceeding $$5$$, the case $$\alpha =5$$ being subsumed in another procedure. Clearly, we need only consider the case where (49) holds in revising the treatment of Lemma 13 when $$\alpha \geq 6$$. Each relevant vector $$ {{{\bf{{L}}}}}_{\alpha -2}$$ must then proceed from a vector $$ {{{\bf{{L}}}}}_{\alpha -3}$$ that has the property that   \[{\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) \equiv 0, {\hbox{mod}\, {p^2}},\] because $$\alpha \geq 5$$. Moreover, in determining how vectors $$ {{{\bf{{L}}}}}_{\alpha -1}$$ can proceed from $$ {{{\bf{{L}}}}}_{\alpha -3}$$, we set   \[ {{{\bf{{L}}}}}_{\alpha -1} = {{{\bf{{L}}}}}_{\alpha -3} +p^{\alpha -3} {{{\bf{{s}}}}}, \quad 0 <{{{\bf{{s}}}}} \leq p^2,\] and require that   \[{\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -1}) \equiv {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) +p^{\alpha -3} {{{\bf{{s}}}}}. {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) \equiv {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) \equiv 0, {\hbox{mod}\, {p^{\alpha -1}}}.\] There thus being no contribution to $$Q ( {{{\bf{{m}}}}}, p^{\alpha })$$ via a vector $$ {{{\bf{{L}}}}}_{\alpha -3}$$ for which $${\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) {{\not\equiv }} 0$$, $$ {\hbox{mod}\, {p^{\alpha -1}}}$$, we find in the contrary instance that the impact of $$ {{{\bf{{L}}}}}_{\alpha -3}$$ on $$\nu _2 ( {{{\bf{{m}}}}}, p^{\alpha })$$ is   \[p^{n-1} \cdot p^{2(n-1)} = p^{3(n-1)}\] (50) by the reasoning that led to (47). To find the $$ {{{\bf{{L}}}}}_{\alpha }$$ stemming from an eligible $$ {{{\bf{{L}}}}}_{\alpha -3}$$ and hence from an $$ {{{\bf{{L}}}}}_{\alpha -1}$$ as above we use the condition   \[{\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) +p^{\alpha -3} {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}). {{{\bf{{s}}}}} \equiv 0, {\hbox{mod}\, {p^{\alpha }}}, \quad 0 <{{{\bf{{s}}}}} \leq p^3,\] (51) that is valid for $$\alpha \geq 6$$, wherefore   \[{\{ } {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) / p^2 {\} }. {{{\bf{{s}}}}} \equiv - {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) / p^{\alpha -1}, {\hbox{mod}\, {p}},\] (52) which congruence has $$p^{n-2}$$ incongruent solutions, $$ {\hbox{mod}\, {p}}$$, when $${\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) {{\not\equiv }} 0$$, $$ {\hbox{mod}\, {p^3}}$$. In this case (51) has $$p^{2n-2} p^{n-2} = p^{3n-4}$$ solutions, and we see from (50) and a previous argument that the contribution of $$ {{{\bf{{L}}}}}_{\alpha -3}$$ to $$Q ( {{{\bf{{m}}}}}, p^{\alpha })$$ is zero. There remains for consideration the case where   \[{\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_{\alpha -3}) \equiv 0, {\hbox{mod}\, {p^3}},\] (53) and where therefore the effect of $$ {{{\bf{{L}}}}}_{\alpha -3}$$ on $$Q ( {{{\bf{{m}}}}}, p^{\alpha })$$ is $$O(p^{3n-3 + \alpha })$$ because then (52) has either $$p^{n-1}$$ or $$0$$ incongruent solutions, $$ {\hbox{mod}\, {p}}$$. Hence, needing to learn how many $$ {{{\bf{{L}}}}}_{\alpha -3}$$ arise in this situation, we shall analyse the congruence (53) by a slightly altered version of the method used to treat (49). Since each such $$ {{{\bf{{L}}}}}_{\alpha -3}$$ is congruent, $$ {\hbox{mod}\, {p^3}}$$, to a vector   \[ {{{\bf{{L}}}}}_3 = {{{\bf{{L}}}}}_1 +p {{{\bf{{s}}}}}\] (54) with $$0 <{{{\bf{{s}}}}} \leq p^2$$, we require that $$ {{{\bf{{s}}}}}$$ satisfy the congruence   \[{\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1) +p {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}} +p^2 {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{s}}}}}) \equiv 0, {\hbox{mod}\, {p^3}},\] and hence the congruence   \[ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}} +p {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{s}}}}}) \equiv - {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1) /p, {\hbox{mod}\, {p^2}},\] (55) which in the first place implies that   \[ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}} \equiv - {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1) /p, {\hbox{mod}\, {p}}.\] Consequently, $$ {{{\bf{{s}}}}}$$ belongs to at most $$p^{n+1-r}$$ residue classes $$ {{{\bf{{b}}}}}$$, $$ {\hbox{mod}\, {p}}$$, whence, setting $$ {{{\bf{{s}}}}} = {{{\bf{{b}}}}} +p {{{\bf{{s}}}}}_1$$ in (55), we find that   \[ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{b}}}}} +p {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}}_1 +p {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{b}}}}}) \equiv - ({\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1) /p), {\hbox{mod}\, {p^2}},\] and thus that   \[ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{s}}}}}_1 \equiv - {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{b}}}}}) - \dfrac {1}{p} \left({ {{{\bf{{M}}}}} ^{ * } ( {{{\bf{{L}}}}}_1) {{{\bf{{b}}}}} + {\mathrm {grad}} {\mathrm {H}} ( {{{\bf{{L}}}}}_1) /p}\right), {\hbox{mod}\, {p}},\] the last congruence having at most $$p^{n+1 - r}$$ incongruent solutions in $$ {{{\bf{{s}}}}}_1$$, $$ {\hbox{mod}\, {p}}$$. Hence there are at most $$p^{2(n+1 - r)}$$ appropriate values of $$ {{{\bf{{s}}}}}$$ in (54) and the number of incongruent solutions, $$ {\hbox{mod}\, {p^{\alpha -3}}}$$, of (53) stemming from a given $$ {{{\bf{{L}}}}}_1$$ is   \[O({p^{(n-1) (\alpha -6)} p^{2 (n+1 - r)}}).