TY - JOUR AU - Ihlen, Peter, M AB - Abstract The 1800 Ma monzonitic to syenitic Raftsund intrusion is the largest intrusive body of the Lofoten–Vesterålen anorthosite–mangerite–charnockite–granite (AMCG) suite. It is composed of three units that can be differentiated based on their textures. This study focuses on the most voluminous, predominantly equigranular, unit consisting of a pigeonite–augite syenite and a fayalite–augite monzonite. The pigeonite–augite syenite is associated with centimeter-scale to hundred-meter scale occurrences of Fe–Ti–P-rich rocks that display sharp to gradational contacts with the surrounding syenite. Iron–Ti–P-rich rocks consist of augite, Fe-rich olivine ± partly inverted pigeonite, apatite, ilmenite, titanomagnetite and sparse pyrrhotite, hornblende and biotite. Partly resorbed ternary feldspar crystals are common toward the contact with the syenite. Microtextures, such as symplectites, encountered at the contact between the syenite and the Fe–Ti–P-rich rocks indicate local disequilibrium between the two rock types. The Fe–Ti–P-rich rocks show large compositional variations but overall are enriched in Ca, Zn, Sc and rare earth elements in addition to Fe, Ti and P compared with the host syenite. Field evidence, whole-rock compositions and textural relationships all suggest that that silicate–liquid immiscibility was involved in the genesis of the Fe–Ti–P-rich rocks. These are interpreted to represent Fe-rich unmixed melts, whereas the syenite is inferred to originate from the crystallization of conjugate Si-rich immiscible melt. The existence of an Fe-rich melt is further supported by the high trace element content of augite from the Fe–Ti–P-rich rocks, showing that they grew from a melt enriched in elements such as Sc and Ti. The fayalite–augite monzonite also displays textural and chemical evidence of silicate liquid immiscibility resulting in unusually variable Zr contents (few hundred ppm to more than 3000 ppm) and the presence of abundant zircon and allanite restricted to millimeter- to centimeter-scale Fe-rich mineral clusters. The most Fe-rich and Si-poor rocks are interpreted to represent the larger proportion of the Fe-rich melt. Liquid immiscibility can be identified at various scales in the pigeonite–augite syenite, from millimeter-size clusters to large-scale bodies, up to hundreds of meters in size, indicating various degrees of separation and coalescence of the Fe-rich melt in the intrusion. The immiscible liquids in the fayalite–augite monzonite consist of an emulsion, with small millimeter- to centimeter-scale droplets of Fe-rich melt, whereas in the pigeonite–augite syenite, Fe-rich melt pockets were able to coalesce and form larger pods. The difference between the two units either results from earlier onset of immiscibility in the pigeonite–augite syenite or reflects a difference in the degree of polymerization of the melt at the time of unmixing. This study emphasizes the importance of silicate–liquid immiscibility in the evolution of intermediate to felsic alkalic ferroan systems and provides a series of arguments that can be used to identify the process in such systems. INTRODUCTION Silicate–silicate liquid immiscibility (hereafter referred to as liquid immiscibility) appears to be relatively rare in natural magmas. Ironically, the first identified examples of liquid immiscibility in natural rocks were from lunar samples (Roedder & Weiblen, 1970). Immiscibility has since been observed in many terrestrial volcanic rocks (e.g. De, 1974; Philpotts, 1979, 1982; Roedder, 1979) but the process has generally been considered a late-stage phenomenon limited to evolved volcanic magmas and of little petrogenic significance. However, recently liquid immiscibility has gained renewed interest and support. Perhaps most importantly, immiscibility has been identified in slowly cooled tholeiitic intrusions such as the Skaergaard intrusion, East Greenland (e.g. Jakobsen et al., 2005, 2011; Humphreys, 2011), Bushveld intrusion, South Africa (VanTongeren & Mathez, 2012; Fischer et al., 2016), Sept Iles, Canada (Charlier et al., 2011; Namur et al., 2011; Namur & Charlier, 2012) and several layered intrusions in China such as the Damiao (Chen et al., 2013; He et al., 2016; Wang et al., 2017), Hongge (Wang & Zhou, 2013) and Panzihua intrusions (Zhou et al., 2005; Wang et al., 2018), and in peralkaline agpaitic systems such as the Ilmaussaq intrusion (Markl, 2001b). In addition, a number of new experimental studies (e.g. Bogaerts & Schmidt, 2006; Veksler et al., 2006, 2007, 2008; Charlier & Grove, 2012; Charlier et al., 2013; Lester et al., 2013a, 2013b; Hou et al., 2018) have explored the extent of immiscibility and influence of intensive parameters and various oxide abundances. These studies indicate that unmixing starts earlier than previously envisaged (Veksler et al., 2008; Hou & Veksler, 2015) and develops over a relatively large compositional range (Charlier & Grove, 2012), which can possibly explain the lack of intermediate compositions in volcanic rocks (Charlier et al., 2013). Although in recent years a substantial body of evidence has accumulated in support of immiscibility, the significance of these findings is still much debated. This is partly because liquid immiscibility is a process that often is difficult to identify geochemically, because at its