TY - JOUR AU - Hou, Xueling AB - This work investigates the influence of minute additions of cobalt (Co) on the hydrogen absorption characteristics, phase composition, binding energy, and adsorption energy of the Zr70V24.6Fe5.4−xCox (wt%) (x = 0 ~ 2.0) alloys. The research revealed that the Zr70V24.6Fe4.4Co1.0 alloy exhibits the peak hydrogen absorption capacity. In comparison with the Zr70V24.6Fe5.4 (wt%) alloy, the hydrogen absorption properties increase from 80196.34 Pa cm3 g−1 (x = 0) to 133364.79 Pa cm3 g−1 (x = 1.0 wt%), representing a 66.30% improvement in performance. The enhancements in performance can be attributed to: an increase in lattice volume due to the addition of Co, which promotes the diffusion of hydrogen atoms within the lattice; a phase transition of the AB2 phase from Zr(V0.75Fe0.25)2 to Zr(V0.91Co0.09)2, and a significant decrease in the binding energy of Zr from 182.99 eV (x = 0) to 182.30 eV (x = 1.0 wt%), V in the alloy from 530.91 eV (x = 0) to 530.35 eV (x = 1.0 wt%), thereby enhancing the alloy’s reactivity; according to the density functional theory calculations, the weighted adsorption energy of the alloy for H2 is increased from 35.11 to 38.14 eV. These research findings offer valuable guidance for the development of getters, and besides, expected to help promote further application of getters in high-tech fields such as military and medical. TI - Effects of Co addition on the microstructure and the hydrogen absorption properties of Zr–V–Fe-based alloys JF - Journal of Materials Science DO - 10.1007/s10853-024-10288-1 DA - 2024-10-01 UR - https://www.deepdyve.com/lp/springer-journals/effects-of-co-addition-on-the-microstructure-and-the-hydrogen-WQLwsNRUQ0 SP - 19303 EP - 19318 VL - 59 IS - 40 DP - DeepDyve ER -