TY - JOUR AU - Johnson, G. S. AB - ABSTRACT The objective of this study was to determine the relationships of uncoupling protein 2 and 3 expression, SNP of mitochondrial DNA, and residual feed intake (RFI) in Angus steers selected to have high or low RFI. Individual feed intake was measured via the GrowSafe feed intake system over a 3-mo period and used to calculate RFI, a measure of efficiency. Based on these calculations, 6 low- (average RFI = −1.57 kg) and 6 high- (average RFI = 1.66 kg) RFI steers were selected for further study. Blood was collected via jugular venipuncture 1 wk before slaughter for the isolation of mitochondrial DNA. The steers were then killed to collect LM for the measurement of uncoupling protein 2 and 3 mRNA and protein expression. Protein and mRNA expression of uncoupling protein 2 and 3 were determined by Western blotting and quantitative PCR, respectively. To determine SNP of mitochondrial DNA, total DNA was isolated from blood via standard phenol/chloroform extraction; fragments were amplified with PCR and sequenced with an automated nucleotide sequencer. Average daily gain and carcass composition were not different (P > 0.13) between the high- and low-RFI steers; however, ADFI by the high-RFI animals was 3.77 kg greater (P < 0.001) than the low-RFI animals. No difference (P > 0.55) was observed between the high- and low-RFI animals in their expression of uncoupling protein 2 or 3 mRNA or protein. On average 9.8 and 8.9 polymorphisms were found per mitochondrial genome for the low- and high-RFI steers, respectively. None of these polymorphisms were related to RFI. It seems that the expression of uncoupling protein 2 and 3 and mitochondrial DNA sequence are not related to RFI status. INTRODUCTION Mitochondria are the primary site of cellular energy production and produce the majority of ATP used to drive cellular processes. The electron transport chain is composed of 83 subunits, of which 70 and 13 are encoded by the nuclear and mitochondrial genome, respectively (Leonard and Schapira, 2000). Mutations of mitochondrial DNA have been shown to alter mitochondrial energy production in humans, and a number of disease states are characterized by the presence of one or more mitochondrial DNA mutations (Wallace, 1999). Many other nuclear-encoded proteins are involved in mitochondrial function including inner membrane transporters such as adenine nucleotide translocator and uncoupling protein 2 and 3, whose functions have yet to be elucidated. One of the hypothesized roles of uncoupling protein 2 and 3 is to “uncouple” oxidative phosphorylation from electron transport by transporting protons back into the mitochondrial matrix. Uncoupling protein 2 or 3 null mice have been shown to have reduced proton leak (Krauss et al., 2002), and therefore uncoupling proteins could modulate mitochondrial energy production. Previous work in cattle (Kolath et al., 2005) and poultry (Bottje et al., 2002) has provided evidence of a link between mitochondrial respiration and feed efficiency. We hypothesized that 2 mechanisms could explain this observation. First, that increased expression of uncoupling protein 2, 3, or both in high-residual feed intake (RFI) steers would uncouple the proton gradient and thereby increase the energy requirements of the animal to produce the same quantity of ATP. Second, polymorphisms of mitochondrial DNA in high-RFI steers would reduce the function of the electron transport chain, altering the rate of mitochondrial respiration. Therefore, the objective of this study was to determine the relationships between uncoupling protein 2 and 3 expression and mitochondrial DNA sequence in Angus steers selected to have high or low RFI. MATERIALS AND METHODS Animal Management The research protocols used in this study were approved by the University of Missouri Animal Care and Use Committee (No. 3278). Eighty Angus steers (average initial BW = 262.2 ± 21.75 kg) were used to select high- and low-RFI animals. Steers were obtained from a single herd enrolled in the MFA Health Track Beef Alliance, Columbia, MO, and had been previously vaccinated and preconditioned for 45 d before arrival at the University of Missouri Beef Research Farm. Upon receiving the animals, electronic identification tags (Allflex USA Inc., Dallas-Ft. Worth Airport, TX) were attached to the exterior of the left ear for the measurement of individual feed intake with the GrowSafe feed intake system (GrowSafe Systems Ltd., Airdrie, AB, Canada). The GrowSafe system (model 4000E) consisted of a total of 16 nodes with 2 nodes per pen. Ten animals were housed in each of the 8 pens with 5 animals per node. Data were collected over the entire feeding period of approximately 160 d. Days in which there was a hardware malfunction or power failure or feed leaks exceeded 3% were removed from the analysis. Average daily leak throughout the experimental period, excluding days removed from the analysis, was 0.48 ± 0.66%. Steers were placed on a receiving diet for 14 d to allow for acclimation to the feeding system. The composition of the experimental diet fed for the remainder of the experimental period is shown in Table 1. All steers had ad libitum access to both feed and water. Steers were weighed every 28 d, and RFI was calculated for the entire feeding period. Expected feed intake was