onset, the two newly formed melts are in equilibrium with one another and will crystallize the same minerals in different proportions (Charlier et al., 2013). Moreover, it is unclear if the immiscible liquids separate, or the scale of such separation. However, if the two liquids manage to separate one from another, they would evolve on their own; thus, liquid immiscibility could potentially be an important process during magmatic differentiation, particularly if unmixing happens early. For example, immiscibility was invoked as a primary mechanism for forming layers in intrusions (Namur & Charlier, 2012; Namur et al., 2015b) and as responsible for ore formations such as iron-oxide (nelsonites) deposits (Philpotts, 1967; Chen et al., 2013; Duchesne & Liégeois, 2015; Hou et al., 2018) and Skaergaard type platinum group element (PGE) mineralization (Nielsen et al., 2015, 2019). In this study we present microtextural and geochemical evidence for liquid immiscibility in the ferroan monzonitic to syenitic Raftsund intrusion in northern Norway. We then assess the importance of the process for petrological evolution of the intrusion. Finally, we address how such data may be used to identify immiscibility in other intrusive systems. REGIONAL GEOLOGICAL CONTEXT The Lofoten archipelago is dominated by a series of large plutons of predominantly monzonitic composition intruded into Archean migmatitic granulite gneisses (Griffin et al., 1978), migmatitic amphibolite and granulite-facies supracrustal units (Griffin et al., 1974; Corfu, 2007) (Fig. 1). By far the largest of these is the Raftsund intrusion, which was emplaced between 1796 ± 2 Ma and 1800 ± 3 Ma (Corfu, 2004b). It belongs to the youngest and dominant stage of magmatism in the region (1790 and 1800 Ma), which followed an initial phase of magmatism at 1860–1870 Ma that was related to arc amalgamation and collision during the Svecofennian orogeny (Corfu, 2004a). Fig. 1. Open in new tabDownload slide Simplified geological map of the Raftsund intrusion displaying the location of the samples used in this study. Fig. 1. Open in new tabDownload slide Simplified geological map of the Raftsund intrusion displaying the location of the samples used in this study. Small volumes of anorthositic rocks and more widespread gabbros, as well as charnockites and granites (Ormaasen, 1977; Malm & Ormaasen, 1978; Markl & Frost, 1999) are associated with the monzonites, making up the greater Lofoten–Vesterålen anorthosite–mangerite–charnockite–granite (AMCG) suite (Malm & Ormaasen, 1978; Markl et al., 1998b). Occurrences of nelsonites and Fe–Ti–P-rich rocks were reported in earlier studies and maps (Tveten, 1978; Ihlen et al., 2014) but have never been thoroughly studied. The emplacement conditions of the Lofoten–Vesterålen AMCG suite were estimated by Markl et al., (1998b), using the QUILF equilibria (Frost & Lindsley, 1992; Lindsley & Frost, 1992). Monzonitic intrusions were emplaced around 4 kbar, with temperatures from 925 °C, for the most magnesian monzonites, to 850 °C, for the most ferroan ones. Oxygen fugacity varied from 0·6 log units below the fayalite–magnetite–quartz (FMQ) buffer for the magnetite–ilmenite-bearing samples to 0·9–1·5 log units below the FMQ buffer for the ilmenite-bearing samples. Silica activity (⁠ aSiO2 ⁠) for the Raftsund intrusion varied between 0·8 in Fe–Ti–P-rich monzodiorite on Hamarøya and 1·0 in the common pigeonite–augite syenite (Markl et al., 1998b). The scarcity of hydrous minerals in the primary assemblage, except for a few rims of Ca-amphibole and few grains of biotite in some samples, and the widespread occurrence of ternary feldspar, indicates that the water content of the melt was low (Brown & Parsons, 1994). The Lofoten–Vesterålen region was metamorphosed under amphibolite-facies conditions, around 1770 Ma (U–Pb age of secondary titanite; Corfu, 2004a), resulting in the growth of titanite, hornblende, biotite, calcite and garnet in monzonitic rocks. High-pressure granulite to eclogite metamorphism, first thought to be Proterozoic (Wade, 1985; Markl & Bucher, 1997), but then shown to be Caledonian (Steltenpohl et al., 2003, 2006; Froitzheim et al., 2016), locally affected rocks of the region. This event might be linked to the development of Grt–Opx coronas around fayalite, described by Markl et al. (1998a). Mineral abbreviations used throughout the paper are from Whitney & Evans (2010). The whole region was later affected by extension during various events from Permian–early Triassic to Cretaceous–Paleogene (e.g. Osmundsen et al., 2010; Davids et al., 2013), leading to the formation of Mesozoic basins and the formation of a series of grabens, horsts and downfaulted block systems (Bergh et al., 2007). Normal faults today control the location of the fjords between the islands. Our study focuses on 1800 Ma monzonite and syenite from the Raftsund intrusion where many scattered Fe–Ti–P-rich rocks have been observed. The Raftsund intrusion is part of the Vesterålen–Lofoten AMCG suite, previously studied on a regional scale (e.g. Malm & Ormaasen, 1978; Wade, 1985; Markl et al., 1998b; Markl & Frost, 1999; Markl, 2001a; Markl & Höhndorf, 2003). NOMENCLATURE Rocks from the 1800 Ma magmatism of the Vesterålen–Lofoten region are generally referred to as an anorthosite–mangerite–charnockite–granite (AMCG) suite (Markl et al., 