TY - JOUR AU - Arumugam, Thiruma V AB - Abstract Genetic changes due to dietary intervention in the form of either calorie restriction (CR) or intermittent fasting (IF) are not reported in detail until now. However, it is well established that both CR and IF extend the lifespan and protect against neurodegenerative diseases and stroke. The current research aims were first to describe the transcriptomic changes in brains of IF mice and, second, to determine whether IF induces extensive transcriptomic changes following ischemic stroke to protect the brain from injury. Mice were randomly assigned to ad libitum feeding (AL), 12 (IF12) or 16 (IF16) h daily fasting. Each diet group was then subjected to sham surgery or middle cerebral artery occlusion and consecutive reperfusion. Mid-coronal sections of ipsilateral cerebral tissue were harvested at the end of the 1 h ischemic period or at 3, 12, 24 or 72 h of reperfusion, and genome-wide mRNA expression was quantified by RNA sequencing. The cerebral transcriptome of mice in AL group exhibited robust, sustained up-regulation of detrimental genetic pathways under ischemic stroke, but activation of these pathways was suppressed in IF16 group. Interestingly, the cerebral transcriptome of AL mice was largely unchanged during the 1 h of ischemia, whereas mice in IF16 group exhibited extensive up-regulation of genetic pathways involved in neuroplasticity and down-regulation of protein synthesis. Our data provide a genetic molecular framework for understanding how IF protects brain cells against damage caused by ischemic stroke, and reveal cellular signaling and bioenergetic pathways to target in the development of clinical interventions. Introduction Over the last few decades, average calorie intake has steadily risen along with associated age-related diseases. Studies of laboratory animals have shown that caloric restriction can extend lifespan and decrease the incidence of several major age-related diseases (1–3). Similarly, intermittent fasting (IF) can also extend lifespan in rodents, and mitigate age-related neurodegenerative diseases such as Alzheimer’s disease (AD) and ischemic stroke (1–6). The two most commonly applied IF protocols in rodents are alternate day fasting, and daily time-restricted feeding, which involves compressing the time window in which food is consumed to 4–12 h each day (i.e. fasting for 12–20 h daily). IF studies in humans have included those in which the subjects consume approximately 500 calories/day either two days within a week or every other day (4,5). A chronic positive energy balance resulting from excessive energy intake and a sedentary lifestyle greatly increases the risk of diabetes, hypertension, cardiovascular disease and ischemic stroke (7). It has been established that when maintained under the usual ad libitum feeding conditions, rats and mice develop a metabolic syndrome-like phenotype as they age (8). However, IF can prevent and reverse most aspects of the metabolic syndrome-like phenotype in rodents. For example, IF reduces abdominal fat, inflammation and blood pressure, and increases insulin sensitivity (1,9,10). IF has been demonstrated to lower insulin and leptin levels and elevate adiponectin and ghrelin levels (11,12). In addition, our own studies have demonstrated that IF protects against ischemic stroke-induced brain damage by mechanisms involving suppression of inflammation and cell death pathways (3,10,11,13). Neuroprotection by IF in animal models of stroke is associated with up-regulation of multiple neuroprotective proteins including: the neurotrophic factors brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 2 (FGF2); the protein chaperones heat-shock protein 70 (HSP-70) and glucose-regulated protein 78 (GRP-78); and the antioxidant enzymes superoxide dismutase and heme oxygenase-1 (3,10,11,13). Brain tissue affected in ischemic stroke exhibits neuronal death and the presence of multiple types of activated inflammatory cells including microglia and infiltrating lymphocytes (13–17). However, detailed information on time-dependent gene transcriptome responses to ischemic stroke and how such transcriptome responses are modified by IF are lacking. While experimental evidence indicates that IF exerts protective effects against metabolic syndrome and associated diseases, the underlying mechanisms are largely unknown. Moreover, there is no information available on changes in the cerebral transcriptome that mediate neuroprotective cellular adaptations to IF. We, therefore, designed a study to generate a database of cerebral gene expressions in mice maintained on time-restricted fasting (12 or 16 h per day) or an ad libitum control diet (AL), which were then subjected to experimental stroke. Transcriptome analysis using RNA sequencing revealed that daily fasting for 16 h (IF16) results in changes in the cerebral transcriptome that include pathways involved in cell signaling and neuroplasticity. Major changes in the cerebral transcriptome occurred in response to ischemic stroke in a post-stroke time-dependent manner. IF16 had major effects on the cerebral transcriptome in mice subjected to experimental stroke including up-regulation of pathways involved in intercellular communication, neurogenesis, synaptic plasticity and cellular resistance to cell death. Pathways involved in protein synthesis and inflammation were down regulated by IF16 in the setting of cerebral ischemia. Our findings provide novel insight into the genetic changes by which IF protects the brain against ischemic stress, and provide a resource for investigators in the fields of neuroscience, neurology and energy metabolism. Results Intermittent fasting leads to global transcriptome changes We initially investigated the effects of different time intervals of fasting and refeeding on the cerebral transcriptome using RNA sequencing (Fig. 1A). Male C57BL/6 mice were fed with a normal chow diet (comprised on a caloric basis of 58%, 24% and 18% from carbohydrate, protein and fat, respectively) and were randomly assigned to either AL, daily IF12 or IF16 schedules beginning at 3 months of age. To determine the extent to which IF affected energy metabolism, we measured body weights, and blood glucose and ketone levels, of all mice during the 4 months diet intervention period. Mice in the IF12 and IF16 groups weighed less than mice from AL group throughout the experiment (Supplementary Material, Fig. S1). Mice in the IF16 feeding schedule gained progressively less weight, and weighed significantly less than IF12 mice after 4 months of diet exposure. Compared to the significant difference of body weight among the experimental groups, blood glucose levels were relatively stable with tendency to be decreased only in IF16 group (Supplementary Material, Table S1). This observation is expected to be affected by the concentrated consumption of food during the refeeding hours in IF groups. On the other hand, blood ketone levels were significantly increased in both IF12 and IF16 groups compared to AL group in fasting hours-dependent manner (Supplementary Material, Table S1). It seems like that blood ketone level is more likely to be affected by the duration of fasting hours rather than amount of food consumed during refeeding. Figure 1. View largeDownload slide Genes identified by RNA sequencing as being differentially expressed in the IF12 and IF16 groups compared to the AL group. (A) Heatmap of the differentially expressed genes in AL, IF12 and IF16 groups with up-regulated genes in red and down-regulated genes in blue. The color scale represents the log 10 (FPKM + 1) value. (B and C) Volcano diagrams showing the distribution of differentially expressed genes in IF12 (B) and IF16 (C) groups in comparison with the AL group. The threshold of differential expression is adjusted P-value < 0.05. The horizontal axis is the log 2 fold change of genes. The vertical axis is statistical significance scaled as −log 10 adjusted P-value. Each dot represents an individual gene (blue: no significant difference; red: up-regulated gene; green: down-regulated gene). Figure 1. View largeDownload slide Genes identified by RNA sequencing as being differentially expressed in the IF12 and IF16 groups compared to the AL group. (A) Heatmap of the differentially expressed genes in AL, IF12 and IF16 groups with up-regulated genes in red and down-regulated genes in blue. The color scale represents the log 10 (FPKM + 1) value. (B and C) Volcano diagrams showing the distribution of differentially expressed genes in IF12 (B) and IF16 (C) groups in comparison with the AL group. The threshold of differential expression is adjusted P-value < 0.05. The horizontal axis is the log 2 fold change of genes. The vertical axis is statistical significance scaled as −log 10 adjusted P-value. Each dot represents an individual gene (blue: no significant difference; red: up-regulated gene; green: down-regulated gene). Total RNA was isolated from the mid-coronal sections (three tissue sections per mouse) of the ipsilateral hemisphere, which contain both ischemic, and peri-infarct area in order to observe the general transcriptome changes under the direct influence of experimental ischemic stroke. While RNA sequencing revealed that both IF12 and IF16 groups exhibited different heatmap patterns of differentially expressed genes (Fig. 1A), only the IF16 group had genes significantly up-regulated (75 genes) or down-regulated (10 genes) compared to the AL group under sham-operated normal control condition (Fig. 1B and C). We thus analyzed the differentially expressed genes in the IF16 group compared to the AL group. The list of most significantly up-regulated genes includes, Gucy1a2 (guanylate cyclase 1, soluble, alpha 2; log 2 fold change: 1.610); Dok6 (docking protein 6; log 2 fold change: 1.391); Per2 (period circadian clock 2; log 2 fold change: 1.212); Lonrf3 (LON peptidase N-terminal domain and ring finger 3; log 2 fold change: 1.199); Prex2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2; log 2 fold change: 1.175); Per3 (period circadian clock 3; log 2 fold change: 1.057); Shc3 (Src homology 2 domain-containing transforming protein C3; log 2 fold change: 0.993); Zfc3h1 (zinc finger, C3H1-type containing; log 2 fold change: 0.982); Slc4a7 (solute carrier family 4, sodium bicarbonate cotransporter, member 7; log 2 fold change: 0.945); Lyst (lysosomal trafficking regulator; log 2 fold change: 0.756); Taok1 (TAO kinase 1; log 2 fold change: 0.744); and Slc1a2 (solute carrier family 1, glial high affinity glutamate transporter, member 2; log 2 fold change: 0.609). A full list of genes differentially expressed in the IF16 and AL control groups is provided in Supplementary Material, Table S2. Transcriptome analysis using gene ontology (GO) enrichment helps to identify functional groups of genes that interact with each other to regulate physiological responses. The results of GO analysis of our transcriptome data revealed pathways that may play roles in previously described beneficial effects of IF on brain function and disease resistance (Table 1). These pathways include those involved in cell communication [false discovery rate (FDR) = 0.004], system development (FDR = 0.007), signal transduction (FDR = 0.016), nervous system development (FDR = 0.007), positive regulation of biological process (FDR = 0.023), regulation of cell differentiation (FDR = 0.007), cellular responses to stimuli (FDR = 0.023) and positive regulation of metabolic processes (FDR = 0.041). Table 1. GO enrichment analysis results of IF16 versus AL groups at sham condition Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  0007154  Cell communication  Up  0.0042  28  0044700  Single organism signaling  Up  0.0042  27  0007399  Nervous system development  Up  0.007  18  0007610  Behavior  Up  0.007  10  0044707  Single-multicellular organism process  Up  0.007  32  0045595  Regulation of cell differentiation  Up  0.007  16  0048731  System development  Up  0.007  26  0060322  Head development  Up  0.0084  11  0007165  Signal transduction  Up  0.0159  24  0007275  Multicellular organismal development  Up  0.0191  27  0048522  Positive regulation of cellular process  Up  0.0205  27  0007632  Visual behavior  Up  0.0227  4  0044708  Single-organism behavior  Up  0.0227  8  0048518  Positive regulation of biological process  Up  0.0227  29  0048856  Anatomical structure development  Up  0.0227  27  0051716  Cellular response to stimulus  Up  0.0227  28  0061298  Retina vasculature development in camera-type eye  Up  0.0241  3  0030097  Hemopoiesis  Up  0.0263  9  0009893  Positive regulation of metabolic process  Up  0.0407  22  0010604  Positive regulation of macromolecule metabolic process  Up  0.0407  19  0044767  Single-organism developmental process  Up  0.0407  28  0050793  Regulation of developmental process  Up  0.0407  17  0048513  Organ development  Up  0.043  20  0045596  Negative regulation of cell differentiation  Up  0.0459  9  0002520  Immune system development  Up  0.0497  9  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  0007154  Cell communication  Up  0.0042  28  0044700  Single organism signaling  Up  0.0042  27  0007399  Nervous system development  Up  0.007  18  0007610  Behavior  Up  0.007  10  0044707  Single-multicellular organism process  Up  0.007  32  0045595  Regulation of cell differentiation  Up  0.007  16  0048731  System development  Up  0.007  26  0060322  Head development  Up  0.0084  11  0007165  Signal transduction  Up  0.0159  24  0007275  Multicellular organismal development  Up  0.0191  27  0048522  Positive regulation of cellular process  Up  0.0205  27  0007632  Visual behavior  Up  0.0227  4  0044708  Single-organism behavior  Up  0.0227  8  0048518  Positive regulation of biological process  Up  0.0227  29  0048856  Anatomical structure development  Up  0.0227  27  0051716  Cellular response to stimulus  Up  0.0227  28  0061298  Retina vasculature development in camera-type eye  Up  0.0241  3  0030097  Hemopoiesis  Up  0.0263  9  0009893  Positive regulation of metabolic process  Up  0.0407  22  0010604  Positive regulation of macromolecule metabolic process  Up  0.0407  19  0044767  Single-organism developmental process  Up  0.0407  28  0050793  Regulation of developmental process  Up  0.0407  17  0048513  Organ development  Up  0.043  20  0045596  Negative regulation of cell differentiation  Up  0.0459  9  0002520  Immune system development  Up  0.0497  9  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 1. GO enrichment analysis results of IF16 versus AL groups at sham condition Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  0007154  Cell communication  Up  0.0042  28  0044700  Single organism signaling  Up  0.0042  27  0007399  Nervous system development  Up  0.007  18  0007610  Behavior  Up  0.007  10  0044707  Single-multicellular organism process  Up  0.007  32  0045595  Regulation of cell differentiation  Up  0.007  16  0048731  System development  Up  0.007  26  0060322  Head development  Up  0.0084  11  0007165  Signal transduction  Up  0.0159  24  0007275  Multicellular organismal development  Up  0.0191  27  0048522  Positive regulation of cellular process  Up  0.0205  27  0007632  Visual behavior  Up  0.0227  4  0044708  Single-organism behavior  Up  0.0227  8  0048518  Positive regulation of biological process  Up  0.0227  29  0048856  