calculated by regressing actual intake against ADG and metabolic midweight (Basarab et al., 2003). The RFI value for each animal was calculated as the difference between the actual and expected intakes. Table 1. Composition of the experimental diet Ingredient  Inclusion rate, % as-fed      Corn  60.5      Soyhulls  20      Grass hay  8      Dried distillers grains + solubles  5      Soybean meal  4.5      Limestone  0.7      Vitamin ADE premix1  0.6      Urea  0.5      Salt  0.25      Mineral premix2  0.02      Rumensin 80  0.02  Chemical composition3      CP, %  14.7      ME, Mcal/kg  2.99  Ingredient  Inclusion rate, % as-fed      Corn  60.5      Soyhulls  20      Grass hay  8      Dried distillers grains + solubles  5      Soybean meal  4.5      Limestone  0.7      Vitamin ADE premix1  0.6      Urea  0.5      Salt  0.25      Mineral premix2  0.02      Rumensin 80  0.02  Chemical composition3      CP, %  14.7      ME, Mcal/kg  2.99  1 Contained (as-fed basis) 10% Fe, 10% Mn, 10% Zn, 2% Cu, 1,500 ppm Se, 1,000 ppm I, and 500 ppm Co. 2 Contained (as-fed basis) 4,000,000 IU of vitamin A, 800,000 IU of vitamin D, and 1,200 IU of vitamin E/kg. 3 Calculated using tabular values from the NRC (1996). View Large Table 1. Composition of the experimental diet Ingredient  Inclusion rate, % as-fed      Corn  60.5      Soyhulls  20      Grass hay  8      Dried distillers grains + solubles  5      Soybean meal  4.5      Limestone  0.7      Vitamin ADE premix1  0.6      Urea  0.5      Salt  0.25      Mineral premix2  0.02      Rumensin 80  0.02  Chemical composition3      CP, %  14.7      ME, Mcal/kg  2.99  Ingredient  Inclusion rate, % as-fed      Corn  60.5      Soyhulls  20      Grass hay  8      Dried distillers grains + solubles  5      Soybean meal  4.5      Limestone  0.7      Vitamin ADE premix1  0.6      Urea  0.5      Salt  0.25      Mineral premix2  0.02      Rumensin 80  0.02  Chemical composition3      CP, %  14.7      ME, Mcal/kg  2.99  1 Contained (as-fed basis) 10% Fe, 10% Mn, 10% Zn, 2% Cu, 1,500 ppm Se, 1,000 ppm I, and 500 ppm Co. 2 Contained (as-fed basis) 4,000,000 IU of vitamin A, 800,000 IU of vitamin D, and 1,200 IU of vitamin E/kg. 3 Calculated using tabular values from the NRC (1996). View Large Six high- and 6 low-RFI steers were selected based on their RFI values and were transported to the University of Missouri Abattoir where the animals were killed; tissue was obtained from the longissimus lumborum, frozen in liquid nitrogen, and stored at − 80° C until further study. Hot carcass weights were recorded for each animal, and the carcasses were chilled for a 24-h period at 5° C. After the 24-h chill, a beef LM area dot grid was used to measure LM area of each carcass to the nearest 0.01 cm2. Fat thicknesses were determined using a USDA preliminary yield grade ruler (USDA, 1997) at an anatomical location perpendicular to the vertebral column and ³/3 of the distance caudal to the LM. To determine preliminary yield grades, the fat measurements were then adjusted, correcting for any atypical fat distribution. Marbling scores were identified by an experienced grader using the USDA marbling standards (USDA, 1997; Abundant, Moderately Abundant, Slightly Abundant, Moderate, Modest, Small, Slight, Traces, and Practically Devoid). Maturity scores were also assessed using the USDA standards (USDA, 1997) for animals older than A maturity. RNA Isolation and Quantitative Real-Time PCR Total RNA was isolated using the Trizol procedure (Invitrogen Life Technologies, Carlsbad, CA). After isolation, RNA was suspended in molecular biology-grade H2O. The RNA concentration of the samples was determined by measuring the absorbance at 260 nm. The purity of the isolated RNA was verified by measuring the ratio of absorbencies between 260 and 280 nm, and by separating 2.5 μg of RNA on a 0.8% agarose gel in 0.09 M Tris-borate, 0.002 M EDTA, with 0.5 μg of ethidium bromide/mL. Total RNA was then reverse-transcribed using the Superscript First Strand synthesis system for reverse transcription-PCR (Invitrogen Life Technologies). Primers and TaqMan probes for uncoupling protein 2, uncoupling protein 3, and cyclophilin A (which was used as a housekeeping gene) were designed using the Primer Express software (Applied Biosystems, Foster City, CA; Table 2). Amplification was performed in triplicate using Taqman Universal PCR master mix (Applied Biosystems), and fluorescence was detected with the ABI Prism 7700 sequence detector (Applied Biosystems). The data were analyzed using the Sequence Detection Software (Applied Biosystems), and expression levels were calculated by subtracting the cycle threshold value for cyclophilin A from the gene of interest. Table 2. Primer and probe sequences for bovine uncoupling protein 2, uncoupling protein 3, and cyclophilin A Item  Accession number  Sequence  Uncoupling protein 2  AF127029        Forward primer    CCC TCA CCA TGC TCC AGA AG      Reverse primer    AGG ATC CCA AGC GGA GAA A      Probe    FAM-ACC CCA AGC CTT CTA CAA AGG GTT CAT G-TAMRA  Uncoupling protein 3  NM_174210        Forward primer    TCA AGG AAA AGC TGC TAG ACT ACC A      Reverse primer    GCT CCA AAG GCA GAG ACG AA      Probe    FAM-TCA CCG ACA ACT TCC CCT GCC-TAMRA  Cyclophilin A  NM_178320        Forward primer    TTA TAA AGG TTC CTG CTT TCA CAG AA      Reverse primer    CCA TTA TGG