1998b; Markl & Frost, 1999; Corfu, 2004a). Although the traditional ‘charnockite’ nomenclature (Streckeisen et al., 2002) is well established and extensively used in the literature, using this classification results in much confusion (Frost & Frost, 2008). First, the term charnockite refers to both orthopyroxene-bearing granitic gneisses (granulite facies), where orthopyroxene results from high-grade metamorphism, and orthopyroxene-bearing granite, where orthopyroxene is a primary magmatic phase. It is not uncommon that both rock-types occur in a single area, as in the Lofoten–Vesterålen archipelago, resulting in confusion about petrogenesis. Second, the ‘charnockite’ classification is incomplete. Terms are assigned to most Opx-bearing granitoids but not to syenitic rocks, which are common in Lofoten and Vesterålen. Third and finally, the Raftsund intrusion contains little magmatic orthopyroxene and part of the intrusion, on Hadseløya and Hamarøya, is strongly retrogressed. There the primary magmatic assemblage is lost and the ‘charnockite’ classification sensu stricto is impossible to use. An alternative widely used classification, is the IUGS Quartz, Alkali feldspar, Plagioclase, Feldspathoid (QAPF) diagram (Streckeisen et al., 2002). In monzonites and syenites from the Raftsund, feldspars are mostly ternary feldspars and present variable amounts of exsolution, from small perthites to extremely complex patterns of several generations of plagioclase and alkali feldspars, making accurate point counting difficult. Normative classification is also problematical, as all the feldspar will count as ternary feldspar, resulting in all the rocks plotting in the syenitic field. To avoid all these complications, we use the geochemical total alkalis–silica (TAS) classification as applied to intrusive rocks (Middlemost, 1994), which provides an objective way to classify these feldspathic granitoids. Fe–Ti–P-rich rocks bodies of variable size are common in the Raftsund intrusion (see description below). In the literature, they are almost universally associated with Proterozoic massif anorthosites (Charlier et al., 2015; Lindsley & Epler, 2017). A variety of names have been applied to these mafic Fe-rich rocks, including ferrodiorites, jotunite, monzonorite and hypersthene-bearing monzodiorite. Apatite–oxide-rich rocks lacking silicates, sometimes referred to as nelsonites, are the end members, although no official nomenclature is available for the rocks falling between the two. Therefore, in this study, rocks dominated by Fe-rich minerals, including silicates, and that were mapped as such in the field (SiO2 between 20 and 55 wt%), are collectively referred to as ‘Fe–Ti–P-rich rocks’. THE RAFTSUND INTRUSION Field observations and petrography Sample location and associated classification are provided in Supplementary Data, Electronic Appendix 1 (Supplementary Data are available for downloading at http://www.petrology.oxfordjournals.org). Architecture of the intrusion The Raftsund intrusion extends over 78 km from north to south, from the southeastern part of Langøya to the island of Hamarøya, and 35 km east–west, from Austvågøya to the eastern part of Hinnøya, covering an area of at least 2200 km2, excluding the fjords between the islands. More than 1000 m of vertical relief of the intrusion is exposed and no roof has been observed (Griffin et al., 1974). The rugged terrain and extreme topography, typical of the Lofoten area, make systematic mapping and sampling difficult. The definition of the border of the intrusion and its subdivision is based on new mapping conducted by the Geological Survey of Norway (NGU), as part of the MINN (Mineral Resources in Northern Norway) mapping programme and observations by Griffin and co-workers in the 1970s (Griffin et al., 1974). The Raftsund is predominantly intruded into amphibolite- to granulite-facies supracrustal gneisses along the western margin of the intrusion and into granulite-facies Archean migmatitic gneisses intruded by other 1800–1870 Ma intrusions, along the northern and northeastern margin. The relationship with the coeval Eidsfjord mafic complex (1796 ± 2 Ma) (Markl et al., 1998b; Corfu, 2004a), composed of gabbro and anorthosite and cropping out along the NW side of the Raftsund intrusion, is debated, although field observations suggest that they are contemporaneous. According to Griffin et al. (1974) and Wade (1985) magmatic layering is well developed in the central part of the intrusion, where cross-bedding structures are observed. Magmatic layering was also observed along the southern coast of Hadseløya and northern coast of Austvågøya but is often disrupted and cannot be followed for more than a few meters. The flat-lying magmatic layering along Raftsundet (Fig. 2a and b) suggests that the intrusion is a sheet-like body like other 1800 Ma monzonitic intrusions in the area (Griffin et al., 1974); however, its extent at depth is uncertain. Fig. 2. Open in new tabDownload slide Field photographs of the monzonite, syenite and associated Fe–Ti–P-rich rocks. (a) Magmatic layering in the Fay–Aug monzonite. (b) Close-up of the layering. (c) Porphyritic quartz monzonite, Type I. (d) Mingling between Types II and III. (e) Characteristic texture of the medium-grained equigranular Pgt–Aug syenite (Type II). (f) Contact between two batches of syenite. Fig. 