TY - JOUR AU1 - Oussaid, Nouhayla Ait AU2 - Akhlil, Khalid AU3 - Aadi, Sultana Ben AU4 - Ouali, Mourad El AB - In this paper, we prove that it is always possible to define a realization of the Laplacian Δκ,θ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _{\kappa ,\theta }$$\end{document} on L2(Ω)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2(\Omega )$$\end{document} subject to nonlocal Robin boundary conditions with general jump measures on arbitrary open subsets of RN\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbb {R}}^N$$\end{document}. This is made possible by using a capacity approach to define an admissible pair of measures (κ,θ)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\kappa ,\theta )$$\end{document} that allows the associated form Eκ,θ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathcal {E}}_{\kappa ,\theta }$$\end{document} to be closable. The nonlocal Robin Laplacian Δκ,θ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\Delta _{\kappa ,\theta }$$\end{document} generates a sub-Markovian C0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C_0$$\end{document}-semigroup on L2(Ω)\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$L^2(\Omega )$$\end{document} which is not dominated by the Neumann Laplacian semigroup unless the jump measure θ\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\theta $$\end{document} vanishes. TI - Generalized nonlocal Robin Laplacian on arbitrary domains JF - Archiv der Mathematik DO - 10.1007/s00013-021-01663-4 DA - 2021-12-01 UR - https://www.deepdyve.com/lp/springer-journals/generalized-nonlocal-robin-laplacian-on-arbitrary-domains-QzcU1bjIF8 SP - 675 EP - 686 VL - 117 IS - 6 DP - DeepDyve ER -