CGT GTG AAG TCA      Probe    FAM-CAA AGC CAA CAA AGA AAT CTT AGA CGT AAG CAT ACG-TAMRA  Item  Accession number  Sequence  Uncoupling protein 2  AF127029        Forward primer    CCC TCA CCA TGC TCC AGA AG      Reverse primer    AGG ATC CCA AGC GGA GAA A      Probe    FAM-ACC CCA AGC CTT CTA CAA AGG GTT CAT G-TAMRA  Uncoupling protein 3  NM_174210        Forward primer    TCA AGG AAA AGC TGC TAG ACT ACC A      Reverse primer    GCT CCA AAG GCA GAG ACG AA      Probe    FAM-TCA CCG ACA ACT TCC CCT GCC-TAMRA  Cyclophilin A  NM_178320        Forward primer    TTA TAA AGG TTC CTG CTT TCA CAG AA      Reverse primer    CCA TTA TGG CGT GTG AAG TCA      Probe    FAM-CAA AGC CAA CAA AGA AAT CTT AGA CGT AAG CAT ACG-TAMRA  View Large Table 2. Primer and probe sequences for bovine uncoupling protein 2, uncoupling protein 3, and cyclophilin A Item  Accession number  Sequence  Uncoupling protein 2  AF127029        Forward primer    CCC TCA CCA TGC TCC AGA AG      Reverse primer    AGG ATC CCA AGC GGA GAA A      Probe    FAM-ACC CCA AGC CTT CTA CAA AGG GTT CAT G-TAMRA  Uncoupling protein 3  NM_174210        Forward primer    TCA AGG AAA AGC TGC TAG ACT ACC A      Reverse primer    GCT CCA AAG GCA GAG ACG AA      Probe    FAM-TCA CCG ACA ACT TCC CCT GCC-TAMRA  Cyclophilin A  NM_178320        Forward primer    TTA TAA AGG TTC CTG CTT TCA CAG AA      Reverse primer    CCA TTA TGG CGT GTG AAG TCA      Probe    FAM-CAA AGC CAA CAA AGA AAT CTT AGA CGT AAG CAT ACG-TAMRA  Item  Accession number  Sequence  Uncoupling protein 2  AF127029        Forward primer    CCC TCA CCA TGC TCC AGA AG      Reverse primer    AGG ATC CCA AGC GGA GAA A      Probe    FAM-ACC CCA AGC CTT CTA CAA AGG GTT CAT G-TAMRA  Uncoupling protein 3  NM_174210        Forward primer    TCA AGG AAA AGC TGC TAG ACT ACC A      Reverse primer    GCT CCA AAG GCA GAG ACG AA      Probe    FAM-TCA CCG ACA ACT TCC CCT GCC-TAMRA  Cyclophilin A  NM_178320        Forward primer    TTA TAA AGG TTC CTG CTT TCA CAG AA      Reverse primer    CCA TTA TGG CGT GTG AAG TCA      Probe    FAM-CAA AGC CAA CAA AGA AAT CTT AGA CGT AAG CAT ACG-TAMRA  View Large Western Blotting Frozen tissue samples were homogenized in PBS (137 mM NaCl, 3 mM KCl, 6.5 mM Na2PO4, and 3.5 mM KH2PO4), centrifuged at 500 × g for 10 min, and the supernatant was aspirated. The protein concentration of the supernatant was determined with a BCA protein assay kit (Pierce Biotechnology Inc., Rockford, IL). Thirty micrograms of protein was fractionated on 10% SDS-Page gels and then blotted to polyvinylidene fluoride membranes overnight. An Enhanced NuGlo western blotting kit (Alpha Diagnostics Inc., San Antonio, TX) was utilized for blocking and development of the blots. Antibodies against uncoupling protein 2 and 3 were purchased from Alpha Diagnostics. The primary antibodies were diluted 1:750 and 1:1,000 for uncoupling protein 2 and 3, respectively. The blots were exposed to Hyperfilm ECL (GE Healthcare, Piscataway, NJ), and the density of the each band was determined using 1D Scan EX software (Scanalytics Inc., Fairfax, VA). Mitochondrial DNA Sequencing Blood samples were collected via jugular venipuncture from the 12 selected animals, into Vacutainers (Becton, Dickinson and Company, Franklin Lakes, NJ) containing EDTA as an anticoagulant, 1 wk before the transport of the steers to the University of Missouri Abattoir for tissue collection. Standard phenol/chloroform extraction was used to extract DNA from the blood samples. The primers used for PCR amplification were based on the GenBank Bos taurus mitochondrial genome (GenBank Accession No. NC_001567) and were designed with Primer Premier 5 software (Premier Bio-soft International, Palo Alto, CA). Twenty-one primer pairs were used to amplify fragments that overlapped adjacent fragments by approximately 100 bp. Eleven additional single primers were used to resolve regions that the original 21 primer pairs could not. Amplified PCR products were verified by agarose gel electrophoresis. Most amplicons were purified using QI-Aquick PCR purification columns (Qiagen Inc., Valencia, CA). In some cases in which byproducts were detected in the agarose gel, the fragment of interest was purified by preparative polyacrylamide gel electrophoresis (Shibuya et al., 1993). A 377A automatic nucleotide sequencer (Applied Biosystems) and the BigDye kit (Applied Biosystems) were used to sequence all purified PCR products. The resulting sequences were edited and assembled using GeneTool 2.0 (BioTools Inc., Edmonton, AB, Canada) to produce a single contiguous ~16,400-bp sequence for each steer. The assembled mitochondrial DNA sequences were compared with one another and to the original sequence in GenBank to discover polymorphic sites with GeneTool 2.0's multialign feature. Statistical Analysis The data were analyzed using the GLM Procedure (SAS Inst. Inc., Cary, NC) as a completely randomized design, with animal as the experimental unit and RFI group as a fixed effect. An alpha level of 0.05 was used for the determination of statistical significance. RESULTS AND DISCUSSION The performance of the high- and low-RFI steers is shown in Table 3. There were no differences (P > 0.13) in initial or final BW or ADG between the 2 groups. However, G:F was increased (P < 0.001) for the low-RFI steers, and ADFI was greater (P < 0.001) for the high-RFI