Anatomical structure development  Up  0.0227  27  0051716  Cellular response to stimulus  Up  0.0227  28  0061298  Retina vasculature development in camera-type eye  Up  0.0241  3  0030097  Hemopoiesis  Up  0.0263  9  0009893  Positive regulation of metabolic process  Up  0.0407  22  0010604  Positive regulation of macromolecule metabolic process  Up  0.0407  19  0044767  Single-organism developmental process  Up  0.0407  28  0050793  Regulation of developmental process  Up  0.0407  17  0048513  Organ development  Up  0.043  20  0045596  Negative regulation of cell differentiation  Up  0.0459  9  0002520  Immune system development  Up  0.0497  9  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  0007154  Cell communication  Up  0.0042  28  0044700  Single organism signaling  Up  0.0042  27  0007399  Nervous system development  Up  0.007  18  0007610  Behavior  Up  0.007  10  0044707  Single-multicellular organism process  Up  0.007  32  0045595  Regulation of cell differentiation  Up  0.007  16  0048731  System development  Up  0.007  26  0060322  Head development  Up  0.0084  11  0007165  Signal transduction  Up  0.0159  24  0007275  Multicellular organismal development  Up  0.0191  27  0048522  Positive regulation of cellular process  Up  0.0205  27  0007632  Visual behavior  Up  0.0227  4  0044708  Single-organism behavior  Up  0.0227  8  0048518  Positive regulation of biological process  Up  0.0227  29  0048856  Anatomical structure development  Up  0.0227  27  0051716  Cellular response to stimulus  Up  0.0227  28  0061298  Retina vasculature development in camera-type eye  Up  0.0241  3  0030097  Hemopoiesis  Up  0.0263  9  0009893  Positive regulation of metabolic process  Up  0.0407  22  0010604  Positive regulation of macromolecule metabolic process  Up  0.0407  19  0044767  Single-organism developmental process  Up  0.0407  28  0050793  Regulation of developmental process  Up  0.0407  17  0048513  Organ development  Up  0.043  20  0045596  Negative regulation of cell differentiation  Up  0.0459  9  0002520  Immune system development  Up  0.0497  9  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Cerebral ischemia and reperfusion-induced transcriptome changes reveal novel pathways involved in ischemic stroke We profiled the effects of cerebral ischemia and reperfusion (I/R) on mRNA levels at different time points in both AL and IF groups to elucidate how brain cells respond to ischemia and how IF might modify these cellular responses. The heatmaps in Figure 2A–E show global changes of RNA expression patterns in the left (ischemic) cerebral hemisphere of the brain as well as the different patterns between AL and IF groups at different time points following I/R. Figure 2. View largeDownload slide Heatmaps of differentially expressed genes in AL, IF12 and IF16 groups at each cerebral I/R time point. Heat clusters of differentially expressed genes in the experimental groups at 1 h of ischemia (A), and reperfusion for 3 (B), 12 (C), 24 (D) and 72 h (E). Up-regulated genes in red and down-regulated genes in blue. The color scale represents the log 10 (FPKM + 1) value. Figure 2. View largeDownload slide Heatmaps of differentially expressed genes in AL, IF12 and IF16 groups at each cerebral I/R time point. Heat clusters of differentially expressed genes in the experimental groups at 1 h of ischemia (A), and reperfusion for 3 (B), 12 (C), 24 (D) and 72 h (E). Up-regulated genes in red and down-regulated genes in blue. The color scale represents the log 10 (FPKM + 1) value. Previous studies of genetic changes to I/R have typically been limited to two time points, but the transition between the acute and chronic phases likely involves more complex waves of gene expression. To investigate transcriptomic responses to ischemia with greater temporal resolution, we performed RNA sequencing immediately after ischemia, and after 3, 12, 24, or 72 h reperfusion in AL group, comparatively analyzed with sham-operated AL group (Fig. 3). Transcriptome analysis of ipsilateral cerebrum revealed significant differences in gene expression at all time points compared to sham-operated normal control. The largest number of differentially expressed genes was detected 24 h after reperfusion (Fig. 3A–E). The results revealed 31 differentially expressed genes at the end of the 1 h ischemia period, and 45, 92, 909 and 199 differentially expressed genes at 3, 12, 24 and 72 h after reperfusion, respectively. The lists of these genes are provided in Supplementary Material, Table S3. Remarkably, the differentially expressed genes were mostly unique to each I/R time point, reflecting the differential progression of ischemic injury over time. Even though the I/R 24 h group shared a number of genes also differentially expressed at neighboring time point groups (61 genes with I/R 12 hour group; 105 genes with I/R 72 hour group), 27%, 81% and 45% of differentially expressed genes were unique to the 12, 24 and 72 h time points, respectively (Fig. 3F). Figure 3. View largeDownload slide Differentially expressed genes in AL group at brain I/R time points compared to the sham-operated control. (A–E) Volcano diagrams showing the distribution of differentially expressed genes in the AL group at 1 h of ischemia (A), and reperfusion for 3 (B), 12 (C), 24 (D) and 72 h (E) in comparison to sham-operated control. The threshold of differential expression is adjusted P-value < 0.05. The horizontal axis is the log 2 fold change of genes. The vertical axis is statistical significance scaled as −log 10 adjusted P-value. Each dot represents an individual gene (blue: no significant difference; red: up-regulated gene; green: down-regulated gene). (F) Venn diagram of differentially expressed genes at the different time points during I/R (A, 1 h of ischemia; B, C, D and E are reperfusion time points of 3, 12, 24 and 72 h, respectively). Figure 3. View largeDownload slide Differentially expressed genes in AL group at brain I/R time points compared to the sham-operated control. (A–E) Volcano diagrams showing the distribution of differentially expressed genes in the AL group at 1 h of ischemia (A), and reperfusion for 3 (B), 12 (C), 24 (D) and 72 h (E) in comparison to sham-operated control. The threshold of differential expression is adjusted P-value < 0.05. The horizontal axis is the log 2 fold change of genes. The vertical axis is statistical significance scaled as −log 10 adjusted P-value. Each dot represents an individual gene (blue: no significant difference; red: up-regulated gene; green: down-regulated gene). (F) Venn diagram of differentially expressed genes at the different time points during I/R (A, 1 h of ischemia; B, C, D and E are reperfusion time points of 3, 12, 24 and 72 h, respectively). Genes differentially expressed at the end of the 1 h ischemia period (31 genes) included: Iyd (iodotyrosine deiodinase; log 2 fold change: 3.305); Crlf1 (cytokine receptor-like factor 1; log 2 fold change: 2.624); Zfp36 (zinc finger protein 36; log 2 fold change: 2.364); Homer3 (homer homolog 3; log 2 fold change: 1.264); Smoc2 (SPARC related modular calcium binding 2; log 2 fold change: 1.262); Cpne6 (copine VI; log 2 fold change: 0.890); Tacr1 (tachykinin receptor 1; log 2 fold change: −1.259); and Oxt (oxytocin; log 2 fold change: −5.286). Genes significantly affected at 3 h of reperfusion included: Cxcl2 [chemokine (C-X-C motif) ligand 2; log 2 fold change: 7.521]; Atf3 (activating transcription factor 3; log 2 fold change: 5.424); S100a8 (S100 calcium-binding protein A8; log 2 fold change: 3.233); Thbs1 (thrombospondin 1; log 2 fold change: 3.216); S100a9 (S100 calcium-binding protein A9; log 2 fold change: 2.923); Adamts1 (a disintegrin and metalloproteinase with thrombospondin motif 1; log 2 fold change: 2.340); Epha2 (EPH receptor A2; log 2 fold change: 1.689); Edn1 (endothelin-1; log 2 fold change: 1.481); and Hes5 (transcription factor HES-5; log 2 fold change: -2.156). Genes significantly up-regulated at 12 h of reperfusion (92 genes) included: Slc10a6 [solute carrier family 10 (sodium/bile acid cotransporter family) member 6; log 2 fold change: 7.936]; Maff (transcription factor MafF; log 2 fold change: 3.906); Angpt2 (vasoprotective angiopoietin 2; log 2 fold change: 3.584); Ctla2a (cytotoxic T lymphocyte-associated protein 2 alpha; log 2 fold change: 3.532); Tnfsf8 [tumor necrosis factor (TNF) (ligand) superfamily member 8; log 2 fold change: 3.394); Ctla2b (cytotoxic T lymphocyte-associated protein 2 beta; log 2 fold change: 2.249); Mt2 (metallothionein 2; log 2 fold change: 2.206); Il1r1 [interleukin (IL)-1 receptor type 1; log 2 fold change: 1.602); Mt1 (metallothionein 1; log 2 fold change: 1.592); and Il16 (IL-16; log 2 fold change: 1.569). Significantly down-regulated genes at 12 h reperfusion included Rxrg (retinoid X receptor gamma; log 2 fold change: −2.608) and Chat (choline acetyltransferase; log 2 fold change: −2.111). The largest number of differentially expressed genes (909 genes) was evident at the 24 h reperfusion time point. Among the genes most up-regulated were: Mmp3 (matrix metallopeptidase 3; log 2 fold change: 8.615); Gp49a (glycoprotein 49A; log 2 fold change: 8.176); Slc10a6 (log 2 fold change: 8.064); Msr1 (macrophage scavenger receptor 1; log 2 fold change: 7.930); Chil3 (chitinase-like 3; log 2 fold change: 7.846); Ccl2 [chemokine (C-C motif) ligand 2; log 2 fold change: 7.827]; Il6 (IL-6; log 2 fold change: 6.476); Hcar2 (hydroxycarboxylic acid receptor 2; log 2 fold change: 5.818); Timp1 (tissue inhibitor of metalloproteinase 1; log 2 fold change: 5.719); Ccl7 [chemokine (C-C motif) ligand 7; log 2 fold change: 5.669]; Ccl4 [chemokine (C-C motif) ligand 4; log 2 fold change: 5.335]; Cxcl10 [chemokine (C-X-C motif) ligand 10; log 2 fold change: 5.223]; Ptx3 (pentraxin related gene; log 2 fold change: 6.512); Lif (leukemia inhibitory factor; log 2 fold change: 5.170); Atf3 (log 2 fold change: 4.894); Hspa1b (heat shock protein 1B; log 2 fold change: 4.822); and Hmox1 (Heme oxygenase 1; log 2 fold change: 4.800). Highly down-regulated genes at 24 h reperfusion included: Adora2a (adenosine A2a receptor; log 2 fold change: −3.373); Rxrg (retinoid X receptor gamma; log 2 fold change: −3.213); Oxt (log 2 fold change: −3.085); Cd4 (CD4 antigen; log 2 fold change: −3.045); Ntrk1 (neurotrophic tyrosine kinase receptor, type 1; log 2 fold change: −2.904); Syndig1l (synapse differentiation inducing 1 like; log 2 fold change: −2.903); Ptpn7 (protein tyrosine phosphatase, non-receptor type 7; log 2 fold change: −2.670); and Chat (log 2 fold change: −2.527). At 72 h of reperfusion, 199 genes were differentially expressed. Highly up-regulated genes included: Tgm1 (transglutaminase 1, K polypeptide; log 2 fold change: 8.015); Fcgr4 (Fc receptor, IgG, low affinity IV; log 2 fold change: 5.333); Ifi204 (interferon-activated gene 204; log 2 fold change: 5.300); Ifi27l2a (interferon alpha-inducible protein 27 like 2A; log 2 fold change: 4.860); Cst7 (cystatin F; log 2 fold change: 4.687); Cxcl10 (log 2 fold change: 4.446); Serpina3n [Serine (or cysteine) peptidase inhibitor, clade A, member 3N; log 2 fold change: 4.4357]; Cd52 (CD52 antigen; log 2 fold change: 3.531); Casp4 (caspase 4; log 2 fold change: 3.466); Cd44 (CD44 antigen; log 2 fold change: 3.155); Pilra (paired immunoglobin-like type 2 receptor alpha; log 2 fold change: 3.147); and Irf7 (interferon regulatory factor 7; log 2 fold change: 3.056). Highly down-regulated genes at the 72 h reperfusion time point included: Syndig1l (log 2 fold change: −2.799); Rxrg (log 2 fold change: −2.396); Hbb-bt (hemoglobin, beta adult t chain; log 2 fold change: −1.579); Hba-a2 (hemoglobin alpha, adult chain 2; log 2 fold change: −1.510); Hba-a1 (hemoglobin alpha, adult chain 1; log 2 fold change: −1.409); and Hbb-bs (hemoglobin, beta adult s chain; log 2 fold change: −1.281). Differentially expressed genes at each I/R time point were analyzed with GO enrichment focused on related biological processes in order to elucidate the expected biological changes and possible injury mechanisms following cerebral ischemia. The full results of GO enrichment analysis are provided in Supplementary Material, Table S4. Selected terms of interest show that following 1 h of exposure to ischemia, genes responsible for synaptic transmission and the neurotransmitter biosynthetic process were down-regulated while one related to neuronal axon regeneration was up-regulated (Table 2). Three hours after reperfusion, multiple gene sets involved in the regulation of apoptosis were prominently up-regulated, as were pathways involved in immune cell responses and inflammation (Table 2). At the 12 h post-stroke time point, sphingolipid signaling pathway was up-regulated and a gene set involved in myelination was down-regulated. Consistent with the greatest numbers of individual genes being differentially expressed at the 24 h time point, more GO pathways were significantly affected at this post-stroke time point compared to other time points (Table 2). Pathways up-regulated were especially involved in immune cell responses and inflammation, cellular stress responses and cell death. GO pathways down-regulated at 24 h post-stroke included neurogenesis, cell signal transduction and cell differentiation. At 72 h of reperfusion, pathways involved in immune cell responses and inflammation continued to be strongly up-regulated, including the NLRP3 (NACHT, LRR and PYD domains containing protein 3) inflammasome and nuclear factor kappa B (NF-κB), while the synaptic transmission GO pathway was down-regulated at 72 h (Table 2). Table 2. Selected GO enrichment analysis results of AL versus sham group Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0031102  Neuron projection regeneration  Up  0.016  3  0007268  Synaptic transmission  Down  0.0012  5  0042136  Neurotransmitter biosynthetic process  Down  0.0089  2  0007274  Neuromuscular synaptic transmission  Down  0.0226  2  At reperfusion 3 h  0042981  Regulation of apoptotic process  Up  <0.0001  13  0043065  Positive regulation of apoptotic process  Up  <0.0001  9  0070887  Cellular response to chemical stimulus  Up  0.0001  13  0008219  Cell death  Up  0.0002  10  0048583  Regulation of response to stimulus  Up  0.0008  15  0006915  Apoptotic process  Up  0.0009  9  0070488  Neutrophil aggregation  Up  0.001  2  0032680  Regulation of tumor necrosis factor production  Up  0.0027  4  0010646  Regulation of cell communication  Up  0.0028  13  2001233  Regulation of apoptotic signaling pathway  Up  0.0028  6  0071347  Cellular response to interleukin-1  Up  0.0092  3  0002544  Chronic inflammatory response  Up  0.0141  2  0070486  Leukocyte aggregation  Up  0.0231  4  0006955  Immune response  Up  0.0281  6  At reperfusion 12 h  0003376  Sphingosine-1-phosphate signaling pathway  Up  0.0178  3  0042552  Myelination  Down  0.0414  4  At reperfusion 24 h  0002376  Immune system process  Up  <0.0001  140  0006955  Immune response  Up  <0.0001  93  0006950  Response to stress  Up  <0.0001  175  0006952  Defense response  Up  <0.0001  96  0050896  Response to stimulus  Up  <0.0001  260  0045087  Innate immune response  Up  <0.0001  56  0034097  Response to cytokine  Up  <0.0001  61  0098542  Defense response to other organism  Up  <0.0001  50  0007165  Signal transduction  Up  <0.0001  173  0001817  Regulation of cytokine production  Up  <0.0001  58  