\] In all, therefore, we conclude that   \[Q ( {{{\bf{{m}}}}}, p^{\alpha }) = O({p \cdot p^{3n-3 + \alpha } \cdot p^{(n-1) (\alpha -6)} \cdot p^{2 (n+1 - r)}}) = O({p^{n \alpha -n+6 - 2r}})\] with the result that we can state the following: Lemma 14 The exponent of$$p$$in the estimate for$$Q ( {{{\bf{{m}}}}}, p^{\alpha })$$in Lemma 13 can be replaced by$$n \alpha -n+6 - 2r$$when$$\alpha \geq 6$$. To conclude our discussion of the case $$p \nmid {{{\bf{{m}}}}}$$ it is now appropriate to discuss the significance of the number $$r$$ appearing in the work when $$p >p_0$$. From its genesis, it is apparent that it depends on the affine vector $$ {{{\bf{{m}}}}}$$ so that it is appropriate to describe it as $$r ( {{{\bf{{m}}}}}, p)$$ when desirable; it is in fact determined as the rank of a Hessian matrix associated with a singular linear section of $$ {{\cal {{{V}}}}}_p$$ cut by the hyperplane $$ {{{\bf{{m}}}}} {{{\bf{{x}}}}} = 0$$. Also, in view of Lemma 2, $$r ( {{{\bf{{m}}}}}, p)$$ cannot assume the values $$0$$ or $$1$$ because the $$ {{{\bf{{l}}}}}_1$$ appearing in the definition of $$r$$ is incongruent to $$0$$, $$ {\hbox{mod}\, {p}}$$. Thus, if we interpret matters in terms of the field $${\Bbb {F}}_p$$, the estimates in Lemma 12– 14 are true for a given value of $$r \geq 2$$ when $$ {{{\bf{{m}}}}}$$ belongs to a certain set of points within an affine variety whose dimension $$\dim (r, p)$$ is determined by the requirement that $$r = r ( {{{\bf{{m}}}}}, p)$$. Indeed, by Lemma 2, this dimension is seen to be subject to the inequality   \[\dim (r, p) \leq \left\{ \begin {array}{ll}r - 1 & {\mathrm {if\ }} r = n-1 {\mathrm {\ or\ }} n, \\ r & {\mathrm {if\ }} 2 \leq r \leq n-2, \end {array}\right .\] (56) through the mapping $${\mathrm {grad}} \ {{\bf{f}}}( {{{\bf{{l}}}}}_1) \mapsto {{{\bf{{m}}}}}$$, where $$ {{{\bf{{l}}}}}_1$$ retains the meaning assigned to it above. Except when $$\alpha = 3$$ the weaker inequality $$\dim (r, p) \leq r$$ is all that we can effectively use in the sequel. The $$ {{{\bf{{m}}}}}$$ for which $$r$$ is not defined will be ignored in future calculations because in this case, as has already been observed, $$Q ( {{{\bf{{m}}}}}, p^{\alpha }) = 0$$. 9. The sums $$Q ( {{{\bf{{m}}}}}, p^{\alpha })$$ when $$p {{\vert }} {{{\bf{{m}}}}}$$ The estimation of these sums becomes complicated in this situation when the general case is considered. But here a simple treatment is possible because we only need assessments when $$\alpha = 3$$ or $$4$$, in which circumstances we need not take any account of any cancellations due to the presence of the complex exponentials in the sum. We begin with (35), writing   \[Q_1^{ * } ( {{{\bf{{m}}}}}_1, p^{\alpha }) = \sum _{p \nmid {{{\bf{{l}}}}} } + \sum _{p {\, {\vert } \,} {{{\bf{{l}}}}} } = Q_1^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha }) +Q_1^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^{\alpha })\] and   \[Q_2^{ * } ( {{{\bf{{m}}}}}_1, p^{\alpha -1}) = \sum _{p \nmid {{{\bf{{l}}}}} } + \sum _{p {\, {\vert } \,} {{{\bf{{l}}}}} } = Q_2^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha -1}) +Q_2^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^{\alpha -1}).\] Then, expressing the variable of summation $$ {{{\bf{{l}}}}}$$ in $$Q_1^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha })$$ as $$ {{{\bf{{l}}}}} ^{\prime } +p^{\alpha -1} {{{\bf{{u}}}}}$$ where $$p \nmid {{{\bf{{l}}}}} ^{\prime }$$, $$0 <{{{\bf{{l}}}}} ^{\prime } \leq p^{\alpha -1}$$, $$f( {{{\bf{{l}}}}} ^{\prime }) \equiv 0$$, $$ {\hbox{mod}\, {p^{\alpha -1}}}$$, and $$0 <{{{\bf{{u}}}}} \leq p$$, we demand that   \[f( {{{\bf{{l}}}}} ^{\prime } +p^{\alpha -1} {{{\bf{{u}}}}}) \equiv f( {{{\bf{{l}}}}} ^{\prime }) +p^{\alpha -1} {\mathrm {grad}} f( {{{\bf{{l}}}}} ^{\prime }). {{{\bf{{u}}}}} \equiv 0, {\hbox{mod}\, {p^{\alpha }}},\] and thus that   \[{\mathrm {grad}} f( {{{\bf{{l}}}}} ^{\prime }). {{{\bf{{u}}}}} \equiv - f( {{{\bf{{l}}}}} ^{\prime }) / p^{\alpha -1}, {\hbox{mod}\, {p}},\] which congruence has $$p^{n-1}$$ incongruent solutions, $$ {\hbox{mod}\, {p}}$$, in $$ {{{\bf{{u}}}}}$$ because $$ {{\cal {{{V}}}}}_p$$ is non-singular for $$p \nmid D$$. Since the summand in $$Q_1^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha })$$ is equal to $$e^{2 \pi i {{{\bf{{m}}}}}_1 {{{\bf{{l}}}}} ^{\prime } / p^{\alpha -1}}$$, we deduce that $$Q_1^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha }) = p^{n-1} Q_2^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha -1})$$ and hence that   \[p^{\alpha } Q_1^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha }) - p^{n+ \alpha -1} Q_2^{\prime } ( {{{\bf{{m}}}}}_1, p^{\alpha -1}) = 0.