steers, which consumed 3.77 kg/d more feed than the low-RFI steers. Basarab et al. (2003) and Kolath et al. (2005) have reported similar data in which feed intake was greater (P < 0.001) for the high-RFI animals and G:F was increased (P < 0.001) in low-RFI steers, but ADG and BW of high- and low-RFI steers were not different (P > 0.80). Carcass composition as assessed by LM area, fat thickness over the 12th rib, HCW, USDA yield grade, and marbling score were not different (P > 0.45) between the high- and low-RFI groups. These data agree with previous reports from our laboratory (Kolath et al., 2005) in which carcass composition was not altered by RFI status. Other authors (Richardson et al., 2001; Basarab et al., 2003) have reported increased fat deposition in steers selected to have high-RFI. Table 3. Performance and carcass measurements of steers with high or low residual feed intake (RFI) Variable  Low RFI (n = 6)  High RFI (n = 6)  SEM  Initial BW, kg  261  263  10.4  Final BW, kg  496  515  11.8  ADG, kg  1.4  1.5  0.05  G:F  0.17a  0.13b  0.001  ADFI, kg  7.9b  11.7a  0.30  Residual feed intake  − 1.57b  1.66a  0.09  HCW, kg  334  339  10.9  LM area, cm2  73.0  73.2  6.03  Fat thickness over the 12th rib, cm  1.4  1.6  0.22  USDA yield grade  3.6  3.8  0.44  Marbling score1  58.3  59.2  7.48  Variable  Low RFI (n = 6)  High RFI (n = 6)  SEM  Initial BW, kg  261  263  10.4  Final BW, kg  496  515  11.8  ADG, kg  1.4  1.5  0.05  G:F  0.17a  0.13b  0.001  ADFI, kg  7.9b  11.7a  0.30  Residual feed intake  − 1.57b  1.66a  0.09  HCW, kg  334  339  10.9  LM area, cm2  73.0  73.2  6.03  Fat thickness over the 12th rib, cm  1.4  1.6  0.22  USDA yield grade  3.6  3.8  0.44  Marbling score1  58.3  59.2  7.48  a,b Means within a row lacking a common superscript differ (P < 0.001). 1 Marbling scores: Modest = 50.0 to 59.9. View Large Table 3. Performance and carcass measurements of steers with high or low residual feed intake (RFI) Variable  Low RFI (n = 6)  High RFI (n = 6)  SEM  Initial BW, kg  261  263  10.4  Final BW, kg  496  515  11.8  ADG, kg  1.4  1.5  0.05  G:F  0.17a  0.13b  0.001  ADFI, kg  7.9b  11.7a  0.30  Residual feed intake  − 1.57b  1.66a  0.09  HCW, kg  334  339  10.9  LM area, cm2  73.0  73.2  6.03  Fat thickness over the 12th rib, cm  1.4  1.6  0.22  USDA yield grade  3.6  3.8  0.44  Marbling score1  58.3  59.2  7.48  Variable  Low RFI (n = 6)  High RFI (n = 6)  SEM  Initial BW, kg  261  263  10.4  Final BW, kg  496  515  11.8  ADG, kg  1.4  1.5  0.05  G:F  0.17a  0.13b  0.001  ADFI, kg  7.9b  11.7a  0.30  Residual feed intake  − 1.57b  1.66a  0.09  HCW, kg  334  339  10.9  LM area, cm2  73.0  73.2  6.03  Fat thickness over the 12th rib, cm  1.4  1.6  0.22  USDA yield grade  3.6  3.8  0.44  Marbling score1  58.3  59.2  7.48  a,b Means within a row lacking a common superscript differ (P < 0.001). 1 Marbling scores: Modest = 50.0 to 59.9. View Large The locations of SNP in the mitochondrial DNA sequence of high- and low-RFI steers are shown in Tables 4 to 8. On average, 9.8 and 8.9 mutations in the mitochondrial DNA sequence of high- and low-RFI steers, respectively, were found compared with the Genbank Bos taurus mitochondrial complete genome (GenBank Accession: NC_001567). At 3 locations (587, 9,682, and 13,310 bp) all 12 steers differed from the published sequence, indicating a possible error in the Genbank sequence. Multiple polymorphisms were found in the D-loop region in both the high- and low-RFI animals with the majority of the polymorphisms being found in at least one steer of both the high- and low-RFI groups. Only 1 steer in the low-RFI group contained a given polymorphism found in the genes of cytochrome c oxidase subunits I and III, NADH dehydrogenase subunit 4L, cytochrome B, and the serine transfer RNA. None of the animals in the high-RFI group contained a mutation in these genes. One steer in the high-RFI group contained a polymorphism in the leucine transfer RNA. At least 1 steer in both the high- and low-RFI groups contained a mutation in the following genes: NADH dehyrdrogenase subunits 1, 2, 4, 5, and 6, cytochrome c oxidase subunit 2, ATP synthase F0 subunit 6, and both ribosomal RNA. Only 2 of the 13 protein genes, NADH dehydrogenase subunit 3 and ATP synthase subunit 8 were not found to contain any polymorphisms. Nineteen of the transfer RNA genes also did not contain any polymorphisms. The lack of mutations across animals in either group indicated that polymorphisms of mitochondrial DNA are not related to the RFI status in a contemporary group of Angus steers. Table 4. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers     Region:  D-loop  12S rRNA  16S rRNA      Position:  106  169  173  221+  222  363  363+  364−  587+  639  809  1132  1481  1600  ID  RFI group  Published sequence:  T  A  A  —  T  C  —  —  —  T  C  G  G  A  997  Low      G  G        CC    C          —  7112  Low    C  G    C          C          —  9009  Low              —    G  C            7058  Low          C  —  —    G  C            45  Low        G            C          —  7092  Low        G      —    G  C    T        7055  High      G    C          C      A      7043  High    C  G    C    —    G  C          —  4  High        G      —    G  C    T        7010  High              —    G  C  C      A  —  43  High      G    C    —      C            8007  High          CC          C                Region:  D-loop  12S rRNA  16S rRNA      Position:  106  169  173  221+  222  363  363+  364−  587+  639  809  1132  1481  1600  ID  RFI group  Published sequence:  T  A  A  —  T  C  —  —  —  T  C  G  G  A  997  Low      G  G        CC    C          —  7112  Low    C  G    C          C          —  9009  Low              —    G  C            7058  Low          C  —  —    G  C            45  Low        G            C          —  7092  Low        G      —    G  C    T        7055  High      G    C          C      A      7043  High    C  G    C    —    G  C          —  4  High        G      —    G  C    T        7010  High              —    G  C  C      A  —  43  High      G    C    —      C            8007  High          CC          C            View Large Table 4. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers     Region:  D-loop  12S rRNA  16S rRNA      Position:  106  169  173  221+  222  363  363+  364−  587+  639  809  1132  1481  1600  ID  RFI group  Published sequence:  T  A  A  —  T  C  —  —  —  T  C  G  G  A  997  Low      G  G        CC    C          —  7112  Low    C  G    C          C          —  9009  Low              —    G  C            7058  Low          C  —  —    G  C            45  Low        G            C          —  7092  Low        G      —    G  C    T        7055  High      G    C          C      A      7043  High    C  G    C    —    G  C          —  4  High        G      —    G  C    T        7010  High              —    G  C  C      A  —  43  High      G    C    —      C            8007  High          CC          C                Region:  D-loop  12S rRNA  16S rRNA      Position:  106  169  173  221+  222  363  363+  364−  587+  639  809  1132  1481  1600  ID  RFI group  Published sequence:  T  A  A  —  T  C  —  —  —  T  C  G  G  A  997  Low      G  G        CC    C          —  7112  Low    C  G    C          C          —  9009  Low              —    G  C            7058  Low          C  —  —    G  C            45  Low        G            C          —  7092  Low        G      —    G  C    T        7055  High      G    C          C      A      7043  High    C  G    C    —    G  C          —  4  High        G      —    G  C    T        7010  High              —    G  C  C      A  —  43  High      G    C    —      C            8007  High          CC          C            View Large Table 5. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 4)     Region:1  ND1  ND2  COX1  COX2  ATPase 6      Position:  3343  3875  4901  5138  5144  5156  5716  7123  7135  7931  8382  8405  8710  8916  ID  RFI group  Published sequence:  A  T  T  T  T  G  C  A  G  G  C  G  C  C  997  Low            C    T  G        A      7112  Low                      A          9009  Low    G                        T    7058  Low                                45  Low          C          A    T        7092  Low      C  C                        7055  High              A                  7043  High                      A          4  High      C  C                        7010  High                                43  High                              T  8007  High        C                            Region:1  ND1  ND2  COX1  COX2  ATPase 6      Position:  3343  3875  4901  5138  5144  5156  5716  7123  7135  7931  8382  8405  8710  8916  ID  RFI group  Published sequence:  A  T  T  T  T  G  C  A  G  G  C  G  C  C  997  Low            C    T  G        A      7112  Low                      A          9009  Low    G                        T    7058  Low                                45  Low          C          A    T        7092  Low      C  C                        7055  High              A                  7043  High                      A          4  High      C  C                        7010  High                                43  High                              T  8007  High        C                        1 ND1 = NADH dehydrogenase subunit 1; ND2 = NADH dehydrogenase subunit 2; COX1 = cytochrome c oxidase subunit I; COX2 = cytochrome c oxidase subunit II; ATPase 6 = ATP synthase F0 subunit 6. View Large Table 5. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 4)     Region:1  ND1  ND2  COX1  COX2  ATPase 6      Position:  3343  3875  4901  5138  5144  5156  5716  7123  7135  7931  8382  8405  8710  8916  ID  RFI group  Published sequence:  A  T  T  T  T  G  C  A  G  G  C  G  C  C  997  Low            C    T  G        A      7112  Low                      A          9009  Low    G                        T    7058  Low                                45  Low          C          A    T        7092  Low      C  C                        7055  High              A                  7043  High                      A          4  High      C  C                        7010  High                                43  High                              T  8007  High        C                            Region:1  ND1  ND2  COX1  COX2  ATPase 6      Position:  3343  3875  4901  5138  5144  5156  5716  7123  7135  7931  8382  8405  8710  8916  ID  RFI group  Published sequence:  A  T  T  T  T  G  C  A  G  G  C  G  C  C  997  Low            C    T  G        A      7112  Low                      A          9009  Low    G                        T    7058  Low                                45  Low          C          A    T        7092  Low      C  C                        7055  High              A                  7043  High                      A          4  High      C  C                        7010  High                                43  High                              T  8007  High        C                        1 ND1 = NADH dehydrogenase subunit 1; ND2 = NADH dehydrogenase subunit 2; COX1 = cytochrome c oxidase subunit I; COX2 = cytochrome c oxidase subunit II; ATPase 6 = ATP synthase F0 subunit 6. View Large Table 6. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 5)     Region:  COX3  ND4L  ND4  tRNA- Ser  tRNA- Leu  ND5      Position:  9074  9116  9682  10347  10576  10600  11083  11899  12036  12058  12165  12730  12801  12923  ID  RFI group  Published sequence:  T  A  G  A  G  G  T  T  G  T  T  G  G  A  997  Low        C      A      A            7112  Low        C          C            T  9009  Low        C                C  A      7058  Low    C  C  C  G                      45  Low        C                        7092  Low        C                        7055  High        C                        7043  High        C          C            T  4  High        C                        7010  High        C        C                43  High        C                    A    8007  High        C    A          C              Region:  COX3  ND4L  ND4  tRNA- Ser  tRNA- Leu  ND5      Position:  9074  9116  9682  10347  10576  10600  11083  11899  12036  12058  12165  12730  12801  12923  ID  RFI group  Published sequence:  T  A  G  A  G  G  T  T  G  T  T  G  G  A  997  Low        C      A      A            7112  Low        C          C            T  9009  Low        C                C  A      7058  Low    C  C  C  G                      45  Low        C                        7092  Low        C                        7055  High        C                        7043  High        C          C            T  4  High        C                        7010  High        C        C                43  High        C                    A    8007  High        C    A          C          1 COX3 = cytochrome c oxidase subunit III; ND4L = NADH dehydrogenase subunit 4L; ND4 = NADH dehydrogenase subunit 4; ND5 = NADH dehydrogenase subunit 5. View Large Table 6. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 5)     Region:  COX3  ND4L  ND4  tRNA- Ser  tRNA- Leu  ND5      Position:  9074  9116  9682  10347  10576  10600  11083  11899  12036  12058  12165  12730  12801  12923  ID  RFI group  Published sequence:  T  A  G  A  G  G  T  T  G  T  T  G  G  A  997  Low        C      A      A            7112  Low        C          C            T  9009  Low        C                C  A      7058  Low    C  C  C  G                      45  Low        C                        7092  Low        C                        7055  High        C                        7043  High        C          C            T  4  High        C                        7010  High        C        C                43  High        C                    A    8007  High        C    A          C              Region:  COX3  ND4L  ND4  tRNA- Ser  tRNA- Leu  ND5      Position:  9074  9116  9682  10347  10576  10600  11083  11899  12036  12058  12165  12730  12801  12923  ID  RFI group  Published sequence:  T  A  G  A  G  G  T  T  G  T  T  G  G  A  997  Low        C      A      A            7112  Low        C          C            T  9009  Low        C                C  A      7058  Low    C  C  C  G                      45  Low        C                        7092  Low        C                        7055  High        C                        7043  High        C          C            T  4  High        C                        7010  High        C        C                43  High        C                    A    8007  High        C    A          C          1 COX3 = cytochrome c oxidase subunit III; ND4L = NADH dehydrogenase subunit 4L; ND4 = NADH dehydrogenase subunit 4; ND5 = NADH dehydrogenase subunit 5. View Large Table 7. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 6)     Region:  ND5  ND6  CYT B  tRNA- Pro  D-loop      Position:  13310  13374  13518  13554  13689  13899  14063  14906  15635  15740  15934  15961  16000  16022  ID  RFI group  Published sequence:  A  C  C  G  G  C  C  C  C  G  C  G  T  G  997  Low    C    T                T        7112  Low    C  T          T                9009  Low    C              T  T            7058  Low    C                  A      C    45  Low    C      A                A      7092  Low    C                            7055  High    C        A  T                  7043  High    C  T          T                4  High    C                            7010  High    C                            43  High    C                          A  8007  High    C                                Region:  ND5  ND6  CYT B  tRNA- Pro  D-loop      Position:  13310  13374  13518  13554  13689  13899  14063  14906  15635  15740  15934  15961  16000  16022  ID  RFI group  Published sequence:  A  C  C  G  G  C  C  C  C  G  C  G  T  G  997  Low    C    T                T        7112  Low    C  T          T                9009  Low    C              T  T            7058  Low    C                  A      C    45  Low    C      A                A      7092  Low    C                            7055  High    C        A  T                  7043  High    C  T          T                4  High    C                            7010  High    C                            43  High    C                          A  8007  High    C                            1 ND5 = NADH dehydrogenase subunit 5; ND6 = NADH dehydrogenase subunit 6; CYT B = cytochrome b. View Large Table 7. