TY - JOUR AU1 - Mao, Zhouhang AB - The Hopkins–Mahowald theorem realizes the Eilenberg–MacLane spectra Fp\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\mathbb {F}_p$$\end{document} as Thom spectra for all primes p. In this article, we record a known proof of a generalization of the Hopkins–Mahowald theorem, realizing perfect rings k as Thom spectra, and we provide a further generalization by realizing perfectoid rings R as Thom spectra. We also discuss even further generalizations to prisms (A, I) and indicate how to adapt our proofs to Breuil–Kisin case. TI - Perfectoid rings as Thom spectra JF - Selecta Mathematica DO - 10.1007/s00029-023-00851-0 DA - 2023-07-01 UR - https://www.deepdyve.com/lp/springer-journals/perfectoid-rings-as-thom-spectra-LjMSCX1K7E VL - 29 IS - 3 DP - DeepDyve ER -