\] (57) Next, since $$ {{{\bf{{l}}}}}$$ is of the form $$p {{{\bf{{l}}}}}_1$$ in the conditions governing the sums $$Q_1^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^{\alpha })$$ and $$Q_2^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^{\alpha -1})$$, we see that these sums are taken over vectors $$ {{{\bf{{l}}}}}_1$$ that range, respectively, up to $$p^{\alpha -1}$$ and $$p^{\alpha -2}$$, as a consequence of which the sizes of $$Q_1^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^3)$$, $$Q_2^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^3)$$, and $$Q_1^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^2)$$ are $$p^{2n}$$, $$p^{2n}$$, and $$p^{n}$$. But, for $$Q_1^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^4)$$ we must use the condition $$f( {{{\bf{{l}}}}}_1) \equiv 0$$, $$ {\hbox{mod}\, {p}}$$, in addition to the inequality $$0 <{{{\bf{{l}}}}}_1 \leq p^3$$, whence   \[|{Q_1^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^4)}| \leq p^{2n} \nu (p) = O (p^{2n} \cdot p^{n-1}) = O (p^{3n-1})\] by (32). Consolidating these results in the statement   \[p^{\alpha } Q_1^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^{\alpha }) - p^{n + \alpha -1} Q_2^{\prime \prime } ( {{{\bf{{m}}}}}_1, p^{\alpha -1}) = \left\{ \begin {array}{ll}O (p^{2n+3}) & {\mathrm {if\ }} \alpha = 3, \\ O (p^{3n+3}) & {\mathrm {if\ }} \alpha = 4, \end {array}\right .\] we then infer from (33) and (57) the desired lemma as follows: Lemma 15 If$$p {{\vert }} {{{\bf{{m}}}}}$$, we have  \[Q ( {{{\bf{{m}}}}}, p^{\alpha }) = O (p^{n \alpha -n+3})\]when$$\alpha = 3$$and$$4$$. Note the result is trivial if $$p 1$$ or $$r(p) = 1$$. Also, by the definition of $$\dim (r,p)$$ in § 8 and the comments at the end of § 9, the cardinality of the vectors $$ {{{\bf{{m}}}}}$$ in the sub-summation is   \[ {O \left({{A^{\omega (\kappa _3)} \left({\frac {y^n}{\kappa _3^n} +1}\right) \prod _{p {\, {\vert } \,} \kappa _3} p^{\dim (r,p)}}}\right)},\] whence the sub-sum is   \[\begin {array}{rl} & {O \left({{A^{\omega (\kappa _3)} \left({\frac {y^n}{\kappa _3^n} +1}\right) \prod _{p {\, {\vert } \,} \kappa _3} p^{2n +3 + \dim (r,p) - ({1}/{2}) r(p) +R(p)}}}\right)} \\ & \quad = {O \left({{A^{\omega (\kappa _3)} \left( {\frac {y^n}{\kappa _3^n} +1}\right) \kappa _3^{({5}/{2}) n +2}}}\right)} \end {array}\] by a short verification involving the inequalities in (56). Since there are $$n^{\omega (\kappa _3)}$$ possible sub-sums and they exhaust all $$ {{{\bf{{m}}}}}$$ for $$Q ( {{{\bf{{m}}}}}, p^3) \neq 0$$, we gain the bound   \[\Omega ^{(1)} (y; l_3) = O({\kappa _3^{({3}/{2}) n +2 + \epsilon } (\kappa _3^{n} +y^{n})}) = O({k_3^{({1}/{2}) n + {2}/{3} + \epsilon } (k_3^{({1}/{3}) n} +y^{n})})\] (62) that replaces (61) when $$l_3 = k_3$$. Applying Lemma 5 to (61) and (62), we conclude our discussion of the first type of average by enunciating the following: Lemma 16 Suppose$$X,Y,$$and$$N$$are as in Lemma 5 and that$$l_3 p_0$$ by earlier comments about the geometry of the non-singular $$ {{\cal {{{V}}}}}_p$$, each $$ {{{\bf{{l}}}}}_1$$ appearing being indivisible by $$p$$; this remains true trivially for $$p \leq p_0$$. Hence, by a now familiar argument involving the solutions of $$f( {{{\bf{{l}}}}}) \equiv 0$$, $$ {\hbox{mod}\, {p^{\alpha }}}$$, for which $$ {{{\bf{{l}}}}} \equiv {{{\bf{{l}}}}}_1$$, $$ {\hbox{mod}\, {p}}$$, the inner sum in (73) is $$O({p^{\beta -1} \cdot p^{(n-1)(\beta -1)}) \cdot p} = O({p^{n(\beta -1) +1}})$$. Now, if $$\alpha ^{\prime } \neq 6$$, the dimension of $$ {{\cal {{{P}}}}}_{p}^{ {\dagger } }$$ is $$n-2$$ for $$p >p_0$$ and therefore for all $$p$$ the contribution to $$\sum _{p^{\alpha ^{\prime }}}$$ due to all those $$ {{{\bf{{b}}}}}$$ in $$ {{\cal {{{P}}}}}_{p}^{ {\dagger } }$$ that are indivisible by $$p$$ is $$O({p^{n-2} \cdot p^{n(\beta -1) +1}}) = O({p^{n\beta -1}})$$; yet, if $$\alpha = 6$$, the dimension of $$ {{\cal {{{P}}}}}_{p}^{ {\dagger } }$$ does not exceed $$4$$ because of the nature of $$\kappa _6^{\prime }$$ and $$ {{\cal {{{T}}}}}_{\kappa _6^{\prime }}^{ {\dagger } }$$, whence in this instance the corresponding contribution to $$\sum _{p^{\alpha ^{\prime }}}$$ is $$O({p^{4} \cdot p^{n(\beta -1) +1}}) = O({p^{n\beta -3}})$$ when $$n = 8$$. On the other hand, if $$ {{{\bf{{b}}}}} \equiv 0$$, $$ {\hbox{mod}\, {p}}$$, then (74) for $$p >p_0$$ implies that $$ {{{\bf{{l}}}}}_1 \equiv 0$$, $$ {\hbox{mod}\, {p}}$$, by the non-singularity of $$ {{\cal {{{V}}}}}_p$$ and we deduce that the inner sum in (73) is then not more than $$p^{\beta }$$ times the number of incongruent solutions, $$ {\hbox{mod}\, {p^{\beta -1}}}$$, of $$f( {{{\bf{{l}}}}} ^{\prime }) \equiv 0$$, $$ {\hbox{mod}\, {p^{\beta -3}}}$$, this product being $$p^{2n + \beta } \nu (p^{\beta -3}) = O({p^{2n + \beta } \cdot p^{(n-1)(\beta -3)}}) = O({p^{n \beta - n +3}}) = O({p^{n \beta -3}})$$ by (32); this estimate for the remaining contribution to $$\sum _{p^{\alpha ^{\prime }}}$$ is yet true in those cases where $$p 4$$ for the prime factors $$p_6$$ of the divisors $$\kappa _6^{\prime \prime }$$ of $$\kappa _6$$ conjugate to $$\kappa _6^{\prime }$$; thus $$\kappa _6 = \kappa _6^{\prime } \kappa _6^{\prime \prime }$$ where $$k_6^{\prime } = (\kappa _6^{\prime })^6$$, $$k_6^{\prime \prime } = (\kappa _6^{\prime \prime })^6$$, and $$k_6 = k_6^{\prime } k_6^{\prime \prime }$$. Finally, let us write   \[q^{\prime } = q / k_4 k_6^{\prime \prime },\] (77) at which modulus Lemma 20 will later be directed. Since Lemma 6 shows that   \[Q ( {{{\bf{{m}}}}}, q) = \prod _{{p_4 {\, {\vert } \,} \kappa _4}} Q ( {{{\bf{{m}}}}}, p_4^4) \prod _{{p_6 {\, {\vert } \,} \kappa _6^{\prime \prime }}} Q ( {{{\bf{{m}}}}}, p_6^6) \cdot Q ( {{{\bf{{m}}}}}, q^{\prime }),\] the summand in the portion of $$\Omega ^{(3)} (y, q)$$ isolated above is   \[O\left ({A^{\omega (\kappa _4 \kappa _6^{\prime \prime })} \prod _{{p_4 {\, {\vert } \,} \kappa _4}} p_4^{3n+4 - r(p_4)} \prod _{{p_6 {\, {\vert } \,} \kappa _6^{\prime \prime }}} p_6^{5n+6 - 2r(p_6)} \cdot |{Q ( {{{\bf{{m}}}}}, q^{\prime })}| }\right )\] because of Lemmata 13 and 14. But, by (56), the entities $$ {{{\bf{{m}}}}}$$ governing the summation belong to   \[O\left (A^{\omega (\kappa _4 \kappa _6^{\prime \prime })} \prod _{{p_4 {\, {\vert } \,} \kappa _4}} p_4^{r(p_4)} \prod _{{p_6 {\, {\vert } \,} \kappa _6^{\prime \prime }}} p_6^{r(p_6)}\right )\] residue classes, $$ {\hbox{mod}\, {\kappa _4 \kappa _6^{\prime \prime }}}$$, whence, considering the effect of each such residue class and taking into account the fact the $$ {{{\bf{{m}}}}}$$ are within a quasi-variety $$ {{\cal {{{T}}}}}_{\kappa _6^{\prime }}^{ {\dagger } }$$, we gain in all the estimate   \[\begin {array}{rl} & O\left (A^{\omega (\kappa _4 \kappa _6^{\prime \prime })} \kappa _4^{3n+4} \prod _{{p_6 {\, {\vert } \,} \kappa _6^{\prime \prime }}} p_6^{5n+6 - r(p_6)} \max _{0 <{{{\bf{{a}}}}} \leq \kappa _4 \kappa _6^{\prime \prime }} \Omega ^{(4)} (y; {{{\bf{{a}}}}}, \kappa _4 \kappa _6^{\prime \prime }; q^{\prime })\right ) \\ & \quad = O\left (A^{\omega (\kappa _4 \kappa _6^{\prime \prime })} \kappa _4^{3n+4} \kappa _6^{\prime \prime 5n+1} \max _{0 <{{{\bf{{a}}}}} \leq \kappa _4 \kappa _6^{\prime \prime }} \Omega ^{(4)} (y; {{{\bf{{a}}}}}, \kappa _4 \kappa _6^{\prime \prime }; q^{\prime })\right ) \end {array}\] (78) for the sub-sum over $$ {{{\bf{{m}}}}}$$ since $$r(p_6) >4$$ when $$p_6 {{\vert }} \kappa _6^{\prime \prime }$$. Hence, fixing the divisors $$\kappa _6^{\prime }$$, $$\kappa _6^{\prime \prime }$$ of $$\kappa _6$$ but otherwise summing this estimate over all admissible values of $$r(p_4)$$ and those of $$r(p_6)$$ exceeding $$4$$, we find that (78) with a different value of $$A$$ supplies the total contribution to $$\Omega ^{(3)} (y;q)$$ corresponding to those values of $$\kappa _6^{\prime }$$, $$\kappa _6^{\prime \prime }$$. This, by Lemma 20 with $$q^{\prime }$$ as in (77), is   \[\begin {array}{rl} & O\left (A^{\omega (q)} \kappa _4^{3n+4} \kappa _6^{\prime \prime 5n+1} \frac {q_1^{\prime 2n+1} q_2^{\prime ({1}/{2}) n+1}}{q_4^{\prime }} \left({\frac {y}{q_1^{\prime } \kappa _4 \kappa _6^{\prime \prime }} +1}\right)^{n - {5}/{2}} \log (yq +2)\right ) \\ & \quad = O\left (\frac {A^{\omega (q)} \kappa _4^{2n + {13}/{2}} \kappa _6^{\prime \prime 4n + {7}/{2}} q_1^{\prime n + {7}/{2}} q_2^{\prime \frac {1}{2} n+1} y^{n - {5}/{2}} \log (yq +2)}{q_4^{\prime }}\right ) \\ & \qquad +O\left (\frac {A^{\omega (q)} \kappa _4^{3n+4} \kappa _6^{\prime \prime 5n+1} q_1^{\prime 2n+1} q_2^{\prime ({1}/{2}) n+1} \log (yq +2)}{q_4^{\prime }}\right ). \end {array}\] (79) We now introduce the notation $$ {{\mathrm {{q}}}} = q^{\prime } / k_6^{\prime }$$, viz. $$ {{\mathrm {{q}}}} = q / k_4 k_6$$, assigning the obvious meanings to $$ {{\mathrm {{q}}}}_1$$, $$ {{\mathrm {{q}}}}_2$$ and letting   \[ {{\mathrm {{q}}}}_3 = {\prod _{p {\, {\vert } \,} {{\mathrm {{q}}}}_1; p \nmid {{\mathrm {{q}}}}_2}} p.\] Then, as $$q_1^{\prime } = \kappa _5^{\prime 3} {{\mathrm {{q}}}}_1$$, $$q_2^{\prime } = {{\mathrm {{q}}}}_2$$, and $$q_4^{\prime } = \kappa _6^{\prime 3} {{\mathrm {{q}}}}_3$$ by (77), the estimate (79) becomes   \[\begin {array}{rl} & O\left (\frac {A^{\omega (q)} \kappa _4^{2n+ {13}/{2}} \kappa _6^{\prime 3n+ {15}/{2}} \kappa _6^{\prime \prime 4n+ {7}/{2}} {{\mathrm {{q}}}}_1^{n+ {7}/{2}} {{\mathrm {{q}}}}_2^{({1}/{2}) n+1} y^{n - {5}/{2}} \log (yq +2)}{ {{\mathrm {{q}}}}_3}\right ) \\ & \quad {+ } O\left (\frac {A^{\omega (q)} \kappa _4^{3n+4} \kappa _6^{\prime 6n} \kappa _6^{\prime \prime 5n+1} {{\mathrm {{q}}}}_1^{2n+1} {{\mathrm {{q}}}}_2^{({1}/{2}) n+1} \log (yq +2)}{ {{\mathrm {{q}}}}_3}\right )\\ & \qquad = O\left (\frac {A^{\omega (q)} \kappa _4^{2n+ {13}/{2}} \kappa _6^{4n+ {7}/{2}} {{\mathrm {{q}}}}_1^{n+ {7}/{2}} {{\mathrm {{q}}}}_2^{({1}/{2}) n+1} y^{n - {5}/{2}} \log (yq +2)}{ {{\mathrm {{q}}}}_3}\right )\\ & \qquad \quad {+ } O\left (\frac {A^{\omega (q)} \kappa _4^{3n+4} \kappa _6^{6n} {{\mathrm {{q}}}}_1^{2n+1} {{\mathrm {{q}}}}_2^{({1}/{2}) n+1} \log (yq +2)}{ {{\mathrm {{q}}}}_3}\right ), \end {array}\] (80) whence, summing over all solutions of $$\kappa _6 = \kappa _6^{\prime } \kappa _6^{\prime \prime }$$ which are $$O({A^{\omega (\kappa _6)}})$$ in number, we deduce that $$\Omega ^{(3)} (y;q)$$ is subject to the bound (80) with yet a different value of $$A$$. Thus, finally, referring to Lemma 5, we infer the following result that it was the object of this section to reach. Lemma 21 Suppose$$X$$,$$Y$$, and$$N$$are as in the statement of Lemma 5 and that$$q \frac {7}{2}$$, we deduce that   \[\Psi ( {{{\bf{{m}}}}},s) = \frac {\Theta ( {{{\bf{{m}}}}},s)}{L^{ * } ( {{{\bf{{m}}}}},s)},\] (87) in which   \[\Theta ( {{{\bf{{m}}}}},s) = \prod _{{p \nmid F( {{{\bf{{m}}}}})}} \left( {1 + {O \left({{\frac {1}{p^{\sigma -2}}}}\right)} }\right)\] is regular and bounded for $$\sigma >3$$. The stage has been set for the entrance of a modified Hasse–Weil $$L$$-function according to the tenets of Serre [15]. For each prime $$p$$ dividing $$F( {{{\bf{{m}}}}})$$ we take a certain factor   \[L_p ( {{{\bf{{m}}}}},s) = \prod _{j} \left({1 - \frac {\lambda _{j,p}}{p^s}}\right)^{-1}\] that is defined by Serre in such a way that $$|{\lambda _{j,p}}| = p^{({1}/{2}) a_j}$$ for some non-negative integer $$a_j$$ not exceeding $$5$$. Then the new $$L$$-function is   \[L( {{{\bf{{m}}}}},s) = L^{ * } ( {{{\bf{{m}}}}},s) \, \prod _{{p {\, {\vert } \,} F( {{{\bf{{m}}}}})}} L_p ( {{{\bf{{m}}}}},s) = L^{ * } ( {{{\bf{{m}}}}},s) \Lambda ( {{{\bf{{m}}}}},s) \quad {\mathrm {say}},\] (88) whose conductor $$B( {{{\bf{{m}}}}})$$ is regarded as being   \[\prod _{{p {\, {\vert } \,} F( {{{\bf{{m}}}}})}} p^{b_p}\] for bounded exponents $$b_p$$ and is therefore $${O({||{ {{{\bf{{m}}}}} }||^A})}$$. Associated with this, there is the function (defined initially for $$\sigma >\frac {7}{2}$$)   \[\xi ( {{{\bf{{m}}}}},s) = (2 \pi )^{-21\,s} \Gamma ^{21} (s-2) B^{({1}/{2}) s} ( {{{\bf{{m}}}}}) L ( {{{\bf{{m}}}}},s),\] about which in conformity with Serre's conjecture we enunciate the following: Hypothesis HW If $$F( {{{\bf{{m}}}}}) \neq 0$$, then $$\xi ( {{{\bf{{m}}}}},s)$$ is a meromorphic function of finite order that is regular everywhere save possibly for poles at $$s = \frac {7}{2}$$ and $$\frac {5}{2}$$, $$\xi ( {{{\bf{{m}}}}},s)$$ satisfies the functional equation   \[\xi ( {{{\bf{{m}}}}},s) = w( {{{\bf{{m}}}}}) \xi ( {{{\bf{{m}}}}}, 6-s),\] where $$w( {{{\bf{{m}}}}}) = \pm 1$$, $$\xi ( {{{\bf{{m}}}}},s) \neq 0$$ if $$\sigma \neq 3$$ (Riemann hypothesis). Since the Dirichlet's series generating the sum $$S( {{{\bf{{m}}}}},y)$$ in (85) is   \[\frac {\Theta ( {{{\bf{{m}}}}}, s + {s}/{2}) \Lambda ( {{{\bf{{m}}}}}, s + {s}/{2})}{L^{ * } ( {{{\bf{{m}}}}}, s + {s}/{2})}\] by (87) and (88), we then find on Hypothesis HW that   \[S( {{{\bf{{m}}}}}, y) = O({||{ {{{\bf{{m}}}}} }||^{\epsilon } y^{{1}/{2} + \epsilon }})\] (89) by following the proof of Lemma 10 in Ia. In final preparation for the estimation of $$\Psi _2 (Y)$$ we shall need a bound for the sum $$s( {{{\bf{{m}}}}}, y)$$ derived from $$S( {{{\bf{{m}}}}}, y)$$ by deleting the condition $$ {({k_1}, {F( {{{\bf{{m}}}}})})} = 1$$ in the summation. This is furnished by the following: Lemma 22 For$$F( {{{\bf{{m}}}}}) \neq 0$$,  \[s( {{{\bf{{m}}}}}, y) = O({||{ {{{\bf{{m}}}}} }||^{\epsilon } y^{{1}/{2} + \epsilon }}).\] Indeed, using (89) and Lemma 8, we have   \[\begin {array}{rl} s( {{{\bf{{m}}}}}, y) &= \sum _{{\substack {k_1 k_1^{\prime } \leq y \\ k_1 {\, {\vert } \,} F( {{{\bf{{m}}}}}), {({k_1^{\prime }}, {F( {{{\bf{{m}}}}})})} = 1}}} \frac {Q ( {{{\bf{{m}}}}}, k_1 k_1^{\prime })}{k_1^{{9}/{2}} k_1^{\prime {9}/{2}}} = {\sum _{\substack {k_1 \leq y \\ k_1 {\, {\vert } \,} F( {{{\bf{{m}}}}})}}} \frac {Q ( {{{\bf{{m}}}}}, k_1)}{k_1^{{9}/{2}}} {\sum _{\substack {k_1^{\prime } \leq y / k_1 \\ {({k_1^{\prime }}, {F( {{{\bf{{m}}}}})})} = 1}}} \frac {Q ( {{{\bf{{m}}}}}, k_1^{\prime })}{k_1^{\prime {9}/{2}}} \\ &= O\left (||{ {{{\bf{{m}}}}} }||^{\epsilon } y^{{1}/{2} + \epsilon } \sum _{{k_1 {\, {\vert } \,} F( {{{\bf{{m}}}}})}} \frac { |{Q ( {{{\bf{{m}}}}}, k_1)}| }{k_1^5}\right )\\ &= O\left (||{ {{{\bf{{m}}}}} }||^{\epsilon } y^{{1}/{2} + \epsilon } \sum _{{k_1 {\, {\vert } \,} F( {{{\bf{{m}}}}})}} A^{\omega (k_1)}\right ) \\ &= O({ ||{ {{{\bf{{m}}}}} }||^{\epsilon } y^{{1}/{2} + \epsilon } (A+1)^{\omega (F( {{{\bf{{m}}}}}))}}) = O({||{ {{{\bf{{m}}}}} }||^{\epsilon } y^{{1}/{2} + \epsilon }}). \end {array}\] 13. Sums involving the numbers $$l_r$$ The following treatments of $$\Upsilon _2 (X)$$ and $$\Upsilon _3 (X)$$ through what we have so far obtained will incidentally bring out the appearance of sums in which numbers of the type $$l_r$$ or $$k_r$$ appear. All are readily estimated and, by way of examples, it suffices to cite the bounds   \[\sum _{{l_r \leq \xi }} 1 = O({\xi ^{{1}/{r}}}),\quad \sum _{l_r >\xi } \frac {1}{l_r^{r_1}} = O\left (\frac {1}{\xi ^{r_1 - r^{-1}}}\right ) \quad \left (r_1 >\dfrac {1}{r}\right ),\] the first of which is the subject of Lemma 21 in Ib. 14. Estimation of $$\Upsilon _2 (X)$$ On the immediate assumption that $$n=8$$ and $$Y \leq A_1 N$$ as in (13), equation (14) implies that the segment $$\Psi _2 (Y)$$ of $$\Upsilon _2 (X)$$ is the sum   \[\sum _{F( {{{\bf{{m}}}}}) \neq 0} {\sum _{({1}/{2}) Y Y^{\delta }$$, where $$\delta$$ is a suitable small positive number. Since trivially $$|{Q( {{{\bf{{m}}}}}, l_4)}| \leq l_4^9$$ and therefore   \[\Delta _8 (Y, k_3 l_4) \leq l_4^9 \Delta _8 (Y, k_3),\] we infer by the second part of Lemma 16 that the impact on $$\Box (Y)$$ due to the first case is   \[\begin {array}{rl} & O\left (\sum _{l_4 \leq Y^{\delta }} \frac {l_4^9}{l_4^5} \left\{ \sum _{k_3 \leq Y} \left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon } k_3^{{22}/{3}}}{X^3 k_3^5} + \frac {Y^3 X^{\epsilon } N^5 k_3^{{14}/{3}}}{X^8 k_3^5}\right )\right\} \right ) \\ &\quad = O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon } Y^{5 \delta }}{X^3} \sum _{{k_3 \leq Y}} k_3^{{7}/{3}}\right ) +O\left (\frac {Y^{3+5 \delta } X^{\epsilon } N^5}{X^8} \sum _{{k_3 \leq Y}} \frac {1}{k_3^{{1}/{3}}}\right ) \\ &\quad = O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon } Y^{{8}/{3} +5 \delta }}{X^3}\right ) +O\left (\frac {Y^{3+5 \delta } X^{\epsilon } N^5}{X^8}\right ). \end {array}\] (93) On the other hand, by the first part of Lemma 16, the contribution corresponding to the second case is   \[O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon }}{X^3} \sum _{{\substack {k_3 l_4 \leq Y \\ l_4 >Y^{\delta }}}} (k_3 l_4)^{{8}/{3}}\right ) +O\left (\frac {Y^3 X^{\epsilon } N^5}{X^8} \sum _{{\substack {k_3 l_4 \leq Y \\ l_4 >Y^{\delta }}}} 1\right ),\] in which expression the first sum does not exceed   \[Y^{{8}/{3}} \sum _{l_4 >Y^{\delta }} {\sum _{k_3 \leq Y / l_4}} 1 = O\left (Y^3 \sum _{l_4 >Y^{\delta }} \frac {1}{l_4^{{1}/{3}}}\right ) = O\left (Y^{3 - {\delta }/{12}}\right )\] and the second is $$O({Y^{{1}/{3} - {\delta }/{12}}})$$. Hence, if   \[\frac {8}{3} +5 \delta = 3 - \frac {\delta }{12}\] so that $$\delta = \frac {4}{61}$$, the second contribution is formally equal to (93) and we conclude that   \[\Psi _2 (Y) = O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon }}{X^3 Y^{{\delta }/{12}}}\right ) +O\left (\frac {Y^{{20}/{61}} X^{\epsilon } N^5}{X^8}\right )\] for $$Y \leq A N$$ as in (15). Consequently, the estimate   \[\begin {array}{rl} \Upsilon _2 (X) &= O\left (\frac {X^{\epsilon }}{X^{{\delta }/{12}}}\right ) +O\left (\frac {X^{\epsilon }}{X^{{\delta }/{12}}}\right ) +O\left (\frac {X^{\epsilon } N^{{325}/{61}}}{X^8}\right )\\ &= O\left (\frac {X^{\epsilon }}{X^{{\delta }/{12}}}\right ) +O\left (\frac {X^{\epsilon }}{X^{{1}/{122}}}\right ) \\ &= {o (1)} \quad (X \to \infty ) \end {array}\] (94) is deduced in the usual manner. 15. Estimation of $$\Upsilon _3 (X)$$ By (14) and (31) the segment $$\Psi _3 (Y)$$ of $$\Upsilon _3 (X)$$ is   \[O\left (\frac {1}{Y^n} {\sum _{\substack { {{{\bf{{m}}}}} \neq 0 \\ {\mathrm {grad}} F( {{{\bf{{m}}}}}) = 0}}} J( {{{\bf{{m}}}}}, Y) \sum _{{\frac {1}{2} Y N_1$$, we therefore can express $$K(Y)$$ through the inequality   \[\begin {array}{rl} K(Y) & \leq \sum _{\substack {L \leq N_1 \\ l_3 \leq Y}} \frac { {{\mathrm {P}}} (Y, l_3)}{l_3^{({1}/{2}) n +2}} + \sum _{\substack {L >N_1 \\ l_3 \leq Y; k_3 \leq Y_1}} \frac {\Delta (Y, l_3)}{l_3^{({1}/{2}) n +2}} + \sum _{\substack {l_3 \leq Y \\ k_3 >Y_1}} \frac { {{\mathrm {P}}} (Y, l_3)}{l_3^{({1}/{2}) n +2}} \\ &= K_1 (Y) +K_2 (Y) +K_3 (Y) \quad {\mathrm {say}}, \end {array}\] (97) the elements in which are to be estimated by separate methods. First, it now being suitable to let $$n=8$$ throughout, we have from Lemma 21 that   \[\begin {array}{rl} K_1 (Y) &= O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon }}{X^3} \sum _{{L \leq N_1}} \frac {G_2 (l_3)}{l_3^6}\right ) +O\left (\frac {Y^3 X^{\epsilon } N^{{5}/{2}}}{X^{{11}/{2}}} \sum _{{l_3 \leq Y}} \frac {G_1 (l_3)}{l_3^6}\right )\\ &= O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon }}{X^3} \sum _{1}\right ) +O\left (\frac {Y^3 X^{\epsilon } N^{{5}/{2}}}{X^{{11}/{2}}} \sum _{2}\right ) \quad {\mathrm {say}}. \end {array}\] (98) Next, the summand in $$\sum _{1}$$ is   \[\prod _{{\alpha \geq 3}} \kappa _{\alpha }^{\gamma _{\alpha ,2} - 6 \alpha }\] and therefore, for a suitable positive number $$\eta$$,   \[\sum _{1} \leq N_1^{\eta } \sum _{l_3 = 1}^{\infty } \prod _{{\alpha \geq 3}} \frac {1}{\kappa _{\alpha }^{\eta (\gamma _{\alpha ,2} - 5 \alpha ) - \gamma _{2, \alpha } +6 \alpha }} \,,\] (99) wherein the exponent of $$\kappa _{\alpha }$$ in the denominator is confirmed to be given in the following table in virtue of (83) and (84) If $$\eta = \frac {20}{27} + \epsilon$$, then not only all those exponents, including that in the least favourable case where $$\alpha = 8$$, exceed $$1$$ but also exceed a small positive multiple of $$\alpha$$ when $$\alpha$$ is large. Hence, by Euler's theorem on multiplicative functions, the series in (99) is convergent and we deduce that   \[\sum _{1} = O \left\{ \left (\frac {Y^3 N^5}{X^5 {{\min}^{{3}}} (X,Y)}\right )^{{20}/{27} + \epsilon }\right\} .\] (100) Also, somewhat similarly, the summand in $$\sum _{2}$$ is   \[\prod _{\alpha \geq 3} \frac {1}{\kappa _{\alpha }^{6 \alpha - \gamma _{1, \alpha }}},\] in which, by (83) and (84), the exponent $$6 \alpha - \gamma _{1, \alpha }$$ assumes the respective values $$\frac {3}{2}$$, $$\frac {3}{2}$$, $$2$$, $$\frac {1}{2}$$ for $$\alpha = 3, 4, 5, 6$$ and exceeds $$\frac {1}{4} \alpha$$ for $$\alpha >6$$. Therefore,   \[\sum _{2} \leq \sum _{{l_3 \leq Y}} \frac {1}{\kappa _3^{{3}/{2}} \kappa _4^{{3}/{2}} \kappa _5^{2} \kappa _6^{{1}/{2}} l_7^{{1}/{4}}} = O\left (\sum _{\kappa _6 \leq Y^{{1}/{6}}} \frac {1}{\kappa _6^{{1}/{2}}}\right ) = O\left (Y^{{1}/{12}}\right )\] (101) because   \[\sum _{l_7} \frac {1}{l_7^{{1}/{4}}}\] is convergent. $$\alpha$$  $$\eta (\gamma _{\alpha ,2} - 5 \alpha ) - \gamma _{2, \alpha } +6 \alpha$$  $$4$$  $$8 \eta -4$$  $$6$$  $$18 \eta -12$$  Odd  $$\dfrac {7}{2} \eta (\alpha -1) - \dfrac {5}{2} \alpha + \dfrac {7}{2}$$  Even and $$>6$$  $$\eta (\dfrac {7}{2} \alpha -1) - \dfrac {5}{2} \alpha +1$$  $$\alpha$$  $$\eta (\gamma _{\alpha ,2} - 5 \alpha ) - \gamma _{2, \alpha } +6 \alpha$$  $$4$$  $$8 \eta -4$$  $$6$$  $$18 \eta -12$$  Odd  $$\dfrac {7}{2} \eta (\alpha -1) - \dfrac {5}{2} \alpha + \dfrac {7}{2}$$  Even and $$>6$$  $$\eta (\dfrac {7}{2} \alpha -1) - \dfrac {5}{2} \alpha +1$$  View Large Secondly, by (97) and Lemma 16,   \[\begin {array}{rl} K_2 (Y) &= O\left (\frac {Y^3 X^{\epsilon } N^5}{X^8} \sum _{{L >N_1}} \frac {1}{l_3}\right ) +O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon }}{X^3} \sum _{{\substack {l_3 \leq Y \\ k_3 \leq Y_1}}} l_3^{{5}/{3}}\right ) \\ &= O\left (\frac {Y^3 X^{\epsilon } N^5}{X^8} \sum _{3}\right ) +O\left (\frac { {{\min}^{{3}}} (X,Y) X^{\epsilon }}{X^3} \sum _{4}\right ) \quad {\mathrm {say}}. \end {array}\] (102) Then, adopting the method of estimating $$\sum _{1}$$ to suit $$\sum _{3}$$, we choose a suitable positive number $$\eta _1$$ and find that   \[\sum _{3} \leq N_1^{- \eta _1} \sum _{l_3} \prod _{\alpha \geq 3} \frac {1}{\kappa _{\alpha }^{\alpha - \eta _1 (\gamma _{2, \alpha } - 5 \alpha )}},\] the exponent of $$\kappa _{\alpha }$$ therein being as follows: All these exponents exceed $$1$$ if $$\eta _1 = \frac {7}{27} - \epsilon$$ and, as in the derivation of (100), we therefore infer that   \[\sum _{3} = O\left (\left (\frac {Y^3 N^5}{X^5 {{\min}^{{3}}} (X,Y)}\right )^{-{7}/{27} + \epsilon }\right ).\] (103) Furthermore, turning to the other constituent in (102), we also have that   \[\begin {array}{rl} \sum _{4} & \leq Y^{{5}/{3}} \sum _{{\substack {k_3 l_4 \leq Y \\ k_3 \leq Y_1}}} 1 = Y^{{5}/{3}} \sum _{k_3 \leq Y_1} {\sum _{l_4 \leq Y / k_3}} 1 \\ &= O\left (Y^{{5}/{3} + {1}/{4}} \sum _{k_3 \leq Y_1} \frac {1}{k_3^{{1}/{4}}}\right ) = O\left (Y^{{5}/{3} + {1}/{4}} Y_1^{{1}/{12}}\right ) = O\left (Y^{2 - {\delta }/{12}}\right ). \end {array}\] (104) $$\alpha$$  $$\alpha - \eta _1 (\gamma _{2, \alpha } - 5 \alpha )$$  $$4$$  $$4 - 8 \eta _1$$  $$6$$  $$6 - 18 \eta _1$$  Odd  $$\alpha - \dfrac {7}{2} \eta _1 (\alpha -1)$$  Even and $$>6$$  $$\alpha - \eta _1 (\dfrac {7}{2} \alpha -1)$$  $$\alpha$$  $$\alpha - \eta _1 (\gamma _{2, \alpha } - 5 \alpha )$$  $$4$$  $$4 - 8 \eta _1$$  $$6$$  $$6 - 18 \eta _1$$  Odd  $$\alpha - \dfrac {7}{2} \eta _1 (\alpha -1)$$  Even and $$>6$$  $$\alpha - \eta _1 (\dfrac {7}{2} \alpha -1)$$  View Large Thirdly, it follows from Lemma 21 and its Corollary that   \[\begin {array}{rl} K_3 (Y) &= O\left (\frac {X^{\epsilon } Y^3 N^{{5}/{2}}}{X^{{11}/{2}}} \sum _{\substack {k_3 l_4 \leq Y \\ k_3 >Y_1}} \frac {1}{k_3^{{1}/{2}}}\right ) +O\left (\frac { X^{\epsilon } {{\min}^{{3}}} (X,Y)}{X^3} \sum _{{\substack {k_3 l_4 \leq Y \\ k_3 >Y_1}}} k_3^{{4}/{3}} l_4^{{5}/{2}}\right )\\ &= O\left (\frac {X^{\epsilon } Y^3 N^{{5}/{2}}}{X^{{11}/{2}}} \sum _{5}\right ) +O\left (\frac {X^{\epsilon } {{\min}^{{3}}} (X,Y)}{X^3} \sum _{6}\right ) \quad {\mathrm {say}}. \end {array}\] (105) Here,   \[\sum _{5} = \sum _{k_3 >Y_1} \frac {1}{k_3^{{1}/{2}}} {\sum _{l_4 \leq Y / k_3}} 1 = O\left (Y^{{1}/{4}} \sum _{k_3 >Y_1} \frac {1}{k_3^{{3}/{4}}}\right ) = O({Y^{{1}/{4}}) Y_1^{-{5}/{12}}} = O({Y^{- {1}/{6} + ({5}/{12}) \delta }})\] (106) and   \[\sum _{6} \leq Y^{{4}/{3}} \sum _{{\substack {k_3 l_4 \leq Y \\ k_3 >Y_1}}} l_4^{{7}/{6}} = O\left (Y^{{4}/{3} + {17}/{12}} \sum _{k_3 >Y_1} \frac {1}{k_3^{{17}/{12}}}\right ) = O({Y^{{11}/{4}} Y_1^{- {13}/{12}}}) = O({Y^{{5}/{3} + ({13}/{12}) \delta }}),\] (107) with which estimates we complete the treatment of all the ingredients that $$\Psi _3 (Y)$$ contains. The terms in (98) and (102) containing $$\sum _{1}$$ and $$\sum _{3}$$, respectively, are seen through (100) and (103) to be   \[O \left\{\frac {X^{\epsilon } {{\min}^{{3}}} (X,Y)}{X^3} \left (\frac {N^5 Y^3}{X^5 {{\min}^{{3}}} (X,Y)}\right )^{{20}/{27}}\right\} \quad {\mathrm {and}}\quad O \left\{\frac {X^{\epsilon } Y^3 N^5}{X^8} \left (\frac {N^5 Y^3}{X^5 {{\min}^{{3}}} (X,Y)}\right )^{- {7}{27}}\right\},\] which, being formally equal, coalesce by (97) into a contribution of   \[O \left\{X^{\epsilon } \left (\frac {N^5 Y^3}{X^8}\right )^{{20}/{27}}\right\} = O\left (\frac {X^{\epsilon } Y^{{20}/{9}}}{X^{{10}/{27}}}\right )\] (108) to $$K(Y)$$ regardless of whether $$Y 0$$ since $$f( {{{\bf{{x}}}}})$$ is assumed to have a non-trivial zero in $${\Bbb {Q}}_p$$ and therefore one in $${\Bbb {Z}}_p$$ that is indivisible by $$p$$. Next, having reminded ourselves that $$ {{{\bf{{a}}}}}$$ is a sufficiently large scalar multiple of a given real (non-singular) zero of $$f( {{{\bf{{x}}}}})$$, we must turn to the integral   \[I_{k} (0) = \int _{ {{{\bf{{a}}}}} - {\boldsymbol {{\upsilon }}} }^{ {{{\bf{{a}}}}} + {\boldsymbol {{\upsilon }}} } \Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}}) h\left (\frac {k}{N}, f( {{{\bf{{t}}}}})\right ) {d} {{{\bf{{t}}}}}\] and subject it to a simplification of Heath-Brown's treatment that suffices for our current needs. Since $${\mathrm {grad}} f( {{{\bf{{a}}}}}) \neq 0$$, we may assume by way of a typical example that $$|{ {\partial {^{{}}}{f} / \partial {{t_1}^{{}}}} }| >A$$ within the region of integration and may therefore replace