0006954  Inflammatory response  Up  <0.0001  52  0042060  Wound healing  Up  <0.0001  36  0019221  Cytokine-mediated signaling pathway  Up  <0.0001  30  0008219  Cell death  Up  <0.0001  53  0002250  Adaptive immune response  Up  <0.0001  19  0012501  Programmed cell death  Up  <0.0001  51  0042110  T cell activation  Up  <0.0001  23  0002221  Pattern recognition receptor signaling pathway  Up  <0.0001  10  0002224  Toll-like receptor signaling pathway  Up  <0.0001  8  0006909  Phagocytosis  Up  <0.0001  12  0097190  Apoptotic signaling pathway  Up  <0.0001  21  0001816  Cytokine production  Up  <0.0001  13  0097193  Intrinsic apoptotic signaling pathway  Up  0.0002  15  0019724  B cell-mediated immunity  Up  0.0002  10  0000165  MAPK cascade  Up  0.0003  15  0002526  Acute inflammatory response  Up  0.0012  9  0007249  I-kappa B kinase/NF-kappa B signaling  Up  0.0019  7  0000302  Response to reactive oxygen species  Up  0.0064  12  0050663  Cytokine secretion  Up  0.0078  5  0007267  Cell–cell signaling  Down  <0.0001  39  0022008  Neurogenesis  Down  <0.0001  49  0007154  Cell communication  Down  <0.0001  83  0030154  Cell differentiation  Down  <0.0001  70  0007218  Neuropeptide signaling pathway  Down  <0.0001  10  At reperfusion 72 h  0006955  Immune response  Up  <0.0001  41  0045087  Innate immune response  Up  <0.0001  30  0002376  Immune system process  Up  <0.0001  49  0006952  Defense response  Up  <0.0001  39  0002252  Immune effector process  Up  <0.0001  24  0019882  Antigen processing and presentation  Up  <0.0001  11  0006950  Response to stress  Up  <0.0001  48  0035456  Response to interferon-beta  Up  <0.0001  8  0035455  Response to interferon-alpha  Up  <0.0001  6  0034097  Response to cytokine  Up  <0.0001  18  0042063  Gliogenesis  Up  0.0197  7  1900225  Regulation of NLRP3 inflammasome complex assembly  Up  0.036  2  0043122  Regulation of I-kappa B kinase/NF-kappa B signaling  Up  0.0431  7  0007267  Cell–cell signaling  Down  0.0031  9  0050877  Neurological system process  Down  0.0084  10  0007268  Synaptic transmission  Down  0.025  6  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0031102  Neuron projection regeneration  Up  0.016  3  0007268  Synaptic transmission  Down  0.0012  5  0042136  Neurotransmitter biosynthetic process  Down  0.0089  2  0007274  Neuromuscular synaptic transmission  Down  0.0226  2  At reperfusion 3 h  0042981  Regulation of apoptotic process  Up  <0.0001  13  0043065  Positive regulation of apoptotic process  Up  <0.0001  9  0070887  Cellular response to chemical stimulus  Up  0.0001  13  0008219  Cell death  Up  0.0002  10  0048583  Regulation of response to stimulus  Up  0.0008  15  0006915  Apoptotic process  Up  0.0009  9  0070488  Neutrophil aggregation  Up  0.001  2  0032680  Regulation of tumor necrosis factor production  Up  0.0027  4  0010646  Regulation of cell communication  Up  0.0028  13  2001233  Regulation of apoptotic signaling pathway  Up  0.0028  6  0071347  Cellular response to interleukin-1  Up  0.0092  3  0002544  Chronic inflammatory response  Up  0.0141  2  0070486  Leukocyte aggregation  Up  0.0231  4  0006955  Immune response  Up  0.0281  6  At reperfusion 12 h  0003376  Sphingosine-1-phosphate signaling pathway  Up  0.0178  3  0042552  Myelination  Down  0.0414  4  At reperfusion 24 h  0002376  Immune system process  Up  <0.0001  140  0006955  Immune response  Up  <0.0001  93  0006950  Response to stress  Up  <0.0001  175  0006952  Defense response  Up  <0.0001  96  0050896  Response to stimulus  Up  <0.0001  260  0045087  Innate immune response  Up  <0.0001  56  0034097  Response to cytokine  Up  <0.0001  61  0098542  Defense response to other organism  Up  <0.0001  50  0007165  Signal transduction  Up  <0.0001  173  0001817  Regulation of cytokine production  Up  <0.0001  58  0006954  Inflammatory response  Up  <0.0001  52  0042060  Wound healing  Up  <0.0001  36  0019221  Cytokine-mediated signaling pathway  Up  <0.0001  30  0008219  Cell death  Up  <0.0001  53  0002250  Adaptive immune response  Up  <0.0001  19  0012501  Programmed cell death  Up  <0.0001  51  0042110  T cell activation  Up  <0.0001  23  0002221  Pattern recognition receptor signaling pathway  Up  <0.0001  10  0002224  Toll-like receptor signaling pathway  Up  <0.0001  8  0006909  Phagocytosis  Up  <0.0001  12  0097190  Apoptotic signaling pathway  Up  <0.0001  21  0001816  Cytokine production  Up  <0.0001  13  0097193  Intrinsic apoptotic signaling pathway  Up  0.0002  15  0019724  B cell-mediated immunity  Up  0.0002  10  0000165  MAPK cascade  Up  0.0003  15  0002526  Acute inflammatory response  Up  0.0012  9  0007249  I-kappa B kinase/NF-kappa B signaling  Up  0.0019  7  0000302  Response to reactive oxygen species  Up  0.0064  12  0050663  Cytokine secretion  Up  0.0078  5  0007267  Cell–cell signaling  Down  <0.0001  39  0022008  Neurogenesis  Down  <0.0001  49  0007154  Cell communication  Down  <0.0001  83  0030154  Cell differentiation  Down  <0.0001  70  0007218  Neuropeptide signaling pathway  Down  <0.0001  10  At reperfusion 72 h  0006955  Immune response  Up  <0.0001  41  0045087  Innate immune response  Up  <0.0001  30  0002376  Immune system process  Up  <0.0001  49  0006952  Defense response  Up  <0.0001  39  0002252  Immune effector process  Up  <0.0001  24  0019882  Antigen processing and presentation  Up  <0.0001  11  0006950  Response to stress  Up  <0.0001  48  0035456  Response to interferon-beta  Up  <0.0001  8  0035455  Response to interferon-alpha  Up  <0.0001  6  0034097  Response to cytokine  Up  <0.0001  18  0042063  Gliogenesis  Up  0.0197  7  1900225  Regulation of NLRP3 inflammasome complex assembly  Up  0.036  2  0043122  Regulation of I-kappa B kinase/NF-kappa B signaling  Up  0.0431  7  0007267  Cell–cell signaling  Down  0.0031  9  0050877  Neurological system process  Down  0.0084  10  0007268  Synaptic transmission  Down  0.025  6  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 2. Selected GO enrichment analysis results of AL versus sham group Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0031102  Neuron projection regeneration  Up  0.016  3  0007268  Synaptic transmission  Down  0.0012  5  0042136  Neurotransmitter biosynthetic process  Down  0.0089  2  0007274  Neuromuscular synaptic transmission  Down  0.0226  2  At reperfusion 3 h  0042981  Regulation of apoptotic process  Up  <0.0001  13  0043065  Positive regulation of apoptotic process  Up  <0.0001  9  0070887  Cellular response to chemical stimulus  Up  0.0001  13  0008219  Cell death  Up  0.0002  10  0048583  Regulation of response to stimulus  Up  0.0008  15  0006915  Apoptotic process  Up  0.0009  9  0070488  Neutrophil aggregation  Up  0.001  2  0032680  Regulation of tumor necrosis factor production  Up  0.0027  4  0010646  Regulation of cell communication  Up  0.0028  13  2001233  Regulation of apoptotic signaling pathway  Up  0.0028  6  0071347  Cellular response to interleukin-1  Up  0.0092  3  0002544  Chronic inflammatory response  Up  0.0141  2  0070486  Leukocyte aggregation  Up  0.0231  4  0006955  Immune response  Up  0.0281  6  At reperfusion 12 h  0003376  Sphingosine-1-phosphate signaling pathway  Up  0.0178  3  0042552  Myelination  Down  0.0414  4  At reperfusion 24 h  0002376  Immune system process  Up  <0.0001  140  0006955  Immune response  Up  <0.0001  93  0006950  Response to stress  Up  <0.0001  175  0006952  Defense response  Up  <0.0001  96  0050896  Response to stimulus  Up  <0.0001  260  0045087  Innate immune response  Up  <0.0001  56  0034097  Response to cytokine  Up  <0.0001  61  0098542  Defense response to other organism  Up  <0.0001  50  0007165  Signal transduction  Up  <0.0001  173  0001817  Regulation of cytokine production  Up  <0.0001  58  0006954  Inflammatory response  Up  <0.0001  52  0042060  Wound healing  Up  <0.0001  36  0019221  Cytokine-mediated signaling pathway  Up  <0.0001  30  0008219  Cell death  Up  <0.0001  53  0002250  Adaptive immune response  Up  <0.0001  19  0012501  Programmed cell death  Up  <0.0001  51  0042110  T cell activation  Up  <0.0001  23  0002221  Pattern recognition receptor signaling pathway  Up  <0.0001  10  0002224  Toll-like receptor signaling pathway  Up  <0.0001  8  0006909  Phagocytosis  Up  <0.0001  12  0097190  Apoptotic signaling pathway  Up  <0.0001  21  0001816  Cytokine production  Up  <0.0001  13  0097193  Intrinsic apoptotic signaling pathway  Up  0.0002  15  0019724  B cell-mediated immunity  Up  0.0002  10  0000165  MAPK cascade  Up  0.0003  15  0002526  Acute inflammatory response  Up  0.0012  9  0007249  I-kappa B kinase/NF-kappa B signaling  Up  0.0019  7  0000302  Response to reactive oxygen species  Up  0.0064  12  0050663  Cytokine secretion  Up  0.0078  5  0007267  Cell–cell signaling  Down  <0.0001  39  0022008  Neurogenesis  Down  <0.0001  49  0007154  Cell communication  Down  <0.0001  83  0030154  Cell differentiation  Down  <0.0001  70  0007218  Neuropeptide signaling pathway  Down  <0.0001  10  At reperfusion 72 h  0006955  Immune response  Up  <0.0001  41  0045087  Innate immune response  Up  <0.0001  30  0002376  Immune system process  Up  <0.0001  49  0006952  Defense response  Up  <0.0001  39  0002252  Immune effector process  Up  <0.0001  24  0019882  Antigen processing and presentation  Up  <0.0001  11  0006950  Response to stress  Up  <0.0001  48  0035456  Response to interferon-beta  Up  <0.0001  8  0035455  Response to interferon-alpha  Up  <0.0001  6  0034097  Response to cytokine  Up  <0.0001  18  0042063  Gliogenesis  Up  0.0197  7  1900225  Regulation of NLRP3 inflammasome complex assembly  Up  0.036  2  0043122  Regulation of I-kappa B kinase/NF-kappa B signaling  Up  0.0431  7  0007267  Cell–cell signaling  Down  0.0031  9  0050877  Neurological system process  Down  0.0084  10  0007268  Synaptic transmission  Down  0.025  6  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0031102  Neuron projection regeneration  Up  0.016  3  0007268  Synaptic transmission  Down  0.0012  5  0042136  Neurotransmitter biosynthetic process  Down  0.0089  2  0007274  Neuromuscular synaptic transmission  Down  0.0226  2  At reperfusion 3 h  0042981  Regulation of apoptotic process  Up  <0.0001  13  0043065  Positive regulation of apoptotic process  Up  <0.0001  9  0070887  Cellular response to chemical stimulus  Up  0.0001  13  0008219  Cell death  Up  0.0002  10  0048583  Regulation of response to stimulus  Up  0.0008  15  0006915  Apoptotic process  Up  0.0009  9  0070488  Neutrophil aggregation  Up  0.001  2  0032680  Regulation of tumor necrosis factor production  Up  0.0027  4  0010646  Regulation of cell communication  Up  0.0028  13  2001233  Regulation of apoptotic signaling pathway  Up  0.0028  6  0071347  Cellular response to interleukin-1  Up  0.0092  3  0002544  Chronic inflammatory response  Up  0.0141  2  0070486  Leukocyte aggregation  Up  0.0231  4  0006955  Immune response  Up  0.0281  6  At reperfusion 12 h  0003376  Sphingosine-1-phosphate signaling pathway  Up  0.0178  3  0042552  Myelination  Down  0.0414  4  At reperfusion 24 h  0002376  Immune system process  Up  <0.0001  140  0006955  Immune response  Up  <0.0001  93  0006950  Response to stress  Up  <0.0001  175  0006952  Defense response  Up  <0.0001  96  0050896  Response to stimulus  Up  <0.0001  260  0045087  Innate immune response  Up  <0.0001  56  0034097  Response to cytokine  Up  <0.0001  61  0098542  Defense response to other organism  Up  <0.0001  50  0007165  Signal transduction  Up  <0.0001  173  0001817  Regulation of cytokine production  Up  <0.0001  58  0006954  Inflammatory response  Up  <0.0001  52  0042060  Wound healing  Up  <0.0001  36  0019221  Cytokine-mediated signaling pathway  Up  <0.0001  30  0008219  Cell death  Up  <0.0001  53  0002250  Adaptive immune response  Up  <0.0001  19  0012501  Programmed cell death  Up  <0.0001  51  0042110  T cell activation  Up  <0.0001  23  0002221  Pattern recognition receptor signaling pathway  Up  <0.0001  10  0002224  Toll-like receptor signaling pathway  Up  <0.0001  8  0006909  Phagocytosis  Up  <0.0001  12  0097190  Apoptotic signaling pathway  Up  <0.0001  21  0001816  Cytokine production  Up  <0.0001  13  0097193  Intrinsic apoptotic signaling pathway  Up  0.0002  15  0019724  B cell-mediated immunity  Up  0.0002  10  0000165  MAPK cascade  Up  0.0003  15  0002526  Acute inflammatory response  Up  0.0012  9  0007249  I-kappa B kinase/NF-kappa B signaling  Up  0.0019  7  0000302  Response to reactive oxygen species  Up  0.0064  12  0050663  Cytokine secretion  Up  0.0078  5  0007267  Cell–cell signaling  Down  <0.0001  39  0022008  Neurogenesis  Down  <0.0001  49  0007154  Cell communication  Down  <0.0001  83  0030154  Cell differentiation  Down  <0.0001  70  0007218  Neuropeptide signaling pathway  Down  <0.0001  10  At reperfusion 72 h  0006955  Immune response  Up  <0.0001  41  0045087  Innate immune response  Up  <0.0001  30  0002376  Immune system process  Up  <0.0001  49  0006952  Defense response  Up  <0.0001  39  0002252  Immune effector process  Up  <0.0001  24  0019882  Antigen processing and presentation  Up  <0.0001  11  0006950  Response to stress  Up  <0.0001  48  0035456  Response to interferon-beta  Up  <0.0001  8  0035455  Response to interferon-alpha  Up  <0.0001  6  0034097  Response to cytokine  Up  <0.0001  18  0042063  Gliogenesis  Up  0.0197  7  1900225  Regulation of NLRP3 inflammasome complex assembly  Up  0.036  2  0043122  Regulation of I-kappa B kinase/NF-kappa B signaling  Up  0.0431  7  0007267  Cell–cell signaling  Down  0.0031  9  0050877  Neurological system process  Down  0.0084  10  0007268  Synaptic transmission  Down  0.025  6  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. In addition to GO enrichment analysis, we performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the RNA sequencing data. The results of the KEGG analysis were generally similar to those of the GO analysis, with pathways involved in inflammation, immune cell signaling, cellular stress responses and cell death being up-regulated at the 24 h reperfusion time point (Table 3). Interestingly, the KEGG analysis revealed down-regulation of gene sets related to signaling at multiple types of synapses including those that use gamma-aminobutyric acid (GABA), acetylcholine, glutamate, serotonin and dopamine as neurotransmitters at the 24 and 72 h time points (Table 3). See Supplementary Material, Table S5 for the complete results of the KEGG pathway analysis. Table 3. Selected KEGG pathway analysis results of AL versus sham group Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 12 h  4512  ECM-receptor interaction  Up  0.0152  4  At reperfusion 24 h  4668  TNF signaling pathway  Up  <0.0001  21  4060  Cytokine–cytokine receptor interaction  Up  <0.0001  29  4151  PI3K-Akt signaling pathway  Up  <0.0001  30  4620  Toll-like receptor signaling pathway  Up  <0.0001  16  4064  NF-kappa B signaling pathway  Up  <0.0001  14  4066  HIF-1 signaling pathway  Up  <0.0001  15  4062  Chemokine signaling pathway  Up  <0.0001  19  4662  B cell receptor signaling pathway  Up  <0.0001  12  4610  Complement and coagulation cascades  Up  <0.0001  12  4670  Leukocyte transendothelial migration  Up  <0.0001  15  4010  MAPK signaling pathway  Up  <0.0001  22  4145  Phagosome  Up  <0.0001  17  4630  Jak-STAT signaling pathway  Up  <0.0001  16  4650  Natural killer cell-mediated