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 6)     Region:  ND5  ND6  CYT B  tRNA- Pro  D-loop      Position:  13310  13374  13518  13554  13689  13899  14063  14906  15635  15740  15934  15961  16000  16022  ID  RFI group  Published sequence:  A  C  C  G  G  C  C  C  C  G  C  G  T  G  997  Low    C    T                T        7112  Low    C  T          T                9009  Low    C              T  T            7058  Low    C                  A      C    45  Low    C      A                A      7092  Low    C                            7055  High    C        A  T                  7043  High    C  T          T                4  High    C                            7010  High    C                            43  High    C                          A  8007  High    C                                Region:  ND5  ND6  CYT B  tRNA- Pro  D-loop      Position:  13310  13374  13518  13554  13689  13899  14063  14906  15635  15740  15934  15961  16000  16022  ID  RFI group  Published sequence:  A  C  C  G  G  C  C  C  C  G  C  G  T  G  997  Low    C    T                T        7112  Low    C  T          T                9009  Low    C              T  T            7058  Low    C                  A      C    45  Low    C      A                A      7092  Low    C                            7055  High    C        A  T                  7043  High    C  T          T                4  High    C                            7010  High    C                            43  High    C                          A  8007  High    C                            1 ND5 = NADH dehydrogenase subunit 5; ND6 = NADH dehydrogenase subunit 6; CYT B = cytochrome b. View Large Table 8. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 7)     Region:  D-loop      Position:  16042  16057  16085  16109  16122  16135  16141  16231  16232  16247  16255  16302  ID  RFI group  Published sequence:  T  G  T  T  T  T  T  C  C  C  T  G  997  Low                            7112  Low          C              C    9009  Low                      T      7058  Low        C        C            45  Low      C                      7092  Low    C              T  T        7055  High                          A  7043  High          C              C    4  High    C              T  T        7010  High                            43  High            C  C              8007  High    C                            Region:  D-loop      Position:  16042  16057  16085  16109  16122  16135  16141  16231  16232  16247  16255  16302  ID  RFI group  Published sequence:  T  G  T  T  T  T  T  C  C  C  T  G  997  Low                            7112  Low          C              C    9009  Low                      T      7058  Low        C        C            45  Low      C                      7092  Low    C              T  T        7055  High                          A  7043  High          C              C    4  High    C              T  T        7010  High                            43  High            C  C              8007  High    C                        View Large Table 8. Locations of SNP in the mitochondrial DNA sequence of high or low residual feed intake (RFI) steers (continued from Table 7)     Region:  D-loop      Position:  16042  16057  16085  16109  16122  16135  16141  16231  16232  16247  16255  16302  ID  RFI group  Published sequence:  T  G  T  T  T  T  T  C  C  C  T  G  997  Low                            7112  Low          C              C    9009  Low                      T      7058  Low        C        C            45  Low      C                      7092  Low    C              T  T        7055  High                          A  7043  High          C              C    4  High    C              T  T        7010  High                            43  High            C  C              8007  High    C                            Region:  D-loop      Position:  16042  16057  16085  16109  16122  16135  16141  16231  16232  16247  16255  16302  ID  RFI group  Published sequence:  T  G  T  T  T  T  T  C  C  C  T  G  997  Low                            7112  Low          C              C    9009  Low                      T      7058  Low        C        C            45  Low      C                      7092  Low    C              T  T        7055  High                          A  7043  High          C              C    4  High    C              T  T        7010  High                            43  High            C  C              8007  High    C                        View Large No difference (P > 0.55) was observed in the expression of uncoupling protein 2 and 3 mRNA or protein between the high- or low-RFI groups (Table 9). This result would indicate no difference in the amount of uncoupling of oxidative phosphorylation and electron transport by uncoupling protein 2 and 3. Recent evidence (Krauss et al., 2005) indicated that these proteins have roles in modulating reactive oxygen species production rather than an uncoupling role. Echtay et al. (2002) have shown that uncoupling protein 2 and 3 increase