the variables of integration by $$y = f( {{{\bf{{t}}}}})$$ and those in $$ {{{\bf{{t}}}}} ^{\prime } = (t_2, \ldots , t_n)$$. Thus, taking $$y$$ to be the outermost variable of integration, we can express the integral as   \[\int h(r,y) {\mathscr {S}} (y) \, {d} y,\] (112) where the region of integration in   \[{\mathscr {S}} (y) = \int \frac {\Gamma ( {{{\bf{{t}}}}} - {{{\bf{{a}}}}})}{ {\partial {^{{}}}{f} / \partial {{t_1}^{{}}}} } {d} {{{\bf{{t}}}}} ^{\prime }\] is over all $$ {{{\bf{{t}}}}} ^{\prime }$$ compatible with the conditions $$||{ {{{\bf{{t}}}}} ^{\prime } - {{{\bf{{a}}}}} ^{\prime }}|| \leq 1$$ and $$y = f( {{{\bf{{t}}}}})$$. We now apply Heath-Brown's important Lemma 9 of Hb to (112). This gives   \[I_k (0) = {\mathscr {S}} (0) + {O \left({{\frac {k^{{1}/{3}}}{N^{{1}/{3}}}}}\right)} = O(1)\] with the result through (111) that   \[\begin {array}{rl} \Upsilon _1 (X) &= {\mathscr {S}} (0) {{\frak {S}}} + {O \left({{\sum _{k >A_1 N} \frac {A^{\omega (k)}}{k^{{5}/{3}}}}}\right)} + {O \left({{\frac {1}{N^{{1}/{3}}} \sum _{k \leq A_1 N} \frac {A^{\omega (k)}}{k^{{4}/{3}}}}}\right)} \\ &= {\mathscr {S}} (0) {{\frak {S}}} + {O \left({{\frac {\log ^{A-1} N}{N^{{2}/{3}}}}}\right)} + {O \left({{\frac {1}{N^{{1}/{3}}}}}\right)} \\ &= {\mathscr {S}} {{\frak {S}}} + {o (1)} \quad {\mathrm {say}}, \end {array}\] (113) as $$X \to \infty$$. Also, since $$f( {{{\bf{{a}}}}}) = 0$$, we know by the implicit function theorem that there is a positive number $$\delta <\frac {1}{2}$$ with the property that there is a zero $$t_1$$ of $$f (t_1, {{{\bf{{t}}}}} ^{\prime })$$ satisfying $$|{t_1 - a_1}| <\delta$$ whenever $$||{ {{{\bf{{t}}}}} ^{\prime } - {{{\bf{{a}}}}} ^{\prime }}|| <\delta$$. It therefore follows that   \[{\mathscr {S}} >0.\] (114) 17. The theorem At last the theorem is in hand. From (14), (94), (110), and (113) we infer that   \[\Upsilon (X) \geq \frac {1}{2} X^5 ({\mathscr {S}} {{\frak {S}}} + {o (1)})\] and then from (114) the inequality   \[\Upsilon (X) >A X^5,\] which implies that the indeterminate equation $$f( {{{\bf{{l}}}}}) = 0$$ has a non-zero solution. This has been obtained on the assumption (5), the negation of which has already been shown to imply the existence of such a solution. We therefore have proved our theorem: Theorem Let $$f( {{{\bf{{x}}}}})$$ be a non-singular octonary cubic form with rational integral coefficients. Then on Hypothesis HW the indeterminate equation   \[f( {{{\bf{{l}}}}}) = 0\] has a non-trivial integral solution if $$f( {{{\bf{{x}}}}})$$ have a non-trivial zero in every $$p$$-adic field $${\Bbb {Q}}_p$$. Acknowledgements We are greatly indebted to the Heilbronn Institute for Mathematical Research in Bristol for support during the creation of this paper. References 1 Cohen S. D., ‘ The distribution of Galois groups and Hilbert's irreducibility theorem’, Proc. London Math. Soc.  ( 3) 43 ( 1981) 227– 250. Google Scholar CrossRef Search ADS   2 Davenport H., ‘ Cubic forms in sixteen variables’, Phil. Trans. R. Soc. London Ser. A  272 ( 1963) 285– 303. Google Scholar CrossRef Search ADS   3 Deligne P., ‘ La Conjecture de Weil I’, Inst. Hautes Études Sci. Publ. Math.  43 ( 1974) 273– 307. Google Scholar CrossRef Search ADS   4 Heath-Brown D. R., ‘ Cubic forms in ten variables’, Proc. London Math. Soc.  ( 3) 47 ( 1983) 225– 257. Google Scholar CrossRef Search ADS   5 Heath-Brown D. R., ‘ A new form of the circle method, and its application to quadratic forms’, J. reine angew. Math.  481 ( 1996) 149– 206. 6 Heath-Brown D. R., ‘ The circle method and diagonal cubic forms’, R. Soc. Lond. Phil. Trans. Ser. A Math. Phys. Eng. Sci.  356 ( 1998) 673– 699. Google Scholar CrossRef Search ADS   7 Heath-Brown D. R., ‘ Cubic forms in 14 variables’, Invent. Math.  170 ( 2007) 199– 230. Google Scholar CrossRef Search ADS   8 Hooley C., ‘ On Waring's problem’, Acta Math.  157 ( 1986) 49– 97. Google Scholar CrossRef Search ADS   9 Hooley C., ‘ On nonary cubic forms’, J. reine angew. Math.  386 ( 1988) 32– 98. 10 Hooley C., ‘ On nonary cubic forms: II’, J. reine angew. Math.  415 ( 1991) 95– 165. 11 Hooley C., ‘ On the number of points on a complete intersection over a finite field’, J. Number Theory  38 ( 1991) 338– 358. Google Scholar CrossRef Search ADS   12 Hooley C., ‘ On nonary cubic forms: III’, J. reine angew. Math.  456 ( 1994) 53– 63. 13 Hooley C., ‘ On Hypothesis $${\rm K}^{* }$$ in Waring's problem’, Sieve methods, exponential sums, and their applications in number theory , London Mathematical Society Lecture Note Series 237 (eds Greaves G. R. H. Harman G. Huxley M. N.; Cambridge University Press, Cambridge, 1997) 178– 185. 14 Hooley C., ‘ On nonary cubic forms: IV’, J. reine angew. Math.  680 ( 2013) 23– 39. 15 Serre J.-P., ‘ Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures)’. In Œuvres, Collected Papers, vol. II, 1960–1971  ( Springer, Berlin, 1986) 581– 592. © 2014 London Mathematical Society TI - On octonary cubic forms JF - Proceedings of the London Mathematical Society DO - 10.1112/plms/pdt066 DA - 2014-02-24 UR - https://www.deepdyve.com/lp/oxford-university-press/on-octonary-cubic-forms-aBSFTC2sVx SP - 241 EP - 281 VL - 109 IS - 1 DP - DeepDyve ER -