cytotoxicity  Up  <0.0001  13  4621  NOD-like receptor signaling pathway  Up  0.0006  8  4623  Cytosolic DNA-sensing pathway  Up  0.0009  8  4210  Apoptosis  Up  0.0054  8  4622  RIG-I-like receptor signaling pathway  Up  0.0084  7  4390  Hippo signaling pathway  Up  0.0228  10  4115  p53 signaling pathway  Up  0.0283  6  4068  FoxO signaling pathway  Up  0.0298  9  4910  Insulin signaling pathway  Up  0.0324  9  4080  Neuroactive ligand–receptor interaction  Down  <0.0001  17  4727  GABAergic synapse  Down  0.0008  8  4725  Cholinergic synapse  Down  0.0036  8  4721  Synaptic vesicle cycle  Down  0.0046  6  4724  Glutamatergic synapse  Down  0.0184  7  4728  Dopaminergic synapse  Down  0.0262  7  4020  Calcium signaling pathway  Down  0.0416  8  At reperfusion 72 h  4612  Antigen processing and presentation  Up  <0.0001  7  4145  Phagosome  Up  <0.0001  9  4622  RIG-I-like receptor signaling pathway  Up  0.0002  6  4623  Cytosolic DNA-sensing pathway  Up  0.0111  4  4630  Jak-STAT signaling pathway  Up  0.0385  5  4728  Dopaminergic synapse  Down  0.0007  5  4727  GABAergic synapse  Down  0.0289  3  4724  Glutamatergic synapse  Down  0.0417  3  4725  Cholinergic synapse  Down  0.0417  3  4726  Serotonergic synapse  Down  0.0479  3  Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 12 h  4512  ECM-receptor interaction  Up  0.0152  4  At reperfusion 24 h  4668  TNF signaling pathway  Up  <0.0001  21  4060  Cytokine–cytokine receptor interaction  Up  <0.0001  29  4151  PI3K-Akt signaling pathway  Up  <0.0001  30  4620  Toll-like receptor signaling pathway  Up  <0.0001  16  4064  NF-kappa B signaling pathway  Up  <0.0001  14  4066  HIF-1 signaling pathway  Up  <0.0001  15  4062  Chemokine signaling pathway  Up  <0.0001  19  4662  B cell receptor signaling pathway  Up  <0.0001  12  4610  Complement and coagulation cascades  Up  <0.0001  12  4670  Leukocyte transendothelial migration  Up  <0.0001  15  4010  MAPK signaling pathway  Up  <0.0001  22  4145  Phagosome  Up  <0.0001  17  4630  Jak-STAT signaling pathway  Up  <0.0001  16  4650  Natural killer cell-mediated cytotoxicity  Up  <0.0001  13  4621  NOD-like receptor signaling pathway  Up  0.0006  8  4623  Cytosolic DNA-sensing pathway  Up  0.0009  8  4210  Apoptosis  Up  0.0054  8  4622  RIG-I-like receptor signaling pathway  Up  0.0084  7  4390  Hippo signaling pathway  Up  0.0228  10  4115  p53 signaling pathway  Up  0.0283  6  4068  FoxO signaling pathway  Up  0.0298  9  4910  Insulin signaling pathway  Up  0.0324  9  4080  Neuroactive ligand–receptor interaction  Down  <0.0001  17  4727  GABAergic synapse  Down  0.0008  8  4725  Cholinergic synapse  Down  0.0036  8  4721  Synaptic vesicle cycle  Down  0.0046  6  4724  Glutamatergic synapse  Down  0.0184  7  4728  Dopaminergic synapse  Down  0.0262  7  4020  Calcium signaling pathway  Down  0.0416  8  At reperfusion 72 h  4612  Antigen processing and presentation  Up  <0.0001  7  4145  Phagosome  Up  <0.0001  9  4622  RIG-I-like receptor signaling pathway  Up  0.0002  6  4623  Cytosolic DNA-sensing pathway  Up  0.0111  4  4630  Jak-STAT signaling pathway  Up  0.0385  5  4728  Dopaminergic synapse  Down  0.0007  5  4727  GABAergic synapse  Down  0.0289  3  4724  Glutamatergic synapse  Down  0.0417  3  4725  Cholinergic synapse  Down  0.0417  3  4726  Serotonergic synapse  Down  0.0479  3  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 3. Selected KEGG pathway analysis results of AL versus sham group Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 12 h  4512  ECM-receptor interaction  Up  0.0152  4  At reperfusion 24 h  4668  TNF signaling pathway  Up  <0.0001  21  4060  Cytokine–cytokine receptor interaction  Up  <0.0001  29  4151  PI3K-Akt signaling pathway  Up  <0.0001  30  4620  Toll-like receptor signaling pathway  Up  <0.0001  16  4064  NF-kappa B signaling pathway  Up  <0.0001  14  4066  HIF-1 signaling pathway  Up  <0.0001  15  4062  Chemokine signaling pathway  Up  <0.0001  19  4662  B cell receptor signaling pathway  Up  <0.0001  12  4610  Complement and coagulation cascades  Up  <0.0001  12  4670  Leukocyte transendothelial migration  Up  <0.0001  15  4010  MAPK signaling pathway  Up  <0.0001  22  4145  Phagosome  Up  <0.0001  17  4630  Jak-STAT signaling pathway  Up  <0.0001  16  4650  Natural killer cell-mediated cytotoxicity  Up  <0.0001  13  4621  NOD-like receptor signaling pathway  Up  0.0006  8  4623  Cytosolic DNA-sensing pathway  Up  0.0009  8  4210  Apoptosis  Up  0.0054  8  4622  RIG-I-like receptor signaling pathway  Up  0.0084  7  4390  Hippo signaling pathway  Up  0.0228  10  4115  p53 signaling pathway  Up  0.0283  6  4068  FoxO signaling pathway  Up  0.0298  9  4910  Insulin signaling pathway  Up  0.0324  9  4080  Neuroactive ligand–receptor interaction  Down  <0.0001  17  4727  GABAergic synapse  Down  0.0008  8  4725  Cholinergic synapse  Down  0.0036  8  4721  Synaptic vesicle cycle  Down  0.0046  6  4724  Glutamatergic synapse  Down  0.0184  7  4728  Dopaminergic synapse  Down  0.0262  7  4020  Calcium signaling pathway  Down  0.0416  8  At reperfusion 72 h  4612  Antigen processing and presentation  Up  <0.0001  7  4145  Phagosome  Up  <0.0001  9  4622  RIG-I-like receptor signaling pathway  Up  0.0002  6  4623  Cytosolic DNA-sensing pathway  Up  0.0111  4  4630  Jak-STAT signaling pathway  Up  0.0385  5  4728  Dopaminergic synapse  Down  0.0007  5  4727  GABAergic synapse  Down  0.0289  3  4724  Glutamatergic synapse  Down  0.0417  3  4725  Cholinergic synapse  Down  0.0417  3  4726  Serotonergic synapse  Down  0.0479  3  Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 12 h  4512  ECM-receptor interaction  Up  0.0152  4  At reperfusion 24 h  4668  TNF signaling pathway  Up  <0.0001  21  4060  Cytokine–cytokine receptor interaction  Up  <0.0001  29  4151  PI3K-Akt signaling pathway  Up  <0.0001  30  4620  Toll-like receptor signaling pathway  Up  <0.0001  16  4064  NF-kappa B signaling pathway  Up  <0.0001  14  4066  HIF-1 signaling pathway  Up  <0.0001  15  4062  Chemokine signaling pathway  Up  <0.0001  19  4662  B cell receptor signaling pathway  Up  <0.0001  12  4610  Complement and coagulation cascades  Up  <0.0001  12  4670  Leukocyte transendothelial migration  Up  <0.0001  15  4010  MAPK signaling pathway  Up  <0.0001  22  4145  Phagosome  Up  <0.0001  17  4630  Jak-STAT signaling pathway  Up  <0.0001  16  4650  Natural killer cell-mediated cytotoxicity  Up  <0.0001  13  4621  NOD-like receptor signaling pathway  Up  0.0006  8  4623  Cytosolic DNA-sensing pathway  Up  0.0009  8  4210  Apoptosis  Up  0.0054  8  4622  RIG-I-like receptor signaling pathway  Up  0.0084  7  4390  Hippo signaling pathway  Up  0.0228  10  4115  p53 signaling pathway  Up  0.0283  6  4068  FoxO signaling pathway  Up  0.0298  9  4910  Insulin signaling pathway  Up  0.0324  9  4080  Neuroactive ligand–receptor interaction  Down  <0.0001  17  4727  GABAergic synapse  Down  0.0008  8  4725  Cholinergic synapse  Down  0.0036  8  4721  Synaptic vesicle cycle  Down  0.0046  6  4724  Glutamatergic synapse  Down  0.0184  7  4728  Dopaminergic synapse  Down  0.0262  7  4020  Calcium signaling pathway  Down  0.0416  8  At reperfusion 72 h  4612  Antigen processing and presentation  Up  <0.0001  7  4145  Phagosome  Up  <0.0001  9  4622  RIG-I-like receptor signaling pathway  Up  0.0002  6  4623  Cytosolic DNA-sensing pathway  Up  0.0111  4  4630  Jak-STAT signaling pathway  Up  0.0385  5  4728  Dopaminergic synapse  Down  0.0007  5  4727  GABAergic synapse  Down  0.0289  3  4724  Glutamatergic synapse  Down  0.0417  3  4725  Cholinergic synapse  Down  0.0417  3  4726  Serotonergic synapse  Down  0.0479  3  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Daily IF modifies cerebral transcriptomic responses to focal ischemic stroke We previously reported that mice maintained on either IF16 or alternate day fasting exhibit less neuronal death and improved neurological outcome following ischemic stroke, compared to mice fed ad libitum (11,13). We therefore applied RNA sequencing analysis of cerebral tissue samples from mice maintained on IF12 and IF16 feeding schedules, and subjected to cerebral I/R. Volcano plots showing the overall results of comparisons of transcriptomes at increasing post-stroke time points of mice in IF12 and IF16 groups compared to AL mice are shown in Figure 4A. The IF12 I/R group showed 57 differentially expressed genes at 1 h of ischemia; 1816, 29, 159 and 1 differentially expressed genes at 3, 12, 24 and 72 h after reperfusion, respectively, compared to the AL group at the same time points after I/R (Fig. 4A; the full list of differentially expressed genes is in Supplementary Material, Table S6). In contrast, the IF16 I/R group displayed 1933 differentially expressed genes at 1 h after ischemia and 52 differentially expressed genes after 72 h of reperfusion compared to the corresponding AL I/R groups (Fig. 4A; the full list of differentially expressed genes is in Supplementary Material, Table S7). Among all the time points, IF12 and IF16 interventions exhibited single I/R time point having exponentially increased number of significantly affected gene expressions which were 3 h of reperfusion or 1 h of ischemia time point, respectively. The full list of genes from each time point of IF12 and IF16 group were initially analyzed for GO enrichment. Multiple number of GO terms were elucidated to be significantly affected in IF12 group at 3 h of reperfusion (Fig. 4B), whereas GO terms from IF16 group at 1 h of ischemia time point were mostly insignificant with the change (Fig. 4C). Figure 4. View largeDownload slide Differentially expressed genes in experimental groups at each brain I/R time points and GO enrichment analysis of IF12 and IF16 groups at the peak gene expression time points. (A) Volcano diagrams showing the distribution of differentially expressed genes in AL group compared to sham-operated control, or IF12 and IF16 groups compared to AL group at each brain I/R time point. The threshold of differential expression is adjusted P-value < 0.05. The horizontal axis is the log 2 fold change of genes. The vertical axis is statistical significance scaled as −log 10 adjusted P-value. Each dot represents an individual gene (blue: no significant difference; red: up-regulated gene; green: down-regulated gene). GO enrichment analysis on differentially expressed genes at the peak time points of 3 h reperfusion in IF12 group (B) and 1 h of ischemia in IF16 group (C) in comparison to AL group. *, **, ***Significantly modulated GO terms within the enrichment analysis (adjusted P < 0.05, adjusted P < 0.01, adjusted P < 0.001). Figure 4. View largeDownload slide Differentially expressed genes in experimental groups at each brain I/R time points and GO enrichment analysis of IF12 and IF16 groups at the peak gene expression time points. (A) Volcano diagrams showing the distribution of differentially expressed genes in AL group compared to sham-operated control, or IF12 and IF16 groups compared to AL group at each brain I/R time point. The threshold of differential expression is adjusted P-value < 0.05. The horizontal axis is the log 2 fold change of genes. The vertical axis is statistical significance scaled as −log 10 adjusted P-value. Each dot represents an individual gene (blue: no significant difference; red: up-regulated gene; green: down-regulated gene). GO enrichment analysis on differentially expressed genes at the peak time points of 3 h reperfusion in IF12 group (B) and 1 h of ischemia in IF16 group (C) in comparison to AL group. *, **, ***Significantly modulated GO terms within the enrichment analysis (adjusted P < 0.05, adjusted P < 0.01, adjusted P < 0.001). In order to elucidate the biological processes affected by differentially expressed genes in the IF groups in detail, we performed GO enrichment analyses at each time point in the IF12 I/R (Table 4; full list of GO enrichment analysis is in Supplementary Material, Table S8) and IF16 I/R (Table 6; full list of GO enrichment analysis is in Supplementary Material, Table S10) groups with up- and down-regulated genes separately. GO enrichment analyses showed that after 1 h of ischemia, cellular biosynthetic processes, transcription, regulation of metabolic process and cell proliferation were up-regulated in the IF12 I/R group (Table 4). The most significant change of differentially expressed genes between the IF12 I/R and AL I/R groups was evident at 3 h of reperfusion. Up-regulated GO terms included those involved in protein translation, biosynthetic processes, oxidation-reduction processes, biogenesis, rRNA processing, ATP biosynthesis and responses to cellular stress (Table 4). Down-regulated GO terms include cell communication, cell differentiation, neurogenesis, synaptic transmission and inhibition of apoptosis. Very few GO terms were significantly affected by IF12 I/R compared to AL I/R at 12 or 24 h of reperfusion (Table 4). KEGG pathway analysis of IF12 I/R groups in comparison to the AL I/R group at 3 h of reperfusion revealed up-regulated oxidative phosphorylation, and metabolic and ribosome pathways, whereas calcium signaling, cholinergic, glutamatergic, GABAergic and dopaminergic, mitogen-activated protein kinase (MAPK), forkhead box O (FoxO) and mechanistic target of rapamycin (mTOR) signaling pathways were down-regulated (Table 5; the full list of KEGG pathway analysis data are in Supplementary Material, Table S9). At 24 h of reperfusion, KEGG pathway analysis indicated that the IF12 group exhibited down-regulation of inflammatory mediator regulation of transient receptor potential (TRP) channels and calcium-signaling pathways. Table 4. Selected GO enrichment analysis results of IF12 versus AL group Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0006351  Transcription, DNA template  Up  <0.0001  17  0044249  Cellular biosynthetic process  Up  0.0008  19  0010467  Gene expression  Up  0.0024  17  0019222  Regulation of metabolic process  Up  0.0061  22  0042127  Regulation of cell proliferation  Up  0.0168  10  At reperfusion 3 h  0006412  Translation  Up  <0.0001  78  0009058  Biosynthetic process  Up  <0.0001  151  0055114  Oxidation–reduction process  Up  <0.0001  52  0042273  Ribosomal large subunit biogenesis  Up  <0.0001  8  0042254  Ribosome biogenesis  Up  <0.0001  27  0000028  Ribosomal small subunit assembly  Up  <0.0001  8  0042274  Ribosomal small subunit biogenesis  Up  <0.0001  13  0042255  Ribosome assembly  Up  <0.0001  11  0006364  rRNA processing  Up  <0.0001  21  0006754  ATP biosynthetic process  Up  <0.0001  9  0006979  Response to oxidative stress  Up  0.0002  25  0000302  Response to reactive oxygen species  Up  0.0004  16  0006950  Response to stress  Up  0.0005  101  0006417  Regulation of translation  Up  0.0011  21  0006119  Oxidative phosphorylation  Up  0.0028  7  2001242  Regulation of intrinsic apoptotic signaling pathway  Up  0.0029  14  0006413  Translational initiation  Up  0.0034  9  2001233  Regulation of apoptotic signaling pathway  Up  0.0058  24  0042773  ATP synthesis-coupled electron transport  Up  0.0074  6  2001235  Positive regulation of apoptotic signaling pathway  Up  0.0409  13  0034614  Cellular response to reactive oxygen species  Up  0.0437  9  0007154  Cell communication  Down  <0.0001  292  0030154  Cell differentiation  Down  <0.0001  232  0007165  Signal transduction  Down  <0.0001  252  0022008  Neurogenesis  Down  <0.0001  141  0048699  Generation of neurons  Down  <0.0001  136  0030182  Neuron differentiation  Down  <0.0001  95  0007268  Synaptic transmission  Down  <0.0001  62  0007270  Neuron–neuron synaptic transmission  Down  <0.0001  23  0050768  Negative regulation of neurogenesis  Down  0.0002  26  0042981  Regulation of apoptotic process  Down  0.0027  84  0010941  Regulation of cell death  Down  0.0041  88  0000165  MAPK cascade  Down  0.0101  18  1901214  Regulation of neuron death  Down  0.0113  23  0017148  Negative regulation of translation  Down  0.0131  12  0043523  Regulation of neuron apoptotic process  Down  0.0141  20  0043066  Negative regulation of apoptotic process  Down  0.0179  53  0032844  Regulation of homeostatic process  Down  0.0182  30  0046928  Regulation of neurotransmitter secretion  Down  0.0224  8  0060548  Negative regulation of cell death  Down  0.0268  56  At reperfusion 12 h  0008217  Regulation of blood pressure  Up  0.0001  5  0008015  Blood circulation  Up  0.0012  5  0007268  Synaptic transmission  Up  0.0025  5  0051960  Regulation of nervous system development  Up  0.0054  6  0042136  Neurotransmitter biosynthetic process  Up  0.007  2  0007218  Neuropeptide signaling pathway  Up  0.0145  3  At reperfusion 24 h  GO.0002588  Positive regulation of antigen processing and presentation of peptide antigen via MHC class II  Up  0.033  2  GO.0097193  Intrinsic apoptotic signaling pathway  Up  0.0396  6  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0006351  Transcription, DNA template  Up  <0.0001  17  0044249  Cellular biosynthetic process  Up  0.0008  19  0010467  Gene expression  Up  0.0024  17  0019222  Regulation of metabolic process  Up  0.0061  22  0042127  Regulation of cell proliferation  Up  0.0168  10  At reperfusion 3 h  0006412  Translation  Up  <0.0001  78  0009058  Biosynthetic process  Up  <0.0001  151  0055114  Oxidation–reduction process  Up  <0.0001  52  0042273  Ribosomal large subunit biogenesis  Up  <0.0001  8  0042254  Ribosome biogenesis  Up  <0.0001  27  0000028  Ribosomal small subunit assembly  Up  <0.0001  8  0042274  Ribosomal small subunit biogenesis  Up  <0.0001  13  0042255  Ribosome assembly  Up  <0.0001  11  0006364  rRNA processing  Up  <0.0001  21  0006754  ATP biosynthetic process  Up  <0.0001  9  0006979  Response to oxidative stress  Up  0.0002  25  0000302  Response to reactive oxygen species  Up  0.0004  16  0006950  Response to stress  Up  0.0005  101  0006417  Regulation of translation  Up  0.0011  21  0006119  Oxidative phosphorylation  Up  0.0028  7  2001242  Regulation of intrinsic apoptotic signaling pathway  Up  0.0029  14  0006413  Translational initiation  Up  0.0034  9  2001233  Regulation of apoptotic signaling pathway  Up  0.0058  24  0042773  ATP synthesis-coupled electron transport  Up  0.0074  6  2001235  Positive regulation of apoptotic signaling pathway  Up  0.0409  13  0034614  Cellular response to reactive oxygen species  Up  0.0437  9  0007154  Cell communication  Down  <0.0001  292  0030154  Cell differentiation  Down  <0.0001  232  0007165  Signal transduction  Down  <0.0001  252  0022008  Neurogenesis  Down  <0.0001  141  0048699  Generation of neurons  Down  <0.0001  136  0030182  Neuron differentiation  Down  <0.0001  95  0007268  Synaptic transmission  Down  <0.0001  62  0007270  Neuron–neuron synaptic transmission  Down  <0.0001  23  0050768  Negative regulation of neurogenesis  Down  0.0002  26  0042981  Regulation of apoptotic process  Down  0.0027  84  0010941  Regulation of cell death  Down  0.0041  88  0000165  MAPK cascade  Down  0.0101  18  1901214  Regulation of neuron death  Down  0.0113  23  0017148  Negative regulation of translation  Down  0.0131  12  0043523  Regulation of neuron apoptotic process  Down  0.0141  20  0043066  Negative regulation of apoptotic process  Down  0.0179  53  0032844  Regulation of homeostatic process  Down  0.0182  30  0046928  Regulation of neurotransmitter secretion  Down  0.0224  8  0060548  Negative regulation of cell death  Down  0.0268  56  At reperfusion 12 h  0008217  Regulation of blood pressure  Up  0.0001  5  0008015  Blood circulation  Up  0.0012  5  0007268  Synaptic transmission  Up  0.0025  5  0051960  Regulation of nervous system development  Up  0.0054  6  0042136  Neurotransmitter biosynthetic process  Up  0.007  2  0007218  Neuropeptide signaling pathway  Up  0.0145  3  At reperfusion 24 h  GO.0002588  Positive regulation of antigen processing and presentation of peptide antigen via MHC class II  Up  0.033  2  GO.0097193  Intrinsic apoptotic signaling pathway  Up  0.0396  6  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 4. Selected GO enrichment analysis results of IF12 versus AL group Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0006351  Transcription, DNA template  Up  <0.0001  17  0044249  Cellular biosynthetic process  Up  0.0008  19  0010467  Gene expression  Up  0.0024  17  0019222  Regulation of metabolic process  Up  0.0061  22  0042127  Regulation of cell proliferation  Up  0.0168  10  At reperfusion 3 h  0006412  Translation  Up  <0.0001  78  0009058  Biosynthetic process  Up  <0.0001  151  0055114  Oxidation–reduction process  Up  <0.0001  52  0042273  Ribosomal large subunit biogenesis  Up  <0.0001  8  0042254  Ribosome biogenesis  Up  <0.0001  27  0000028  Ribosomal small subunit assembly  Up  <0.0001  8  0042274  Ribosomal small subunit biogenesis  Up  <0.0001  13  0042255  Ribosome assembly  Up  <0.0001  11  0006364  rRNA processing  Up  <0.0001  21  0006754  ATP biosynthetic process  Up  <0.0001  9  0006979  Response to oxidative stress  Up  0.0002  25  0000302  Response to reactive oxygen species  Up  0.0004  16  0006950  Response to stress  Up  0.0005  101  0006417  Regulation of translation  Up  0.0011  21  0006119  Oxidative phosphorylation  Up  0.0028  7  2001242  Regulation of intrinsic apoptotic signaling pathway  Up  0.0029  14  0006413  Translational initiation  Up  0.0034  9  2001233  Regulation of apoptotic signaling pathway  Up  0.0058  24  0042773  ATP synthesis-coupled electron transport  Up  0.0074  6  2001235  Positive regulation of apoptotic signaling pathway  Up  0.0409  13  0034614  Cellular response to reactive oxygen species  Up  0.0437  9  0007154  Cell communication  Down  <0.0001  292  0030154  Cell differentiation  Down  <0.0001  232  0007165  Signal transduction  Down  <0.0001  252  0022008  Neurogenesis  Down  <0.0001  141  0048699  Generation of neurons  Down  <0.0001  136  0030182  Neuron differentiation  Down  <0.0001  95  0007268  Synaptic transmission  Down  <0.0001  62  0007270  Neuron–neuron synaptic transmission  Down  <0.0001  23  0050768  Negative regulation of neurogenesis  Down  0.0002  26  0042981  Regulation of apoptotic process  Down  0.0027  84  0010941  Regulation of cell death  Down  0.0041  88  0000165  MAPK cascade  Down  0.0101  18  1901214  Regulation of neuron death  Down  0.0113  23  0017148  Negative regulation of translation  Down  0.0131  12  0043523  Regulation of neuron apoptotic process  Down  0.0141  20  0043066  Negative regulation of apoptotic process  Down  0.0179  53  0032844  Regulation of homeostatic process  Down  0.0182  30  0046928  Regulation of neurotransmitter secretion  Down  0.0224  8  0060548  Negative regulation of cell death  Down  0.0268  56  At reperfusion 12 h  0008217  Regulation of blood pressure  Up  0.0001  5  0008015  Blood circulation  Up  0.0012  5  0007268  Synaptic transmission  Up  0.0025  5  0051960  Regulation of nervous system development  Up  0.0054  6  0042136  Neurotransmitter biosynthetic process  Up  0.007  2  0007218  Neuropeptide signaling pathway  Up  0.0145  3  At reperfusion 24 h  GO.0002588  Positive regulation of antigen processing and presentation of peptide antigen via MHC class II  Up  0.033  2  GO.0097193  Intrinsic apoptotic signaling pathway  Up  0.0396  6  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0006351  Transcription, DNA template  Up  <0.0001  17  0044249  Cellular biosynthetic process  Up  0.0008  19  0010467  Gene expression  Up  0.0024  17  0019222  Regulation of metabolic process  Up  0.0061  22  0042127  Regulation of cell proliferation  Up  0.0168  10  At reperfusion 3 h  0006412  Translation  Up  <0.0001  78  0009058  Biosynthetic process  Up  <0.0001  151  0055114  Oxidation–reduction process  Up  <0.0001  52  0042273  Ribosomal large subunit biogenesis  Up  <0.0001  8  0042254  Ribosome biogenesis  Up  <0.0001  27  0000028  Ribosomal small subunit assembly  Up  <0.0001  8  0042274  Ribosomal small subunit biogenesis  Up  <0.0001  13  0042255  Ribosome assembly  Up  <0.0001  11  0006364  rRNA processing  Up  <0.0001  21  0006754  ATP biosynthetic process  Up  <0.0001  9  0006979  Response to oxidative stress  Up  0.0002  25  0000302  Response to reactive oxygen species  Up  0.0004  16  0006950  Response to stress  Up  0.0005  101  0006417  Regulation of translation  Up  0.0011  21  0006119  Oxidative phosphorylation  Up  0.0028  7  2001242  Regulation of intrinsic apoptotic signaling pathway  Up  0.0029  14  0006413  Translational initiation  Up  0.0034  9  2001233  Regulation of apoptotic signaling pathway  Up  0.0058  24  0042773  ATP synthesis-coupled electron transport  Up  0.0074  6  2001235  Positive regulation of apoptotic signaling pathway  Up  0.0409  13  0034614  Cellular response to reactive oxygen species  Up  0.0437  9  0007154  Cell communication  Down  <0.0001  292  0030154  Cell differentiation  Down  <0.0001  232  0007165  Signal transduction  Down  <0.0001  252  0022008  Neurogenesis  Down  <0.0001  141  0048699  Generation of neurons  Down  <0.0001  136  0030182  Neuron differentiation  Down  <0.0001  95  0007268  Synaptic transmission  Down  <0.0001  62  0007270  Neuron–neuron synaptic transmission  Down  <0.0001  23  0050768  Negative regulation of neurogenesis  Down  0.0002  26  0042981  Regulation of apoptotic process  Down  0.0027  84  0010941  Regulation of cell death  Down  0.0041  88  0000165  MAPK cascade  Down  0.0101  18  1901214  Regulation of neuron death  Down  0.0113  23  0017148  Negative regulation of translation  Down  0.0131  12  0043523  Regulation of neuron apoptotic process  Down  0.0141  20  0043066  Negative regulation of apoptotic process  Down  0.0179  53  0032844  Regulation of homeostatic process  Down  0.0182  30  0046928  Regulation of neurotransmitter secretion  Down  0.0224  8  0060548  Negative regulation of cell death  Down  0.0268  56  At reperfusion 12 h  0008217  Regulation of blood pressure  Up  0.0001  5  0008015  Blood circulation  Up  0.0012  5  0007268  Synaptic transmission  Up  0.0025  5  0051960  Regulation of nervous system development  Up  0.0054  6  0042136  Neurotransmitter biosynthetic process  Up  0.007  2  0007218  Neuropeptide signaling pathway  Up  0.0145  3  At reperfusion 24 h  GO.0002588  Positive regulation of antigen processing and presentation of peptide antigen via MHC class II  Up  0.033  2  GO.0097193  Intrinsic apoptotic signaling pathway  Up  0.0396  6  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 5. Selected KEGG pathway analysis results of IF12 versus AL group Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 3 h  3010  Ribosome  Up  <0.0001  46  190  Oxidative phosphorylation  Up  <0.0001  30  1100  Metabolic pathways  Up  <0.0001  61  4020  Calcium signaling pathway  Down  <0.0001  39  4713  Circadian entrainment  Down  <0.0001  28  4725  Cholinergic synapse  Down  <0.0001  24  4724  Glutamatergic synapse  Down  <0.0001  24  4727  GABAergic synapse  Down  <0.0001  21  4728  Dopaminergic synapse  Down  <0.0001  23  4010  MAPK signaling pathway  Down  <0.0001  34  4911  Insulin secretion  Down  0.0001  15  4611  Platelet activation  Down  0.0001  19  4080  Neuroactive ligand–receptor interaction  Down  0.0004  30  4068  FoxO signaling pathway  Down  0.0017  17  4150  mTOR signaling pathway  Down  0.0135  9  4750  Inflammatory mediator regulation of TRP channels  Down  0.0232  13  At reperfusion 24 h  4911  Insulin secretion  Down  0.0009  5  4270  Vascular smooth muscle contraction  Down  0.0026  5  4750  Inflammatory mediator regulation of TRP channels  Down  0.0206  4  4020  Calcium signaling pathway  Down  0.0376  4  4713  Circadian entrainment  Down  0.0443  3  Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 3 h  3010  Ribosome  Up  <0.0001  46  190  Oxidative phosphorylation  Up  <0.0001  30  1100  Metabolic pathways  Up  <0.0001  61  4020  Calcium signaling pathway  Down  <0.0001  39  4713  Circadian entrainment  Down  <0.0001  28  4725  Cholinergic synapse  Down  <0.0001  24  4724  Glutamatergic synapse  Down  <0.0001  24  4727  GABAergic synapse  Down  <0.0001  21  4728  Dopaminergic synapse  Down  <0.0001  23  4010  MAPK signaling pathway  Down  <0.0001  34  4911  Insulin secretion  Down  0.0001  15  4611  Platelet activation  Down  0.0001  19  4080  Neuroactive ligand–receptor interaction  Down  0.0004  30  4068  FoxO signaling pathway  Down  0.0017  17  4150  mTOR signaling pathway  Down  0.0135  9  4750  Inflammatory mediator regulation of TRP channels  Down  0.0232  13  At reperfusion 24 h  4911  Insulin secretion  Down  0.0009  5  4270  Vascular smooth muscle contraction  Down  0.0026  5  4750  Inflammatory mediator regulation of TRP channels  Down  0.0206  4  4020  Calcium signaling pathway  Down  0.0376  4  4713  Circadian entrainment  Down  0.0443  3  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 5. Selected KEGG pathway analysis results of IF12 versus AL group Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 3 h  3010  Ribosome  Up  <0.0001  46  190  Oxidative phosphorylation  Up  <0.0001  30  1100  Metabolic pathways  Up  <0.0001  61  4020  Calcium signaling pathway  Down  <0.0001  39  4713  Circadian entrainment  Down  <0.0001  28  4725  Cholinergic synapse  Down  <0.0001  24  4724  Glutamatergic synapse  Down  <0.0001  24  4727  GABAergic synapse  Down  <0.0001  21  4728  Dopaminergic synapse  Down  <0.0001  23  4010  MAPK signaling pathway  Down  <0.0001  34  4911  Insulin secretion  Down  0.0001  15  4611  Platelet activation  Down  0.0001  19  4080  Neuroactive ligand–receptor interaction  Down  0.0004  30  4068  FoxO signaling pathway  Down  0.0017  17  4150  mTOR signaling pathway  Down  0.0135  9  4750  Inflammatory mediator regulation of TRP channels  Down  0.0232  13  At reperfusion 24 h  4911  Insulin secretion  Down  0.0009  5  4270  Vascular smooth muscle contraction  Down  0.0026  5  4750  Inflammatory mediator regulation of TRP channels  Down  0.0206  4  4020  Calcium signaling pathway  Down  0.0376  4  4713  Circadian entrainment  Down  0.0443  3  Pathway ID  Pathway description  Expression trend  FDRa  Relevant gene no.  