2. Open in new tabDownload slide Field photographs of the monzonite, syenite and associated Fe–Ti–P-rich rocks. (a) Magmatic layering in the Fay–Aug monzonite. (b) Close-up of the layering. (c) Porphyritic quartz monzonite, Type I. (d) Mingling between Types II and III. (e) Characteristic texture of the medium-grained equigranular Pgt–Aug syenite (Type II). (f) Contact between two batches of syenite. Based on texture, the Raftsund intrusion can be divided into three main units denoted here as Types I, II and III (Figs 1 and 2). Type I is porphyritic monzonite to quartz monzonite (Fig. 2c) and is predominantly exposed at the northern and southern parts of the intrusion. This unit grades locally into medium-grained equigranular granite with blue quartz, a unit that corresponds to the Eidsfjord monzonite of Corfu (2004a). On Hadseløya, the contact with Type II monzonite is gradational over 200 m, whereas on Lille Mola island, Type II monzonite clearly cuts deformed Type I porphyritic monzonite (Griffin et al., 1974). Type II monzonite, which is the most voluminous unit and the focus of this study, is equigranular monzonite to syenite (Fig. 2e and f), locally weakly porphyritic. The unit can be divided into two parts, inverted pigeonite–augite syenite (Pgt–Aug syenite hereafter) and fayalite–augite monzonite (Fay–Aug monzonite hereafter). Type III monzonite is porphyritic augite hornblende monzonite with a fine-grained matrix (Fig. 2d). It is the smallest unit of the Raftsund and is best exposed on the island of Årsteinen and on Hamarøya (Fig. 1). The second and third units correspond to what has previously been referred to as the Raftsund Mangerite Intrusion (RMI) (Griffin et al., 1974; Markl et al., 1998b). Petrography of Type II monzonite Most of the Type II monzonite displays homogeneous, medium-grained, equigranular texture with mafic minerals dispersed in a matrix of feldspar (Fig. 2e). Locally the rock is porphyritic, with ternary feldspar reaching up to 1 cm in diameter. Intrusive contacts between different monzonitic units displaying variable texture were observed in several places (Fig. 2f). When fresh, the rock is brown to dark grey and the texture is difficult to see, whereas in retrogressed rocks the feldspars are white, and the texture is more easily observed. Pgt–Aug syenite The Pgt–Aug assemblage is found from the northern coast of Austvågøya and across Raftsundet on Hinnøya. Several localities with a similar assemblage were described on Hamarøya (Malm, 1976; Malm & Ormaasen, 1978). In the syenite, pigeonite is subhedral to anhedral and inverted (Fig. 3a–c). Augite is subhedral to anhedral, pale green and, in some samples, is surrounded by a rim of magmatic green hornblende and rare patches of quartz. A few samples contain both euhedral antiperthitic plagioclase and anhedral perthitic potassium feldspar. Rare plagioclase cores are surrounded by perthitic ternary feldspar. Most of the samples contain mesoperthitic ternary feldspar, which underwent diverse types of exsolution (Fig. 3a and d). Zircon, apatite, ilmenite, magnetite and pyrrhotite are accessory minerals. Zircon displays a variety of shapes from prismatic to interstitial and locally skeletal. Large subhedral apatite crystals with irregular shapes are found in the feldspathic matrix (Fig. 3c). Smaller apatite crystals, commonly subhedral, are found as inclusions in pyroxene rims or closely associated with oxides (Fig. 3b–d). Fig. 3. Open in new tabDownload slide Photomicrographs of typical textures in the Pgt–Aug syenite. (a) Inverted pigeonite surrounded by exsolved ternary feldspar. (b) Inverted pigeonite associated with apatite, biotite and minor Fe–Ti oxide, surrounded by ternary feldspar. (c) The same texture as in (b) along with cluster of mafic minerals composed of magnetite, ilmenite, apatite and minor biotite. (d) Backscatter image of the Fe–Ti–P-rich mineral cluster. Fig. 3. Open in new tabDownload slide Photomicrographs of typical textures in the Pgt–Aug syenite. (a) Inverted pigeonite surrounded by exsolved ternary feldspar. (b) Inverted pigeonite associated with apatite, biotite and minor Fe–Ti oxide, surrounded by ternary feldspar. (c) The same texture as in (b) along with cluster of mafic minerals composed of magnetite, ilmenite, apatite and minor biotite. (d) Backscatter image of the Fe–Ti–P-rich mineral cluster. Fay–Aug monzonite Towards the south, in the eastern part of the intrusion and in the southwestern part of Hamarøya, fayalite and augite become the dominant mafic assemblage (Fig. 1) (Malm, 1976; Malm & Ormaasen, 1978). The proportion of mafic minerals is higher than in the Pgt–Aug syenite, and as a result most of the rocks in this unit are classified as monzonitic. The rock displays medium-grained, equigranular texture. Anhedral pyroxene and fayalite occur in clusters along with rare apatite, ilmenite, allanite and zircon (Fig. 4a and b). In some samples, close to the contact with the Pgt–Aug syenite, augite and fayalite are rimmed by orthopyroxene (Fig. 4c). Hornblende is locally present (Fig. 4b and c). As in the Pgt–Aug syenite, these samples can contain either plagioclase and K-feldspar, three feldspars or only ternary feldspar. Allanite is dark brown, fresh, anhedral and not zoned (Fig. 4b). Prismatic zircon reaches 200–300 µm in length and is abundant in mafic clusters (Fig. 4b). Fig. 4. Open