proton leak when superoxide is present thereby protecting the cell from rampant superoxide production. Also, the 100-fold lower expression of uncoupling protein 2 and 3 compared with uncoupling protein 1 would point to a limited role in altering energy expenditure (Pecquer et al., 2001). This evidence along with the lack of differences in superoxide production (Kolath et al., 2005) between high- and low-RFI animals would indicate that uncoupling protein 2 and 3 do not play a role in altering RFI status. Table 9. Expression of uncoupling protein 2 and 3 mRNA and protein of high or low residual feed intake (RFI) steers1 Item  High RFI (n = 6)  Low RFI (n = 6)  SEM  mRNA expression      Uncoupling protein 2  2.79  3.19  0.46      Uncoupling protein 3  2.06  1.88  0.47  Protein expression      Uncoupling protein 2  167.5  168.0  6.78      Uncoupling protein 3  103.5  105.0  8.86  Item  High RFI (n = 6)  Low RFI (n = 6)  SEM  mRNA expression      Uncoupling protein 2  2.79  3.19  0.46      Uncoupling protein 3  2.06  1.88  0.47  Protein expression      Uncoupling protein 2  167.5  168.0  6.78      Uncoupling protein 3  103.5  105.0  8.86  1 Messenger RNA and protein expression levels are expressed in arbitrary units. View Large Table 9. Expression of uncoupling protein 2 and 3 mRNA and protein of high or low residual feed intake (RFI) steers1 Item  High RFI (n = 6)  Low RFI (n = 6)  SEM  mRNA expression      Uncoupling protein 2  2.79  3.19  0.46      Uncoupling protein 3  2.06  1.88  0.47  Protein expression      Uncoupling protein 2  167.5  168.0  6.78      Uncoupling protein 3  103.5  105.0  8.86  Item  High RFI (n = 6)  Low RFI (n = 6)  SEM  mRNA expression      Uncoupling protein 2  2.79  3.19  0.46      Uncoupling protein 3  2.06  1.88  0.47  Protein expression      Uncoupling protein 2  167.5  168.0  6.78      Uncoupling protein 3  103.5  105.0  8.86  1 Messenger RNA and protein expression levels are expressed in arbitrary units. View Large LITERATURE CITED Basarab, J. A., M. A. Price, J. L. Aalhus, E. K. Okine, W. M. Snelling, and K. L. Lyle 2003. Residual feed intake and body composition in young growing steers. Can. J. Anim. Sci.  83: 189– 204. Google Scholar CrossRef Search ADS   Bottje, W., Z. X. Tang, M. Iqbal, D. Cawthon, R. Okimoto, T. Wang, and M. Cooper 2002. Association of mitochondrial function with feed efficiency within a single genetic line of male broilers. Poult. Sci.  81: 546– 555. Google Scholar CrossRef Search ADS PubMed  Echtay, K. S., D. Roussel, J. St-Pierre, M. B. Jekabsons, S. Cadenas, J. A. Stuart, J. A. Harper, S. J. Roebuck, A. Morrison, S. Pickering, J. C. Clapham, and M. D. Brand 2002. Superoxide activates mitochondrial uncoupling proteins. Nature  415: 96– 99. Google Scholar CrossRef Search ADS PubMed  Kolath, W. H., M. S. Kerley, J. W. Golden, and D. H. Keisler 2006. The relationship between mitochondrial function and residual feed intake in Angus steers. J. Anim. Sci.  84: 861– 865. Google Scholar CrossRef Search ADS PubMed  Krauss, S., C. Zhang, and B. B. Lowell 2002. A significant portion of mitochondrial proton leak in intact thymocytes depends on expression of UCP2. Proc. Natl. Acad. Sci. USA  99: 118– 122. Google Scholar CrossRef Search ADS   Krauss, S., C. Zhang, and B. B. Lowell 2005. The mitochondrial uncoupling-protein homologues. Nature Reviews  6: 248– 261. Google Scholar CrossRef Search ADS PubMed  Leonard, J. V., and A. H. V. Schapira 2000. Mitochondrial respiratory chain disorders I: Mitochondrial DNA defects. Lancet  355: 299– 304. Google Scholar CrossRef Search ADS PubMed  NRC 1996. Nutrient Requirements of Beef Cattle.  7th ed. Natl. Acad. Press, Washington, DC. Pecquer, C., M. Alves-Guerra, C. Gelly, C. Levi-Meyrueis, E. Couplan, S. Collins, D. Ricquier, F. Bouillaud, and B. Miroux 2001. Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J. Biol. Chem.  276: 8705– 8712. Google Scholar CrossRef Search ADS PubMed  Richardson, E. C., R. M. Herd, V. H. Oddy, J. M. Thompson, J. A. Archer, and P. F. Arthur 2001. Body composition and implications for heat production of Angus steer progeny of parents selected for or against residual feed intake. Aust. J. Exp. Agric.  41: 1065– 1072. Google Scholar CrossRef Search ADS   Shibuya, H., D. J. Nonneman, T. H. M. Huang, V. K. Ganjam, F. A. Mann, and G. S. Johnson 1993. Two polymorphic microsatellites in a coding segment of the canine androgen receptor gene. Anim. Genet.  24: 345– 348. Google Scholar CrossRef Search ADS PubMed  USDA 1997. USDA Official United States standards for grading of carcass beef.  Agric. Marketing Serv. USDA, Washington, DC. Wallace, D. C. 1999. Mitochondrial diseases in man and mouse. Science  283: 1482– 1488. Google Scholar CrossRef Search ADS PubMed  Footnotes 1 Acknowledgements: This research was supported in part by a USDA special programs grant (No. 2003-34450-14578). Copyright 2006 Journal of Animal Science TI - The relationships among mitochondrial uncoupling protein 2 and 3 expression, mitochondrial deoxyribonucleic acid single nucleotide polymorphisms, and residual feed intake in Angus steers JF - Journal of Animal Science DO - 10.2527/jas.2005-519 DA - 2006-07-01 UR - https://www.deepdyve.com/lp/oxford-university-press/the-relationships-among-mitochondrial-uncoupling-protein-2-and-3-W6dQcEUNjq SP - 1761 EP - 1766 VL - 84 IS - 7 DP - DeepDyve ER -