At reperfusion 3 h  3010  Ribosome  Up  <0.0001  46  190  Oxidative phosphorylation  Up  <0.0001  30  1100  Metabolic pathways  Up  <0.0001  61  4020  Calcium signaling pathway  Down  <0.0001  39  4713  Circadian entrainment  Down  <0.0001  28  4725  Cholinergic synapse  Down  <0.0001  24  4724  Glutamatergic synapse  Down  <0.0001  24  4727  GABAergic synapse  Down  <0.0001  21  4728  Dopaminergic synapse  Down  <0.0001  23  4010  MAPK signaling pathway  Down  <0.0001  34  4911  Insulin secretion  Down  0.0001  15  4611  Platelet activation  Down  0.0001  19  4080  Neuroactive ligand–receptor interaction  Down  0.0004  30  4068  FoxO signaling pathway  Down  0.0017  17  4150  mTOR signaling pathway  Down  0.0135  9  4750  Inflammatory mediator regulation of TRP channels  Down  0.0232  13  At reperfusion 24 h  4911  Insulin secretion  Down  0.0009  5  4270  Vascular smooth muscle contraction  Down  0.0026  5  4750  Inflammatory mediator regulation of TRP channels  Down  0.0206  4  4020  Calcium signaling pathway  Down  0.0376  4  4713  Circadian entrainment  Down  0.0443  3  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 6. Selected GO enrichment analysis results of IF16 versus AL group Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0007154  Cell communication  Up  <0.0001  287  0030154  Cell differentiation  Up  <0.0001  255  0007165  Signal transduction  Up  <0.0001  254  0022008  Neurogenesis  Up  <0.0001  124  0048699  Generation of neurons  Up  <0.0001  116  0030182  Neuron differentiation  Up  <0.0001  83  0007268  Synaptic transmission  Up  <0.0001  44  1902680  Positive regulation of RNA biosynthetic process  Up  <0.0001  142  1902679  Negative regulation of RNA biosynthetic process  Up  <0.0001  100  0042127  Regulation of cell proliferation  Up  <0.0001  103  0008284  Positive regulation of cell proliferation  Up  <0.0001  66  0032844  Regulation of homeostatic process  Up  0.0002  37  0032846  Positive regulation of homeostatic process  Up  0.0005  20  0007270  Neuron–neuron synaptic transmission  Up  0.0007  13  0043066  Negative regulation of apoptotic process  Up  0.0011  60  0017148  Negative regulation of translation  Up  0.0017  14  0060548  Negative regulation of cell death  Up  0.0022  63  0032007  Negative regulation of TOR signaling  Up  0.0029  7  0000165  MAPK cascade  Up  0.0059  19  0042981  Regulation of apoptotic process  Up  0.0067  84  0010941  Regulation of cell death  Up  0.0069  89  0008219  Cell death  Up  0.0087  65  0050768  Negative regulation of neurogenesis  Up  0.0091  22  0000186  Activation of MAPKK activity  Up  0.0096  9  0012501  Programmed cell death  Up  0.0143  62  0002520  Immune system development  Up  0.0157  48  0042592  Homeostatic process  Up  0.0171  79  0032006  Regulation of TOR signaling  Up  0.0179  9  0071456  Cellular response to hypoxia  Up  0.0181  13  0006915  Apoptotic process  Up  0.0195  60  0008283  Cell proliferation  Up  0.0394  39  0035722  Interleukin-12-mediated signaling pathway  Up  0.0415  2  0071349  Cellular response to interleukin-12  Up  0.0415  2  0006412  Translation  Down  <0.0001  67  0009058  Biosynthetic process  Down  <0.0001  180  0043043  Peptide biosynthetic process  Down  <0.0001  68  0055114  Oxidation–reduction process  Down  <0.0001  60  0042273  Ribosomal large subunit biogenesis  Down  <0.0001  8  0042254  Ribosome biogenesis  Down  0.0016  19  0001731  Formation of translation pre-initiation complex  Down  0.0024  6  0000028  Ribosomal small subunit assembly  Down  0.0056  5  0006413  Translational initiation  Down  0.0122  9  0042773  ATP synthesis-coupled electron transport  Down  0.0192  6  0006417  Regulation of translation  Down  0.0246  20  0042255  Ribosome assembly  Down  0.0325  6  At reperfusion 72 h  0015671  Oxygen transport  Up  0.0114  2  0002376  Immune system process  Down  <0.0001  19  0006955  Immune response  Down  <0.0001  13  0045087  Innate immune response  Down  <0.0001  10  0006952  Defense response  Down  <0.0001  12  0019882  Antigen processing and presentation  Down  0.0079  4  0035456  Response to interferon-beta  Down  0.0148  3  0045351  Type I interferon biosynthetic process  Down  0.0321  2  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0007154  Cell communication  Up  <0.0001  287  0030154  Cell differentiation  Up  <0.0001  255  0007165  Signal transduction  Up  <0.0001  254  0022008  Neurogenesis  Up  <0.0001  124  0048699  Generation of neurons  Up  <0.0001  116  0030182  Neuron differentiation  Up  <0.0001  83  0007268  Synaptic transmission  Up  <0.0001  44  1902680  Positive regulation of RNA biosynthetic process  Up  <0.0001  142  1902679  Negative regulation of RNA biosynthetic process  Up  <0.0001  100  0042127  Regulation of cell proliferation  Up  <0.0001  103  0008284  Positive regulation of cell proliferation  Up  <0.0001  66  0032844  Regulation of homeostatic process  Up  0.0002  37  0032846  Positive regulation of homeostatic process  Up  0.0005  20  0007270  Neuron–neuron synaptic transmission  Up  0.0007  13  0043066  Negative regulation of apoptotic process  Up  0.0011  60  0017148  Negative regulation of translation  Up  0.0017  14  0060548  Negative regulation of cell death  Up  0.0022  63  0032007  Negative regulation of TOR signaling  Up  0.0029  7  0000165  MAPK cascade  Up  0.0059  19  0042981  Regulation of apoptotic process  Up  0.0067  84  0010941  Regulation of cell death  Up  0.0069  89  0008219  Cell death  Up  0.0087  65  0050768  Negative regulation of neurogenesis  Up  0.0091  22  0000186  Activation of MAPKK activity  Up  0.0096  9  0012501  Programmed cell death  Up  0.0143  62  0002520  Immune system development  Up  0.0157  48  0042592  Homeostatic process  Up  0.0171  79  0032006  Regulation of TOR signaling  Up  0.0179  9  0071456  Cellular response to hypoxia  Up  0.0181  13  0006915  Apoptotic process  Up  0.0195  60  0008283  Cell proliferation  Up  0.0394  39  0035722  Interleukin-12-mediated signaling pathway  Up  0.0415  2  0071349  Cellular response to interleukin-12  Up  0.0415  2  0006412  Translation  Down  <0.0001  67  0009058  Biosynthetic process  Down  <0.0001  180  0043043  Peptide biosynthetic process  Down  <0.0001  68  0055114  Oxidation–reduction process  Down  <0.0001  60  0042273  Ribosomal large subunit biogenesis  Down  <0.0001  8  0042254  Ribosome biogenesis  Down  0.0016  19  0001731  Formation of translation pre-initiation complex  Down  0.0024  6  0000028  Ribosomal small subunit assembly  Down  0.0056  5  0006413  Translational initiation  Down  0.0122  9  0042773  ATP synthesis-coupled electron transport  Down  0.0192  6  0006417  Regulation of translation  Down  0.0246  20  0042255  Ribosome assembly  Down  0.0325  6  At reperfusion 72 h  0015671  Oxygen transport  Up  0.0114  2  0002376  Immune system process  Down  <0.0001  19  0006955  Immune response  Down  <0.0001  13  0045087  Innate immune response  Down  <0.0001  10  0006952  Defense response  Down  <0.0001  12  0019882  Antigen processing and presentation  Down  0.0079  4  0035456  Response to interferon-beta  Down  0.0148  3  0045351  Type I interferon biosynthetic process  Down  0.0321  2  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 6. Selected GO enrichment analysis results of IF16 versus AL group Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0007154  Cell communication  Up  <0.0001  287  0030154  Cell differentiation  Up  <0.0001  255  0007165  Signal transduction  Up  <0.0001  254  0022008  Neurogenesis  Up  <0.0001  124  0048699  Generation of neurons  Up  <0.0001  116  0030182  Neuron differentiation  Up  <0.0001  83  0007268  Synaptic transmission  Up  <0.0001  44  1902680  Positive regulation of RNA biosynthetic process  Up  <0.0001  142  1902679  Negative regulation of RNA biosynthetic process  Up  <0.0001  100  0042127  Regulation of cell proliferation  Up  <0.0001  103  0008284  Positive regulation of cell proliferation  Up  <0.0001  66  0032844  Regulation of homeostatic process  Up  0.0002  37  0032846  Positive regulation of homeostatic process  Up  0.0005  20  0007270  Neuron–neuron synaptic transmission  Up  0.0007  13  0043066  Negative regulation of apoptotic process  Up  0.0011  60  0017148  Negative regulation of translation  Up  0.0017  14  0060548  Negative regulation of cell death  Up  0.0022  63  0032007  Negative regulation of TOR signaling  Up  0.0029  7  0000165  MAPK cascade  Up  0.0059  19  0042981  Regulation of apoptotic process  Up  0.0067  84  0010941  Regulation of cell death  Up  0.0069  89  0008219  Cell death  Up  0.0087  65  0050768  Negative regulation of neurogenesis  Up  0.0091  22  0000186  Activation of MAPKK activity  Up  0.0096  9  0012501  Programmed cell death  Up  0.0143  62  0002520  Immune system development  Up  0.0157  48  0042592  Homeostatic process  Up  0.0171  79  0032006  Regulation of TOR signaling  Up  0.0179  9  0071456  Cellular response to hypoxia  Up  0.0181  13  0006915  Apoptotic process  Up  0.0195  60  0008283  Cell proliferation  Up  0.0394  39  0035722  Interleukin-12-mediated signaling pathway  Up  0.0415  2  0071349  Cellular response to interleukin-12  Up  0.0415  2  0006412  Translation  Down  <0.0001  67  0009058  Biosynthetic process  Down  <0.0001  180  0043043  Peptide biosynthetic process  Down  <0.0001  68  0055114  Oxidation–reduction process  Down  <0.0001  60  0042273  Ribosomal large subunit biogenesis  Down  <0.0001  8  0042254  Ribosome biogenesis  Down  0.0016  19  0001731  Formation of translation pre-initiation complex  Down  0.0024  6  0000028  Ribosomal small subunit assembly  Down  0.0056  5  0006413  Translational initiation  Down  0.0122  9  0042773  ATP synthesis-coupled electron transport  Down  0.0192  6  0006417  Regulation of translation  Down  0.0246  20  0042255  Ribosome assembly  Down  0.0325  6  At reperfusion 72 h  0015671  Oxygen transport  Up  0.0114  2  0002376  Immune system process  Down  <0.0001  19  0006955  Immune response  Down  <0.0001  13  0045087  Innate immune response  Down  <0.0001  10  0006952  Defense response  Down  <0.0001  12  0019882  Antigen processing and presentation  Down  0.0079  4  0035456  Response to interferon-beta  Down  0.0148  3  0045351  Type I interferon biosynthetic process  Down  0.0321  2  Accession no.  GO terms  Expression trend  FDRa  Relevant gene no.  At ischemia 1 h  0007154  Cell communication  Up  <0.0001  287  0030154  Cell differentiation  Up  <0.0001  255  0007165  Signal transduction  Up  <0.0001  254  0022008  Neurogenesis  Up  <0.0001  124  0048699  Generation of neurons  Up  <0.0001  116  0030182  Neuron differentiation  Up  <0.0001  83  0007268  Synaptic transmission  Up  <0.0001  44  1902680  Positive regulation of RNA biosynthetic process  Up  <0.0001  142  1902679  Negative regulation of RNA biosynthetic process  Up  <0.0001  100  0042127  Regulation of cell proliferation  Up  <0.0001  103  0008284  Positive regulation of cell proliferation  Up  <0.0001  66  0032844  Regulation of homeostatic process  Up  0.0002  37  0032846  Positive regulation of homeostatic process  Up  0.0005  20  0007270  Neuron–neuron synaptic transmission  Up  0.0007  13  0043066  Negative regulation of apoptotic process  Up  0.0011  60  0017148  Negative regulation of translation  Up  0.0017  14  0060548  Negative regulation of cell death  Up  0.0022  63  0032007  Negative regulation of TOR signaling  Up  0.0029  7  0000165  MAPK cascade  Up  0.0059  19  0042981  Regulation of apoptotic process  Up  0.0067  84  0010941  Regulation of cell death  Up  0.0069  89  0008219  Cell death  Up  0.0087  65  0050768  Negative regulation of neurogenesis  Up  0.0091  22  0000186  Activation of MAPKK activity  Up  0.0096  9  0012501  Programmed cell death  Up  0.0143  62  0002520  Immune system development  Up  0.0157  48  0042592  Homeostatic process  Up  0.0171  79  0032006  Regulation of TOR signaling  Up  0.0179  9  0071456  Cellular response to hypoxia  Up  0.0181  13  0006915  Apoptotic process  Up  0.0195  60  0008283  Cell proliferation  Up  0.0394  39  0035722  Interleukin-12-mediated signaling pathway  Up  0.0415  2  0071349  Cellular response to interleukin-12  Up  0.0415  2  0006412  Translation  Down  <0.0001  67  0009058  Biosynthetic process  Down  <0.0001  180  0043043  Peptide biosynthetic process  Down  <0.0001  68  0055114  Oxidation–reduction process  Down  <0.0001  60  0042273  Ribosomal large subunit biogenesis  Down  <0.0001  8  0042254  Ribosome biogenesis  Down  0.0016  19  0001731  Formation of translation pre-initiation complex  Down  0.0024  6  0000028  Ribosomal small subunit assembly  Down  0.0056  5  0006413  Translational initiation  Down  0.0122  9  0042773  ATP synthesis-coupled electron transport  Down  0.0192  6  0006417  Regulation of translation  Down  0.0246  20  0042255  Ribosome assembly  Down  0.0325  6  At reperfusion 72 h  0015671  Oxygen transport  Up  0.0114  2  0002376  Immune system process  Down  <0.0001  19  0006955  Immune response  Down  <0.0001  13  0045087  Innate immune response  Down  <0.0001  10  0006952  Defense response  Down  <0.0001  12  0019882  Antigen processing and presentation  Down  0.0079  4  0035456  Response to interferon-beta  Down  0.0148  3  0045351  Type I interferon biosynthetic process  Down  0.0321  2  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Interestingly, the IF16 I/R group had the greatest number of GO pathways affected compared to the AL group after 1 h of cerebral ischemia (Table 6; Supplementary Material, Table S10), suggesting that IF16 has a major impact on the immediate brain cell responses to ischemic stress. Pathways up-regulated in the IF16 I/R group compared to the AL I/R group included those involved in cell communication, cell differentiation, signal transduction, neurogenesis, positive and negative regulation of RNA biosynthetic processes, inhibition of cell death, regulation of mTOR and cellular responses to hypoxia. Down-regulated pathways included: protein translation, biosynthetic processes and oxidative stress reduction (Table 6). At 72 h of reperfusion, eight GO pathways were significantly down-regulated in the IF16 I/R group compared to the AL I/R group with six of the pathways being involved in immune cell responses and inflammation (Table 6). KEGG analysis also identified multiple pathways involved in the modification of the cerebral transcriptome by IF16 within 1 h of ischemia onset. Up-regulated pathways included insulin, phosphoinositide 3-kinase (PI3K)-Akt, MAPK and FoxO signaling, mTOR and 5′-AMP-activated protein kinase (AMPK), neurotrophic factor signaling, calcium signaling and circadian rhythm-related pathways (Table 7). Down-regulated pathways included those involved in energy metabolism (oxidative phosphorylation, glycolysis and gluconeogenesis) and amino acid synthesis (Table 7). The complete results of the KEGG pathway analysis for IF16 versus AL groups at 1 h of ischemia are in Supplementary Material, Table S11. Table 7. Selected KEGG pathway analysis results of IF16 versus AL group Pathway ID  Pathway Description  Expression Trend  FDRa  Relevant Gene No.  At ischemia 1 h  4910  Insulin signaling pathway  Up  0.0017  19  4713  Circadian entrainment  Up  0.0017  15  4020  Calcium signaling pathway  Up  0.0017  22  4068  FoxO signaling pathway  Up  0.0021  18  4151  PI3K-Akt signaling pathway  Up  0.0021  34  4080  Neuroactive ligand–receptor interaction  Up  0.0031  29  4725  Cholinergic synapse  Up  0.0053  15  4611  Platelet activation  Up  0.0088  16  4150  mTOR signaling pathway  Up  0.0097  10  4727  GABAergic synapse  Up  0.0137  12  4152  AMPK signaling pathway  Up  0.0148  15  4010  MAPK signaling pathway  Up  0.0158  24  4722  Neurotrophin signaling pathway  Up  0.0186  14  4710  Circadian rhythm  Up  0.0226  6  4390  Hippo signaling pathway  Up  0.0262  16  4724  Glutamatergic synapse  Up  0.0331  13  3010  Ribosome  Down  <0.0001  43  190  Oxidative phosphorylation  Down  <0.0001  26  1100  Metabolic pathways  Down  <0.0001  83  480  Glutathione metabolism  Down  <0.0001  11  1230  Biosynthesis of amino acids  Down  0.0091  9  10  Glycolysis/gluconeogenesis  Down  0.0117  8  3060  Protein export  Down  0.0126  5  Pathway ID  Pathway Description  Expression Trend  FDRa  Relevant Gene No.  