in new tabDownload slide Photomicrographs of textures in the Fay–Aug monzonite. (a) Elongate cluster of subhedral augite, ilmenite and euhedral to subhedral apatite, surrounded by ternary feldspar. (b) Enlarged view of a mineral cluster containing subhedral augite, altered fayalite, ilmenite, hornblende, zircon and allanite. (c) Subhedral augite, associated with anhedral Fe-rich olivine, ilmenite and euhedral apatite. A late rim of magmatic green to brown hornblende is locally preserved. Fig. 4. Open in new tabDownload slide Photomicrographs of textures in the Fay–Aug monzonite. (a) Elongate cluster of subhedral augite, ilmenite and euhedral to subhedral apatite, surrounded by ternary feldspar. (b) Enlarged view of a mineral cluster containing subhedral augite, altered fayalite, ilmenite, hornblende, zircon and allanite. (c) Subhedral augite, associated with anhedral Fe-rich olivine, ilmenite and euhedral apatite. A late rim of magmatic green to brown hornblende is locally preserved. Aug–Opx assemblage A few samples lack inverted pigeonite or fayalite and contain euhedral augite rimmed by orthopyroxene. The samples are dominated by feldspars, and mafic minerals occur only as interstitial phases and are locally skeletal. Hornblende replaces remnant orthopyroxene crystals containing exsolved augite. It is not clear, however, if these orthopyroxene crystals were ever pigeonite. Blocky ternary feldspar and subhedral plagioclase constitute the matrix. Apatite and oxides are accessory minerals. These samples are often partly retrogressed to hornblende; biotite, garnet and rare allanite are secondary minerals. Fe–Ti–P-rich rocks Fe–Ti–P-rich rocks (Fig. 5) are scattered throughout the Type II monzonite and consist of Fe-rich silicates, apatite and Fe–Ti oxides. They were first reported by Griffin and co-authors in the early 1970s (Griffin et al., 1974), and were mentioned later by Ihlen et al. (2014). In this study we focus on Fe–Ti–P-rich rocks that occur with the Pgt–Aug syenite (Fig. 1). Nelsonites (Ihlen et al., 2014), lacking silicates except zircon, occur in the vicinity of the Raftsund. However, the connection of these nelsonites with the intrusion remains unclear and they will be the focus of another study. Fig. 5. Open in new tabDownload slide Field relationships between the Fe–Ti–P-rich rocks and the surrounding syenite. (a) Fe–Ti–P-rich rocks displaying both sharp and diffuse contacts with the surrounding syenite. (b) Ternary feldspar in large Fe–Ti–P-rich rocks lens. (c) Diffuse centimetre-thick Fe–Ti–P-rich veins in the syenite. (d) Network of Fe–Ti–P-rich rocks in the fine- to medium-grained monzodiorite. (e) Outcrop map of the largest Fe–Ti–P-rich lens in the syenite. Fig. 5. Open in new tabDownload slide Field relationships between the Fe–Ti–P-rich rocks and the surrounding syenite. (a) Fe–Ti–P-rich rocks displaying both sharp and diffuse contacts with the surrounding syenite. (b) Ternary feldspar in large Fe–Ti–P-rich rocks lens. (c) Diffuse centimetre-thick Fe–Ti–P-rich veins in the syenite. (d) Network of Fe–Ti–P-rich rocks in the fine- to medium-grained monzodiorite. (e) Outcrop map of the largest Fe–Ti–P-rich lens in the syenite. The Fe–Ti–P-rich rocks found in the Pgt–Aug syenite vary in size from centimeter-scale pockets or veins to 200 m long lenses whose contacts vary from gradational (Fig. 5a and c) to sharp (Fig. 5a and d). Iron–Ti–P-rich rocks exhibit hypidiomorphic granular (Fig. 6) to alliotromorphic texture with subhedral augite associated with either subhedral to anhedral Fe-rich olivine or subhedral pigeonite. Fig. 6. Open in new tabDownload slide Photomicrographs of Fe–Ti–P-rich rock samples. (a) Thin section scan. (b) Close-up of the red-outlined area in (a): subhedral Fe-rich olivine and augite, surrounded by anhedral Fe–Ti oxides. (c) Thin section scan of Fe–Ti–P-rich rocks containing ternary feldspar. (d) Irregular border of the ternary feldspar at the contact with Fe-rich silicate and oxides forming the Fe–Ti–P-rich rocks. Fig. 6. Open in new tabDownload slide Photomicrographs of Fe–Ti–P-rich rock samples. (a) Thin section scan. (b) Close-up of the red-outlined area in (a): subhedral Fe-rich olivine and augite, surrounded by anhedral Fe–Ti oxides. (c) Thin section scan of Fe–Ti–P-rich rocks containing ternary feldspar. (d) Irregular border of the ternary feldspar at the contact with Fe-rich silicate and oxides forming the Fe–Ti–P-rich rocks. Ternary feldspar is present in many samples, mostly as subhedral blocky crystals (Fig. 5b) that are intergrown with the olivine, apatite, ilmenite and titanomagnetite. In the largest lenses (Fig. 5e), proportions of feldspar increase toward the contact with the monzonite. Euhedral apatite is abundant and is found as inclusions in all phases, but rarely in ternary feldspars (Fig. 6b and d). Apatite crystals tend to be larger when enclosed in the oxides than in the Fe-rich silicates. In all samples but one, Fe–Ti oxides consist of titanomagnetite and ilmenite. Primary titanomagnetite is exsolved to magnetite with thin (2–5 µm) lamellae of ilmenite and small (<2 µm) rounded blebs of Fe-spinel. Titanomagnetite and ilmenite form a continuous network and fill interstices between the subhedral minerals (Fig. 6). Pyrrhotite is scarce and is associated with titanomagnetite and ilmenite. Zircon is absent. Locally, thin 50 µm