TY - JOUR AU1 - Sliman, Sean AU2 - Eubank, Timothy AU3 - Kotha, Sainath AU4 - Kuppusamy, M. AU5 - Sherwani, Shariq AU6 - Butler, Elizabeth AU7 - Kuppusamy, Periannan AU8 - Roy, Sashwati AU9 - Marsh, Clay AU1 - Stern, David AU1 - Parinandi, Narasimham AB - Vascular endothelium is vulnerable to the attack of glucose-derived oxoaldehydes (glyoxal and methylglyoxal) during diabetes, through the formation of advanced glycation end products (AGEs). Although aminoguanidine (AG) has been shown to protect against the AGE-induced adverse effects, its protection against the glyoxal-induced alterations in vascular endothelial cells (ECs) such as cytotoxicity, barrier dysfunction, and inhibition of angiogenesis has not been reported and we investigated this in the bovine pulmonary artery ECs (BPAECs). The results showed that glyoxal (1–10 mM) significantly induced cytotoxicity and mitochondrial dysfunction in a dose- and time-dependent (4–12 h) fashion in ECs. Glyoxal was also observed to significantly inhibit EC proliferation. The study also revealed that glyoxal induced EC barrier dysfunction (loss of trans-endothelial electrical resistance), actin cytoskeletal rearrangement, and tight junction alterations in BPAECs. Furthermore, the results revealed that glyoxal significantly inhibited in vitro angiogenesis on the Matrigel. For the first time, this study demonstrated that AG significantly protected against the glyoxal-induced cytotoxicity, barrier dysfunction, cytoskeletal rearrangement, and inhibition of angiogenesis in BPAECs. Therefore, AG appears as a promising protective agent in the treatment of AGE-induced vascular endothelial alterations and dysfunction during diabetes, presumably by blocking the reactivity of the sugar-derived dicarbonyls such as glyoxal and preventing the formation of AGEs. TI - Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: aminoguanidine protection JF - Molecular and Cellular Biochemistry DO - 10.1007/s11010-009-0199-x DA - 2009-07-08 UR - https://www.deepdyve.com/lp/springer-journals/hyperglycemic-oxoaldehyde-glyoxal-causes-barrier-dysfunction-UyY8TrETut SP - 9 EP - 26 VL - 333 IS - 2 DP - DeepDyve ER -