At ischemia 1 h  4910  Insulin signaling pathway  Up  0.0017  19  4713  Circadian entrainment  Up  0.0017  15  4020  Calcium signaling pathway  Up  0.0017  22  4068  FoxO signaling pathway  Up  0.0021  18  4151  PI3K-Akt signaling pathway  Up  0.0021  34  4080  Neuroactive ligand–receptor interaction  Up  0.0031  29  4725  Cholinergic synapse  Up  0.0053  15  4611  Platelet activation  Up  0.0088  16  4150  mTOR signaling pathway  Up  0.0097  10  4727  GABAergic synapse  Up  0.0137  12  4152  AMPK signaling pathway  Up  0.0148  15  4010  MAPK signaling pathway  Up  0.0158  24  4722  Neurotrophin signaling pathway  Up  0.0186  14  4710  Circadian rhythm  Up  0.0226  6  4390  Hippo signaling pathway  Up  0.0262  16  4724  Glutamatergic synapse  Up  0.0331  13  3010  Ribosome  Down  <0.0001  43  190  Oxidative phosphorylation  Down  <0.0001  26  1100  Metabolic pathways  Down  <0.0001  83  480  Glutathione metabolism  Down  <0.0001  11  1230  Biosynthesis of amino acids  Down  0.0091  9  10  Glycolysis/gluconeogenesis  Down  0.0117  8  3060  Protein export  Down  0.0126  5  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Table 7. Selected KEGG pathway analysis results of IF16 versus AL group Pathway ID  Pathway Description  Expression Trend  FDRa  Relevant Gene No.  At ischemia 1 h  4910  Insulin signaling pathway  Up  0.0017  19  4713  Circadian entrainment  Up  0.0017  15  4020  Calcium signaling pathway  Up  0.0017  22  4068  FoxO signaling pathway  Up  0.0021  18  4151  PI3K-Akt signaling pathway  Up  0.0021  34  4080  Neuroactive ligand–receptor interaction  Up  0.0031  29  4725  Cholinergic synapse  Up  0.0053  15  4611  Platelet activation  Up  0.0088  16  4150  mTOR signaling pathway  Up  0.0097  10  4727  GABAergic synapse  Up  0.0137  12  4152  AMPK signaling pathway  Up  0.0148  15  4010  MAPK signaling pathway  Up  0.0158  24  4722  Neurotrophin signaling pathway  Up  0.0186  14  4710  Circadian rhythm  Up  0.0226  6  4390  Hippo signaling pathway  Up  0.0262  16  4724  Glutamatergic synapse  Up  0.0331  13  3010  Ribosome  Down  <0.0001  43  190  Oxidative phosphorylation  Down  <0.0001  26  1100  Metabolic pathways  Down  <0.0001  83  480  Glutathione metabolism  Down  <0.0001  11  1230  Biosynthesis of amino acids  Down  0.0091  9  10  Glycolysis/gluconeogenesis  Down  0.0117  8  3060  Protein export  Down  0.0126  5  Pathway ID  Pathway Description  Expression Trend  FDRa  Relevant Gene No.  At ischemia 1 h  4910  Insulin signaling pathway  Up  0.0017  19  4713  Circadian entrainment  Up  0.0017  15  4020  Calcium signaling pathway  Up  0.0017  22  4068  FoxO signaling pathway  Up  0.0021  18  4151  PI3K-Akt signaling pathway  Up  0.0021  34  4080  Neuroactive ligand–receptor interaction  Up  0.0031  29  4725  Cholinergic synapse  Up  0.0053  15  4611  Platelet activation  Up  0.0088  16  4150  mTOR signaling pathway  Up  0.0097  10  4727  GABAergic synapse  Up  0.0137  12  4152  AMPK signaling pathway  Up  0.0148  15  4010  MAPK signaling pathway  Up  0.0158  24  4722  Neurotrophin signaling pathway  Up  0.0186  14  4710  Circadian rhythm  Up  0.0226  6  4390  Hippo signaling pathway  Up  0.0262  16  4724  Glutamatergic synapse  Up  0.0331  13  3010  Ribosome  Down  <0.0001  43  190  Oxidative phosphorylation  Down  <0.0001  26  1100  Metabolic pathways  Down  <0.0001  83  480  Glutathione metabolism  Down  <0.0001  11  1230  Biosynthesis of amino acids  Down  0.0091  9  10  Glycolysis/gluconeogenesis  Down  0.0117  8  3060  Protein export  Down  0.0126  5  a FDR value was calculated using Benjamini–Hochberg FDR and considered statistically significant when <0.05. Discussion Previous studies have demonstrated that rats or mice maintained on an alternate day fasting diet prior to cerebral I/R exhibit reduced brain tissue degeneration and improved functional outcome compared to animals fed ad libitum (13,18,19). Daily caloric restriction also improved outcomes in a rat stroke model (20). It was shown that the proteins known to be involved in the cellular stress responses such as protein chaperones (HSP-70 and GRP-78) and neurotrophic factors (BDNF and FGF2) were increased, while concentrations of pro-inflammatory cytokines (TNF, IL-1β and IL-6) were reduced in IF animals compared to AL group (13). The present study is the first to interrogate the impact of any dietary energy restriction protocol on the cerebral transcriptome in the uninjured brain, and during and after focal ischemic stroke. The large datasets generated in our study reveal global transcriptomic responses as the stroke and its aftermath evolves, and furthermore, identifies novel genes and signaling pathways not previously implicated in stroke and neuroprotection. Given the complexity of the experimental design and the large amount of data generated, it is not feasible to discuss all pathways and genes significantly affected by I/R, and modified by IF12 or IF16. We therefore focus our discussion on the pathways and genes most affected by ischemic stroke and/or IF. Using the same mouse strain and experimental stroke protocol, we previously found that mice on IF16 exhibit markedly reduced brain damage and improved functional outcome following I/R (11). Here we found that IF16 has a significant impact on the expression of genes in multiple pathways in the cerebral region. Most notable was the preponderance of up-regulated pathways involved in cellular plasticity including many known to play important roles in nervous system development and adult neuroplasticity (cell differentiation, neurite outgrowth, neuronal network plasticity). These pathways include those engaged by neurotrophic factors, which had previously been reported to be up-regulated by alternate day fasting (13). Also up-regulated by IF16 were genes in pathways involved in neuronal energy metabolism (Ppar-ɑ, Pdpr and Igf1r), consistent with the known metabolic shift from glucose to fatty acid oxidation during fasting (21). Also consistent with known effects of IF on circadian rhythms (22), we found that Per2 and Per3 were up-regulated in the cerebral region of mice in the IF16 group. Several novel findings emerged from the current RNA sequencing analyses of cerebral gene expression during ischemia, and at 3, 12, 24 or 72 h of reperfusion in mice fed ad libitum. As reported in many previous studies (23–25), pathways and genes encoding proteins involved in tissue inflammation (both innate and humoral immune system pathways) and cell deaths were prominently up-regulated during reperfusion. Interestingly, neuroinflammatory pathway up-regulation was evident within 3 h of reperfusion, subsided at 12 h, and then was robust at 24 and 72 h. We found that genes encoding proteins involved in major neurotransmitter signaling pathways were down-regulated following cerebral I/R including dopaminergic, serotonergic, noradrenergic and cholinergic pathways. Down-regulation of neuron-specific genes may result, at least in part, from neuronal death occurring during the first 72 h post-stroke. Among the genes most strongly down-regulated by cerebral ischemia was that encoding oxytocin which was reduced by over 40-fold during the 1 h of ischemia and remained reduced through 24 h of reperfusion. Previous studies have shown that oxytocin can protect the heart, skeletal muscle and ovaries against ischemic injury (26–28), and can also protect cultured neural cells against simulated ischemia (29). Because cerebral cortical neurons express oxytocin mRNA (30), down-regulation of oxytocin may contribute to neuronal degeneration in I/R brain injury. Several major findings emerged from our analyses of the effects of IF12 and IF16 on the cerebral transcriptome responses to I/R. IF16 had major effects on the transcriptome during ischemia and at 72 h of reperfusion, while having little effect at the 3, 12 and 24 h reperfusion time points. Pathways up-regulated during 1 h of cerebral ischemia in mice of the IF16 I/R group compared to the AL I/R group included those that protect neurons against apoptosis, neurogenesis and MAPK signaling, while protein synthesis pathways were down-regulated. The latter effects of IF16 would be expected to increase the survival of neurons, an effect consistent with a previous study showing that IF16 reduces neuronal loss in the same stroke model (11). Interestingly, oxytocin was one of the mRNAs most significantly up-regulated during the 1 h of cerebral ischemia in mice in the IF16 I/R group compared to the AL I/R group, suggesting a role for oxytocin in neuroprotection by IF16. At 72 h of reperfusion, inflammatory pathways were down-regulated in mice on IF16 compared to that fed ad libitum. In contrast to IF16, IF12 had its greatest impact on the cerebral transcriptome at the 3 h reperfusion time point, with pathways involved in ribosome biosynthesis and stress responses being up-regulated and pathways involved in synaptic plasticity and differentiation being down-regulated. As with IF16, oxytocin expression was up-regulated during ischemia in mice in the IF12 group. Whereas IF16 down-regulated inflammatory pathways after I/R, IF12 did not resemble it. It remains to be determined if and to what extent IF12 reduces brain damage and functional deficits following experimental stroke, in comparison with IF16. Emerging findings suggest that the metabolic switch, which utilizes fatty acids and ketones instead of glucose as a principle energy sources when liver glycogen storage is depleted, plays a major role in adaptive responses of the brain to fasting (21,31). β-hydroxybutyrate, a major ketone produced during fasting has been shown to induce the expression of the neurotrophic factor BDNF in brain neurons (32,33) and can inhibit histone deacetylases and thereby influence the expression of multiple genes (34). During fasting, genes encoding proteins involved in fatty acid synthesis, protein synthesis and insulin signaling are down-regulated, and fatty acid oxidation is up-regulated (31). Ketones may mediate some of these transcriptional responses to fasting (35). We found that blood ketones were elevated to significantly higher levels in mice on IF16 compared to those on IF12, suggesting a potential role for ketones in the differential effects of IF16 and IF12 on the cerebral transcriptome. Indeed, we found that Ppar-ɑ (a gene involved in fatty acid oxidation) was significantly up-regulated and Fabp7 (a gene involved in fatty acid synthesis) was down-regulated in cerebral transcriptome of mice on IF16. We also found that Prex2, a gene that modulates insulin signaling (36) was strongly up-regulated in the cerebral region in response to IF16. Considering our transcriptomic findings, it is noteworthy to mention that the IF16 group was significantly protected against ischemic stroke injury compared to the AL group in our previous study (11). Our current findings provide novel insight into how the transcriptome of cells in the cerebral region respond to I/R, and how these responses are modified by IF in ways that protect neurons against degeneration. The transcriptomic data sets generated in this study provide a resource for investigators in the fields of neuroscience and nutrition research from which to draw to identify and interrogate specific genes and pathways from the perspectives of both basic science and translational research. Materials and Methods Animals and intermittent fasting C57BL/6NTac male mice were purchased at 2 months of age (InVivos, Singapore) and housed in the animal facilities at the National University of Singapore. All animals were maintained under barrier conditions on a 12 h light: 12 h dark cycle (light during 07:00–19:00). During initiation of dietary interventions, rodent diet pellets (Teklad Global 18% Protein rodent diet #2918, Envigo, Madison, WI, USA) and water were provided ad libitum to all mice. The National University of Singapore Animal Care and Use Committee approved all in vivo experimental procedures performed in the current study (Ethics approval number: R13-6130 and R15-1568). At 3 months of age, mice were randomly assigned to AL, IF12 and IF16 diet groups, 50 mice/group. For IF12 and IF16 groups, mice were fasted daily for either 12 h (19:00–07:00) or 16 h (15:00–07:00) for 4 months, whereas the AL group was provided with food pellets ad libitum. Water was provided ad libitum for all experimental group. All mice were regularly measured with body weight and randomly selected 10 mice from each group were measured with blood glucose and ketone levels using FreeStyle Optium Neo system with FreeStyle Optium blood glucose and β ketone test strips (Abbott Laboratories, Berkshire, UK). Middle cerebral artery occlusion stroke model After 4 months of dietary intervention, randomly selected mice from each group underwent transient middle cerebral artery occlusion (MCAO) procedure to induce experimental ischemic stroke. The mice were anesthetized with isoflurane and a midline incision was made in the neck. The left external carotid and pterygopalatine arteries were exposed and ligated with 6-0 silk thread. The internal carotid artery (ICA) was occluded at the peripheral site of the bifurcation of the ICA and the pterygopalatine artery using a small clip, and the common carotid artery (CCA) was ligated with 6-0 silk thread. The external carotid artery (ECA) was cut, and a 6-0 nylon monofilament with a blunted tip (0.2–0.22 mm) was inserted into the ECA. After the clip at the ICA was removed, the nylon monofilament was advanced to the origin of the middle cerebral artery (MCA) until light resistance was felt. The nylon monofilament and the CCA ligatures were removed after 1 h of occlusion to initiate reperfusion. In the sham-operated control group, these arteries were visualized but not disturbed. Cerebral blood flow was measured by placing the animal’s head in a fixed frame after it had been anesthetized and prepared for surgery. A craniotomy was performed to access the left MCA and was extended to allow positioning of a 0.5 mm Doppler probe (Moor Laboratory, Moor Instruments, Devon, UK) over the underlying parietal cortex approximately 1 mm posterior to the bregma and 1 mm lateral to the midline. The mice were included in the study if they underwent successful MCAO, defined by an 80% or greater drop in cerebral blood flow, and recovery of cortical blood flow to its basal level after reperfusion measured with laser Doppler flowmetry. Following MCAO and initiation of reperfusion, the mice were assessed, and three mice from each group that best displayed signs of brain damage and neurological impairment were included in the study. Mice were excluded if insertion of the thread resulted in perforation of the vessel wall determined by the presence of subarachnoid blood at the scheduled time of euthanasia. Brain tissue collection After successful induction of transient MCAO, mice were returned to their cages for designated reperfusion periods of 3, 12, 24 or 72 h before brain tissue collection. For the animals allotted to the 1 h ischemia-only group, the brain tissue was collected without reperfusion. Three coronal sections of ipsilateral brain hemisphere were dissected (1 mm thickness/section), which comprise ischemic core as well as the peri-infarct regions. The