coronas of microcrystalline orthopyroxene and garnet surround mafic minerals (Markl et al., 1998a). Minor phases include orthopyroxene, hornblende or brown–orange biotite, which form rims around other mafic silicates. Magmatic microtextures A series of magmatic microtextures are present in the Type II monzonite. Some of these textures are preserved only in samples where later metamorphism did not disturb the grain boundaries, whereas others are common. A prominent microtexture in Type II monzonite is clustering of mafic minerals around or between ternary feldspar (Figs 3 and 4). The mafic clusters have variable sizes and shapes but are typically sub-rounded to elongate, with lengths from 1 to 5 mm. Similar clustering has also been reported in other AMCG complexes (e.g. Philpotts, 1981; Duchesne & Liégeois, 2015). Mafic minerals and apatite can also form a continuous network between the ternary feldspars. Microtextures related to late-stage reaction between liquid and primocrysts are observed in the Raftsund and resemble textures described in recent studies of several layered intrusions (Holness et al., 2011; Namur et al., 2012; Peng et al., 2015; Wang et al., 2018). Inverted pigeonite in the syenite locally displays sawtooth contacts with ternary feldspar. Locally thick protruding augite lamellae alternate with recessed orthopyroxene exsolutions (Fig. 7a). This texture is similar to the ‘stepped grain boundary’ described in the Skaergaard Intrusion (Holness et al., 2011) and was observed in the central part of the intrusion, at the contact between the Pgt–Aug syenite and one of the largest Fe–Ti–P-rich rocks, close to the transition with the Fay–Aug monzonite. Fig. 7. Open in new tabDownload slide Photomicrographs of microtextures found in the Fe–Ti–P-rich rocks. (a) Stepped grain boundaries between inverted pigeonite and ternary feldspar. (b) Fish-hook augite in symplectite with plagioclase, at the boundary between a partly inverted pigeonite crystal and a ternary feldspar. (c) Thin rim of plagioclase at the contact between ternary feldspar and an Fe–Ti–P-rich cluster of Fe-rich olivine, apatite and titanomagnetite. (d) Similar texture to that in (c) in the Fay–Aug monzonite. (e) Subhedral Fe-rich olivine, apatite and titanomagnetite associated with anhedral to subhedral zoned ternary feldspar. (f) Olivine rims surrounding subhedral pigeonite crystals in a Fe–Ti–P-rich lens. Fig. 7. Open in new tabDownload slide Photomicrographs of microtextures found in the Fe–Ti–P-rich rocks. (a) Stepped grain boundaries between inverted pigeonite and ternary feldspar. (b) Fish-hook augite in symplectite with plagioclase, at the boundary between a partly inverted pigeonite crystal and a ternary feldspar. (c) Thin rim of plagioclase at the contact between ternary feldspar and an Fe–Ti–P-rich cluster of Fe-rich olivine, apatite and titanomagnetite. (d) Similar texture to that in (c) in the Fay–Aug monzonite. (e) Subhedral Fe-rich olivine, apatite and titanomagnetite associated with anhedral to subhedral zoned ternary feldspar. (f) Olivine rims surrounding subhedral pigeonite crystals in a Fe–Ti–P-rich lens. Symplectites of plagioclase and augite at the contact between ternary feldspar and inverted pigeonite (Fig. 7b), also referred to as fish-hook pyroxene (Holness et al., 2011), are observed in several samples of the Pgt–Aug syenite and at contacts between the latter and the Fe–Ti–P-rich rocks. The Fe–Ti–P-rich rocks close to the contact with the Fay–Aug monzonite contain centimeter-scale blocky ternary feldspars whose proportion varies at the meter scale. The contact between the ternary feldspar and the Fe-rich mineral clusters can be smooth or irregular (Fig. 6c and d). Locally, ternary feldspar phenocrysts, at the contact with Fe-rich minerals, are rimmed by micrometer-scale plagioclase films; a texture observed in both the Pgt–Aug syenite and Fay–Aug monzonite (Fig. 7c and d). In the southernmost occurrence of Fe–Ti–P-rich rocks, on the island of Hamarøya, ternary feldspar is anhedral and locally contains zoned cores (Fig. 7e). Neither fish-hook textures nor any kind of disequilibrium texture was observed in these samples. A small late-stage vein is observed in the Pgt–Aug part of the Type II monzonite. The microcrystalline 100 µm wide vein is exclusively composed of Fe-rich minerals (Fig. 8) and cuts the contacts between the Fe–Ti–P lenses and the surrounding Pgt–Aug syenite (Fig. 8a). In this sample, the main minerals forming the Fe–Ti–P-rich rocks are inverted pigeonite rimmed by Fe-rich olivine (Figs 7f and 8), titanomagnetite, pyrrhotite and apatite. In most of the thin section, the vein cross-cuts individual mineral grains. However, there is local evidence for interaction of vein magma with surrounding minerals, with replacement of exsolved orthopyroxene in augite by Fe-rich olivine (red arrow in Fig. 8b). Fig. 8. Open in new tabDownload slide (a) High-resolution scan of contact between Fe–Ti–P-rich lens and syenite. The red arrows point to a late vein crossing the sample. (b) BSE image of the late vein cross-cutting minerals from both the pigeonite syenite and the Fe–Ti–P-rich rocks. (c) BSE image of the microcrystalline Fe-rich vein cross cutting an ilmenite crystal. Fig. 8. Open in new tabDownload slide (a) High-resolution scan of contact between Fe–Ti–P-rich lens and syenite. The red arrows