collected brain tissues were snap-frozen in liquid nitrogen and kept at −80°C until further use. Total RNA extraction and validation Total RNA was extracted from the frozen brain tissue samples using a micro-tube tissue homogenizer (Bel-Art, Wayne, NJ, USA) and EZ-10 DNAaway RNA extraction mini-prep kit (Bio Basic, Ontario, Canada) following manufacturer’s instruction. The integrity and quality of extracted total RNA was assessed using agarose gel electrophoresis and Agilent 2100 Bioanalyser (Agilent, Santa Clara, CA, USA); all RNA samples showed RNA integrity numbers above 7, indicating high quality of the extracted total RNA. cDNA library preparation and RNA sequencing The mRNA was purified from total RNA using poly-T oligo-attached magnetic beads and it was first fragmented randomly by addition of fragmentation buffer. Then first-strand cDNA was synthesized using random hexamer primer and M-MuLV reverse transcriptase (RNase H-) (New England BioLabs, Ipswish, MA, USA). Second-strand cDNA synthesis was subsequently performed using DNA polymerase I and RNase H. Double-stranded cDNA was purified using AMPure XP beads (Beckman Courter Life Sciences, Indianapolis, IN, USA). Remaining overhangs of the purified double-stranded cDNA were converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3′ ends of DNA fragments, NEBNext adaptor with hairpin loop structure was ligated to prepare for hybridization. In order to select cDNA fragments of preferentially 150–200 bp in length, the library fragments were purified with AMPure XP system. Finally, the library was acquired by polymerase chain reaction (PCR) amplification and purification of PCR products by AMPure XP beads. High-throughput sequencing was conducted using HiSeqTM2500 platform (Illumina, San Diego, CA, USA). Transcriptome data mapping and differential expression analysis The RNA sequencing results from the HiSeq system were output as color space fasta and quality files, and these files were mapped to the Ensembl-released mouse genome sequence and annotation. Indexes of the reference genome were built using Bowtie V.2.0.6 and paired-end clean reads were aligned to the reference genome using TopHat V.2.0.9 with mismatch parameter limited to 2. For each sample, approximately 51 million reads were generated and 44 million reads (approximately 88% of total reads) per sample were mapped to the reference genome. For the quantification of gene expression level, HTSeq V.0.6.1 was used to count the read numbers mapped of each gene. Then Reads Per Kilobase of exon model per Million mapped reads (RPKM) of each gene was calculated based on the length of the gene and reads count mapped to the same gene. Differential expression analysis was performed using the DESeq R Package V.1.10.1 and the resulting P-values were adjusted using the Benjamini and Hochberg’s approach for controlling the FDR. Genes with an adjusted P-value lower than 0.05 found by DESeq were assigned as differentially expressed. Heatmap generation and enrichment analyses To create heatmaps of differentially expressed genes, R and the R package heatmap3 were used along with the log2Fold-Change output from EdgeR V.3.2.4. To assess the biological significance of gene expression changes, GO and KEGG pathway enrichment analyses were conducted. GO enrichment analysis, focused on biological processes of differentially expressed genes was implemented by the GOseq R package in which gene length bias was corrected. For KEGG pathway enrichment analysis, we used KEGG Orthology-Based Annotation System (KOBAS) software to test the statistical enrichment. GO terms or KEGG pathways with adjusted P-value less than 0.05 were considered significantly enriched by differentially expressed genes. Quantitative real-time PCR validation The RNA sequencing results were validated for randomly selected representative genes among the genes that were differentially expressed in more than three I/R time points used in the AL group study. The cDNA used for real-time qPCR was generated from the reserved total RNA using High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Waltham, MA, USA). The PrimePCRTM (Bio-Rad, Hercules, CA, USA) designed PCR primers for SYBR Green method were used for Aspg (assay ID: qMmuCID0073204), Chat (assay ID: qMmuCID0017045), Gfap (assay ID: qMmuCID0020163), P2ry12 (assay ID: qMmuCID0015382), Rxrg (assay ID: qMmuCID0025416), Serpina3n (assay ID: qMmuCID0024737) and for housekeeping gene, Gapdh (assay ID: qMmuCED0027497). The real-time qPCR assays were all performed in triplicate using StepOnePlus system (Applied Biosystems) in 96-well plate format. A 20 μl reaction volume was used per well, consisting of 10 μl 2× SsoAdvanced Universal SYBR Green supermix (Bio-Rad), 1 μl of 20× PrimePCRTM primer, 100 ng of cDNA sample in 2 μl volume and 7 μl of molecular biology grade nuclease-free water. The amplification was performed as follows: 2 min at 95°C, 40 cycles of 5 s at 95°C and 30 s for 60°C and melt curve from 65 to 95°C with 0.5°C increments for 5 s per step. The qPCR data were analyzed using the 2T-ΔΔC method (37). For each of the selected target genes, the mean ΔCT for the three biological replicates in each group being compared was calculated as the mean CT of the target gene minus the mean CT of the housekeeping gene. For each pairwise comparison, ΔΔCT was then calculated as the mean ΔCT of the noncontrol group minus the ΔCT of the control group, and the resulting ΔΔCT value was converted to 2−ΔΔCT, representing fold change. Statistical significance among time points was calculated using ANOVA with Tukey post-hoc analysis (P < 0.05). The qPCR results of selected differentially expressed genes were compared pairwise with fold change of reported fragments per kilobase of transcript per million mapped reads (FPKM) values from RNA sequencing data (Supplementary Material, Fig. S2). Up- and down-regulation trends of each gene were well correlated between RNA sequencing and RT-qPCR results. Supplementary Material Supplementary Material is available at HMG online. Conflict of Interest statement. None declared. Funding This work was supported by the Singapore Ministry of Education Tier 1 grants (T1-BSRG-2015–01), ODPRT, National University of Singapore, Singapore National Medical Research Council Research Grants (NMRC-CBRG-0102/2016), and Singapore National Medical Research Council Research Grants (NMRC/OFIRG/0036/2017). Parts of this study were funded by NIH grants RO1 NS101960, RO1 NS099531 and R21 NS095192. References 1 Mattson M.P., Longo V.D., Harvie M. ( 2017) Impact of intermittent fasting on health and disease processes. Ageing Res. Rev ., 39, 46– 58. Google Scholar CrossRef Search ADS PubMed  2 Mattson M.P., Wan R. ( 2005) Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J. Nutr. Biochem ., 16, 129– 137. Google Scholar CrossRef Search ADS PubMed  3 Fann D.Y., Ng G.Y., Poh L., Arumugam T.V. ( 2017) Positive effects of intermittent fasting in ischemic stroke. Exp. Gerontol ., 89, 93– 102. Google Scholar CrossRef Search ADS PubMed  4 Longo V.D., Mattson M.P. ( 2014) Fasting: molecular mechanisms and clinical applications. Cell. Metab ., 19, 181– 192. Google Scholar CrossRef Search ADS PubMed  5 Mattson M.P., Allison D.B., Fontana L., Harvie M., Longo V.D., Malaisse W.J., Mosley M., Notterpek L., Ravussin E., Scheer F.A. et al.   ( 2014) Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. U.S.A ., 111, 16647– 16653. Google Scholar CrossRef Search ADS PubMed  6 Seimon R.V., Roekenes J.A., Zibellini J., Zhu B., Gibson A.A., Hills A.P., Wood R.E., King N.A., Byrne N.M., Sainsbury A. ( 2015) Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials. Mol. Cell. Endocrinol ., 418 Pt 2, 153– 172. Google Scholar CrossRef Search ADS PubMed  7 DeFronzo R.A., Abdul-Ghani M. ( 2011) Assessment and treatment of cardiovascular risk in prediabetes: impaired glucose tolerance and impaired fasting glucose. Am. J. Cardiol ., 108, 3B– 24B. Google Scholar CrossRef Search ADS PubMed  8 Martin B., Ji S., Maudsley S., Mattson M.P. ( 2010) “Control” laboratory rodents are metabolically morbid: why it matters. Proc. Natl. Acad. Sci. U.S.A ., 107, 6127– 6133. Google Scholar CrossRef Search ADS PubMed  9 Gotthardt J.D., Verpeut J.L., Yeomans B.L., Yang J.A., Yasrebi A., Roepke T.A., Bello N.T. ( 2016) Intermittent fasting promotes fat loss with lean mass retention, increased hypothalamic norepinephrine content, and increased neuropeptide Y gene expression in diet-induced obese male mice. Endocrinology , 157, 679– 691. Google Scholar CrossRef Search ADS PubMed  10 Fann D.Y., Santro T., Manzanero S., Widiapradja A., Cheng Y.L., Lee S.Y., Chunduri P., Jo D.G., Stranahan A.M., Mattson M.P. et al.   ( 2014) Intermittent fasting attenuates inflammasome activity in ischemic stroke. Exp. Neurol ., 257, 114– 119. Google Scholar CrossRef Search ADS PubMed  11 Manzanero S., Erion J.R., Santro T., Steyn F.J., Chen C., Arumugam T.V., Stranahan A.M. ( 2014) Intermittent fasting attenuates increases in neurogenesis after ischemia and reperfusion and improves recovery. J. Cereb. Blood. Flow. Metab ., 34, 897– 905. Google Scholar CrossRef Search ADS PubMed  12 Park S., Yoo K.M., Hyun J.S., Kang S. ( 2017) Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets. J. Nutr. Biochem ., 40, 14– 22. Google Scholar CrossRef Search ADS PubMed  13 Arumugam T.V., Phillips T.M., Cheng A., Morrell C.H., Mattson M.P., Wan R. ( 2010) Age and energy intake interact to modify cell stress pathways and stroke outcome. Ann. Neurol ., 67, 41– 52. Google Scholar CrossRef Search ADS PubMed  14 Arumugam T.V., Manzanero S., Furtado M., Biggins P.J., Hsieh Y.H., Gelderblom M., MacDonald K.P., Salimova E., Li Y.I., Korn O. et al.   ( 2017) An atypical role for the myeloid receptor Mincle in central nervous system injury. J. Cereb. Blood. Flow. Metab ., 37, 2098– 2111. Google Scholar CrossRef Search ADS PubMed  15 Tang S.C., Arumugam T.V., Xu X., Cheng A., Mughal M.R., Jo D.G., Lathia J.D., Siler D.A., Chigurupati S., Ouyang X. et al.   ( 2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. U.S.A ., 104, 13798– 13803. Google Scholar CrossRef Search ADS PubMed  16 Lok K.Z., Basta M., Manzanero S., Arumugam T.V. ( 2015) Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. J. Neuroinfl ., 12, 73. Google Scholar CrossRef Search ADS   17 Wang S., Zhang H., Xu Y. ( 2016) Crosstalk between microglia and T cells contributes to brain damage and recovery after ischemic stroke. Neurol. Res ., 38, 495– 503. Google Scholar CrossRef Search ADS PubMed  18 Yu Z.F., Mattson M.P. ( 1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioral outcome: evidence for a preconditioning mechanism. J. Neurosci. Res ., 57, 830– 839. Google Scholar CrossRef Search ADS PubMed  19 Yoon J.S., Mughal M.R., Mattson M.P. ( 2011) Energy restriction negates NMDA receptor antagonist efficacy in ischemic stroke. Neuromol. Med ., 13, 175– 178. Google Scholar CrossRef Search ADS   20 Ran M., Li Z., Yang L., Tong L., Zhang L., Dong H. ( 2015) Calorie restriction attenuates cerebral ischemic injury via increasing SIRT1 synthesis in the rat. Brain Res ., 1610, 61– 68. Google Scholar CrossRef Search ADS PubMed  21 Camandola S., Mattson M.P. ( 2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J ., 36, 1474– 1492. Google Scholar CrossRef Search ADS PubMed  22 Hatori M., Vollmers C., Zarrinpar A., DiTacchio L., Bushong E.A., Gill S., Leblanc M., Chaix A., Joens M., Fitzpatrick J.A. et al.   ( 2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell. Metab ., 15, 848– 860. Google Scholar CrossRef Search ADS PubMed  23 Clark R.K., Lee E.V., Fish C.J., White R.F., Price W.J., Jonak Z.L., Feuerstein G.Z., Barone F.C. ( 1993) Development of tissue damage, inflammation and resolution following stroke: an immunohistochemical and quantitative planimetric study. Brain. Res. Bull ., 31, 565– 572. Google Scholar CrossRef Search ADS PubMed  24 Wang Q., Tang X.N., Yenari M.A. ( 2007) The inflammatory response in stroke. J. Neuroimmunol ., 184, 53– 68. Google Scholar CrossRef Search ADS PubMed  25 Eltzschig H.K., Eckle T. ( 2011) Ischemia and reperfusion–from mechanism to translation. Nat. Med ., 17, 1391– 1401. Google Scholar CrossRef Search ADS PubMed  26 Erkanli K., Erkanli Senturk G., Aydin U., Arbak S., Ercan F., Tuncdemir M., Isiksacan N., Bakir I. ( 2013) Oxytocin protects rat skeletal muscle against ischemia/reperfusion injury. Ann. Vasc. Surg ., 27, 662– 670. Google Scholar CrossRef Search ADS PubMed  27 Akdemir A., Erbas O., Gode F., Ergenoglu M., Yeniel O., Oltulu F., Yavasoglu A., Taskiran D. ( 2014) Protective effect of oxytocin on ovarian ischemia-reperfusion injury in rats. Peptides , 55, 126– 130. Google Scholar CrossRef Search ADS PubMed  28 Jankowski M., Broderick T.L., Gutkowska J. ( 2016) Oxytocin and cardioprotection in diabetes and obesity. BMC Endocr. Disord ., 16, 34. Google Scholar CrossRef Search ADS PubMed  29 Kaneko Y., Pappas C., Tajiri N., Borlongan C.V. ( 2016) Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Sci. Rep ., 6, 35659. Google Scholar CrossRef Search ADS PubMed  30 Lein E.S., Hawrylycz M.J., Ao N., Ayres M., Bensinger A., Bernard A., Boe A.F., Boguski M.S., Brockway K.S., Byrnes E.J. et al.   ( 2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature , 445, 168– 176. Google Scholar CrossRef Search ADS PubMed  31 Anton S.D., Moehl K., Donahoo W.T., Marosi K., Lee S.A., Mainous A.G., Leeuwenburgh C., Mattson M.P. ( 2018) Flipping the metabolic switch: understanding and applying health benefits of fasting. Obesity  26, 254– 268. Google Scholar CrossRef Search ADS PubMed  32 Marosi K., Kim S.W., Moehl K., Scheibye-Knudsen M., Cheng A., Cutler R., Camandola S., Mattson M.P. ( 2016) 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J. Neurochem ., 139, 769– 781. Google Scholar CrossRef Search ADS PubMed  33 Sleiman S.F., Henry J., Al-Haddad R., El Hayek L., Abou Haidar E., Stringer T., Ulja D., Karuppagounder S.S., Holson E.B., Ratan R.R. et al.   ( 2016) Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body beta-hydroxybutyrate. eLife , 5, e15092. Google Scholar CrossRef Search ADS PubMed  34 Newman J.C., Verdin E. ( 2017) beta-Hydroxybutyrate: a signaling metabolite. Annu. Rev. Nutr ., 37, 51– 76. Google Scholar CrossRef Search ADS PubMed  35 Newman J.C., Covarrubias A.J., Zhao M., Yu X., Gut P., Ng C.P., Huang Y., Haldar S., Verdin E. ( 2017) Ketogenic Diet Reduces Midlife Mortality and Improves Memory in Aging Mice. Cell. Metab ., 26, 547– 557. Google Scholar CrossRef Search ADS PubMed  36 Hodakoski C., Hopkins B.D., Barrows D., Mense S.M., Keniry M., Anderson K.E., Kern P.A., Hawkins P.T., Stephens L.R., Parsons R. ( 2014) Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis. Proc. Natl. Acad. Sci. U.S.A ., 111, 155– 160. Google Scholar CrossRef Search ADS PubMed  37 Livak K.J., Schmittgen T.D. ( 2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods , 25, 402– 408. Google Scholar CrossRef Search ADS PubMed  © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/about_us/legal/notices) TI - Transcriptome analysis reveals intermittent fasting-induced genetic changes in ischemic stroke JO - Human Molecular Genetics DO - 10.1093/hmg/ddy057 DA - 2018-05-01 UR - https://www.deepdyve.com/lp/oxford-university-press/transcriptome-analysis-reveals-intermittent-fasting-induced-genetic-PrI01ld0xF SP - 1497 EP - 1513 VL - 27 IS - 9 DP - DeepDyve ER -