point to a late vein crossing the sample. (b) BSE image of the late vein cross-cutting minerals from both the pigeonite syenite and the Fe–Ti–P-rich rocks. (c) BSE image of the microcrystalline Fe-rich vein cross cutting an ilmenite crystal. GEOCHEMISTRY Methods Whole-rock major element [X-ray fluorescence (XRF) data] and trace element data [XRF plus inductively coupled plasma mass spectrometry (ICP-MS)] were acquired at the Geological Survey of Norway. The methods are presented in Electronic Appendix 2. Major elements in minerals were measured by electron microprobe (EMP) on 40 µm thick carbon-coated polished thin sections using a CAMECA SX100 instrument at the Microsonde Ouest, in Brest, France. Operating conditions were 15 kV at a beam current of 20 nA, using a focused beam of 1 µm diameter. A few analyses were performed with a defocused beam of 5 µm diameter where exsolution features were too small to be avoided. Concentrations below 0·3 % are considered qualitative. Complementary microprobe data were acquired on a JEOL JXF-8530F PLUS microprobe, at the Norwegian University of Science and Technology. The operating conditions were set at 15 kV and 10 nA, using a focused beam of 1 µm for olivine and pyroxene and 5 µm for feldspars. Average 3σ detection limits reported are the following: Na: 602 and 1161 ppm; Mg: 536 and 513 ppm; Al: 395 and 216 ppm; Ca: 188 and 216 ppm; Ti: 264 and 327 ppm; Fe: 408 and 453 ppm; K: 247 and 249 ppm; Mn: 525 and 492 ppm; for feldspars and olivine–pyroxene respectively. Microprobe data are available in Electronic Appendix 3. The elements 25Mg, 27Al, 29Si, 31P, 43Ca, 45Sc, 47Ti, 51V, 53Cr, 55Mn, 57Fe, 59Co, 60Ni, 68Zn, 85Rb, 88Sr, 89Y, 90Zr, 93Nb, 137Ba, 139La, 140Ce, 144Nd, 152Sm, 151Eu, 158Gd, 159Tb, 163Dy, 165Ho, 167Er, 169Tm, 175Lu, 178Hf, 181Ta, 182W, 208Pb, 232Th and 238U were measured in augite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Geological Survey of Norway on a 193 New Wave laser coupled to a ThermoElement mass spectrometer. The laser conditions were set to 8 Hz (frequency) for a spot size of 35 µm in diameter. Laser energy varied to 4 to 8 mJ, according to the analytical session. Laser sampling was performed in a He–Ar atmosphere. Both core and rim compositions were analysed to check for trace element zonation. The raw analyses were reduced with the Glitter software (Van Achterbergh et al., 2001) using 29Si as an internal standard, based on SiO2 concentration measured by EMP. The USGS standard GSD was used to reduce the data and the standards BHVO and GSE were applied as internal control standards to assess precision and accuracy (Jochum et al., 2005a, 2005b). Major elements were measured to monitor for inclusions such as apatite or Fe-Ti-oxides. Phosphorus value is associated with a large error for GSE owing to the low concentration of P in the standard and in the GSD glass, used to reduce the data. Therefore, phosphorus was exclusively used to monitor for apatite inclusions. The error on most elements is below 10 %, except for Co, Ni, Zn, Y, Ta and Tb where the error can be up to 14·3 % (see the Method section in Electronic Appendix 4 for details). Whole-rock data Representative whole-rock analyses are shown in Table 1. Rocks from the Raftsund intrusion are ferroan and alkalic (Fig. 9a and b), according to the alkali–lime index (MALI) and Fe-index classifications (Frost et al., 2001). Retrogressed samples, most of which are from Hadseløya and Langøya (Fig. 1), display a trend similar to that of non-retrogressed samples. Fig. 9. Open in new tabDownload slide Binary diagrams of whole-rock major element composition. (a–b) Classification diagram from Frost et al. (2001). (c–f) Binary diagrams. Fig. 9. Open in new tabDownload slide Binary diagrams of whole-rock major element composition. (a–b) Classification diagram from Frost et al. (2001). (c–f) Binary diagrams. Table 1: Representative whole-rock analyses for the studied units of the Raftsund intrusion . Retrogressed monzonite and syenite . . . . . . . . Pgt–Aug syenite . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . . 82617 . 90366 . 90373 . 106407 . 106421 . 106447 . 106463 . 106474b . 106452 . 106471 . SiO2 59·90 60·40 61·40 57·80 59·70 62·30 59·90 59·50 60·90 59·40 Al2O3 17·80 18·10 18·60 17·30 17·90 20·00 17·60 18·10 18·80 17·30 Fe2O3tot 5·92 4·88 3·68 7·10 5·20 1·57 6·37 5·11 3·90 6·48 TiO2 0·92 0·59 0·55 1·10 1·07 0·30 0·81 0·97 0·70 0·98 MgO 0·69 0·48 0·51 1·16 0·87 0·05 0·52 0·69 0·65 1·07 CaO 2·81 2·45 2·39 3·14 2·57 2·32 2·59 3·20 2·67 2·88 Na2O 4·97 5·30 5·41 4·88 5·09 5·99 5·02 5·08 5·21 4·81 K2O 5·80 5·42 5·49 5·15 5·66 5·65 5·76 5·62 5·81 5·85 MnO 0·14 0·15 0·10 0·18 0·12 0·04 0·19 0·12 0·08 0·16 P2O5 0·35 0·18 0·21 0·49 0·36 0·11 0·29 0·32 0·27 0·43 LOI 0·16 0·30 0·27 0·27 0·35 0·13 0·16 –0·03 0·09 –0·08 Total 99·40 98·20 98·60 98·50 98·80 98·50 99·20 98·60 99·10 99·30 Ba 1530 1540 1760 1970 2480 1960 1220 2220 3230 1460 Co b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 4·2 Cr b.d.l. 5·2 7·1 35 38·8 13·9 55·5 10·6 8·6 6·5 Ni b.d.l. 5·5 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 15·6 15·8 12·1 14·8 15·3 14 12·6 12·3 13·9 12·5 Rb 59·9 63·3 78·1 49·8 53·9 60·9 57·5 46·3 50·3 48·6 Sc 14·6 11 8·6 15·9 10·9 b.d.l. 18·7 11·2 6·4 10 Sr 187 208 227 308 279 276 160 454 422 170 V b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 6·1 77·7 31·2 9 Zn 89·7 79·3 54·7 117 72·2 26·6 89·7 78·2 59·4 99 Y 15·80 16·70 11·40 24·40 18·20 4·36 23·60 17·30 10·90 24·10 Zr 199·0 178·0 97·3 67·9 49·1 166·0 167·0 39·4 50·5 34·8 Nb 6·02 6·30 7·49 4·54 6·20 2·19 6·28 2·85 3·42 2·58 La 23·10 26·70 18·30 34·70 27·80 15·30 34·40 23·60 22·20 33·60 Ce 50·10 54·30 36·10 70·70 53·40 24·10 65·90 44·30 42·80 64·60 Pr 6·26 6·43 4·23 9·04 7·12 2·74 8·61 5·56 5·12 8·34 Nd 25·90 26·20 17·10 37·80 32·10 10·30 38·30 24·80 20·20 36·40 Sm 5·35 5·33 3·40 7·64 6·45 1·88 8·28 5·22 4·15 7·46 Eu 5·15 4·43 4·06 4·34 4·92 5·74 6·29 4·38 5·08 4·64 Gd 4·14 3·85 2·61 6·00 4·95 1·43 6·27 4·05 3·26 5·91 Tb 0·65 0·63 0·43 0·90 0·65 0·18 0·88 0·64 0·45 0·88 Dy 3·39 3·51 2·39 4·59 3·89 1·10 5·12 3·25 2·69 4·72 Ho 0·69 0·68 0·48 0·98 0·74 0·21 1·02 0·66 0·46 0·90 Er 1·73 1·70 1·26 2·67 1·71 0·56 2·52 1·85 1·20 2·55 Tm 0·25 0·27 0·21 0·36 0·23 0·07 0·38 0·23 0·16 0·35 Yb 1·63 1·66 1·11 2·18 1·41 0·45 2·10 1·45 0·94 2·02 Lu 0·24 0·29 0·20 0·34 0·20 0·07 0·33 0·21 0·13 0·31 Hf 4·10 3·90 2·53 1·73 1·32 3·79 3·88 1·17 1·28 0·94 Ta 0·32 0·28 0·37 0·23 0·33 0·18 0·29 0·15 0·20 0·11 Th 0·69 1·37 1·80 1·57 0·51 0·76 1·29 0·42 0·87 0·40 U 0·27 0·40 0·81 0·32 0·13 0·29 0·28 0·12 0·21 0·10 . Retrogressed monzonite and syenite . . . . . . . . Pgt–Aug syenite . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . . 82617 . 90366 . 90373 . 106407 . 106421 . 106447 . 106463 . 106474b . 106452 . 106471 . SiO2 59·90 60·40 61·40 57·80 59·70 62·30 59·90 59·50 60·90 59·40 Al2O3 17·80 18·10 18·60 17·30 17·90 20·00 17·60 18·10 18·80 17·30 Fe2O3tot 5·92 4·88 3·68 7·10 5·20 1·57 6·37 5·11 3·90 6·48 TiO2 0·92 0·59 0·55 1·10 1·07 0·30 0·81 0·97 0·70 0·98 MgO 0·69 0·48 0·51 1·16 0·87 0·05 0·52 0·69 0·65 1·07 CaO 2·81 2·45 2·39 3·14 2·57 2·32 2·59 3·20 2·67 2·88 Na2O 4·97 5·30 5·41 4·88 5·09 5·99 5·02 5·08 5·21 4·81 K2O 5·80 5·42 5·49 5·15 5·66 5·65 5·76 5·62 5·81 5·85 MnO 0·14 0·15 0·10 0·18 0·12 0·04 0·19 0·12 0·08 0·16 P2O5 0·35 0·18 0·21 0·49 0·36 0·11 0·29 0·32 0·27 0·43 LOI 0·16 0·30 0·27 0·27 0·35 0·13 0·16 –0·03 0·09 –0·08 Total 99·40 98·20 98·60 98·50 98·80 98·50 99·20 98·60 99·10 99·30 Ba 1530 1540 1760 1970 2480 1960 1220 2220 3230 1460 Co b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 4·2 Cr b.d.l. 5·2 7·1 35 38·8 13·9 55·5 10·6 8·6 6·5 Ni b.d.l. 5·5 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 15·6 15·8 12·1 14·8 15·3 14 12·6 12·3 13·9 12·5 Rb 59·9 63·3 78·1 49·8 53·9 60·9 57·5 46·3 50·3 48·6 Sc 14·6 11 8·6 15·9 10·9 b.d.l. 18·7 11·2 6·4 10 Sr 187 208 227 308 279 276 160 454 422 170 V b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 6·1 77·7 31·2 9 Zn 89·7 79·3 54·7 117 72·2 26·6 89·7 78·2 59·4 99 Y 15·80 16·70 11·40 24·40 18·20 4·36 23·60 17·30 10·90 24·10 Zr 199·0 178·0 97·3 67·9 49·1 166·0 167·0 39·4 50·5 34·8 Nb 6·02 6·30 7·49 4·54 6·20 2·19 6·28 2·85 3·42 2·58 La 23·10 26·70 18·30 34·70 27·80 15·30 34·40 23·60 22·20 33·60 Ce 50·10 54·30 36·10 70·70 53·40 24·10 65·90 44·30 42·80 64·60 Pr 6·26 6·43 4·23 9·04 7·12 2·74 8·61 5·56 5·12 8·34 Nd 25·90 26·20 17·10 37·80 32·10 10·30 38·30 24·80 20·20 36·40 Sm 5·35 5·33 3·40 7·64 6·45 1·88 8·28 5·22 4·15 7·46 Eu 5·15 4·43 4·06 4·34 4·92 5·74 6·29 4·38 5·08 4·64 Gd 4·14 3·85 2·61 6·00 4·95 1·43 6·27 4·05 3·26 5·91 Tb 0·65 0·63 0·43 0·90 0·65 0·18 0·88 0·64 0·45 0·88 Dy 3·39 3·51 2·39 4·59 3·89 1·10 5·12 3·25 2·69 4·72 Ho 0·69 0·68 0·48 0·98 0·74 0·21 1·02 0·66 0·46 0·90 Er 1·73 1·70 1·26 2·67 1·71 0·56 2·52 1·85 1·20 2·55 Tm 0·25 0·27 0·21 0·36 0·23 0·07 0·38 0·23 0·16 0·35 Yb 1·63 1·66 1·11 2·18 1·41 0·45 2·10 1·45 0·94 2·02 Lu 0·24 0·29 0·20 0·34 0·20 0·07 0·33 0·21 0·13 0·31 Hf 4·10 3·90 2·53 1·73 1·32 3·79 3·88 1·17 1·28 0·94 Ta 0·32 0·28 0·37 0·23 0·33 0·18 0·29 0·15 0·20 0·11 Th 0·69 1·37 1·80 1·57 0·51 0·76 1·29 0·42 0·87 0·40 U 0·27 0·40 0·81 0·32 0·13 0·29 0·28 0·12 0·21 0·10 . Pgt–Aug syenite . . . . . Opx–Aug syenite . . Fay–Aug monzonite . . . Sample: . RAF . RAF . RAF . NoAp . NoAp . RAF . RAF . RAF . RAF . RAF . . 106481 . 106491 . 131525 . 2016-18 . 2017-21 . 131526 . 131807 . 106457 . 106458 . 106459 . SiO2 58·70 59·60 58·50 60·30 58·80 61·90 58·80 54·30 60·60 58·40 Al2O3 18·60 17·10 19·40 19·00 19·00 20·20 18·20 14·80 18·00 17·00 Fe2O3tot 5·31 6·39 4·69 3·82 4·95 1·59 5·88 13·60 5·68 7·78 TiO2 1·09 1·22 1·20 0·82 0·93 0·30 0·99 1·53 0·71 0·95 MgO 1·04 0·94 0·66 0·59 0·65 0·20 0·78 1·24 0·42 0·73 CaO 3·78 3·03 4·00 3·01 3·80 3·04 3·54 4·33 2·79 3·41 Na2O 5·20 5·00 5·63 5·22 5·42 5·85 5·18 4·25 5·10 4·93 K2O 4·60 5·16 4·37 5·66 4·81 5·40 5·19 4·42 5·74 4·99 MnO 0·12 0·14 0·09 0·08 0·08 0·03 0·15 0·41 0·17 0·22 P2O5 0·42 0·38 0·73 0·30 0·58 0·19 0·44 0·56 0·22 0·34 LOI –0·01 0·05 0·46 0·13 0·12 0·12 –0·07 –0·62 –0·13 –0·17 Total 98·90 99·10 99·70 98·90 99·10 98·90 99·10 98·90 99·40 98·60 Ba 3470 2520 2530 2800 3180 2440 2140 1200 1290 1750 Co 4·8 b.d.l. 10 b.d.l. 4·7 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Cr 32·4 46·3 16·6 17·9 b.d.l. 7·5 b.d.l. b.d.l. 23·2 34·5 Ni b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 14·3 15·4 11·5 10·9 11·4 13·5 11·5 6·9 16 11 Rb 37·1 52·3 29·8 46·2 34 44·1 46·3 40·9 65·2 51·8 Sc 9 9·2 6·8 7·9 10·3 b.d.l. 17·2 26·5 13·7 16·3 Sr 605 382 426 372 508 365 276 163 174 326 V 32·1 13·4 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 16·4 Zn 71·8 90·3 115 60·2 57·6 19·3 79·4 145 88·2 113 Y 22·50 16·20 26·10 13·20 17·40 10·40 19·50 30·30 21·80 23·00 Zr 46·5 88·6 47·9 54·2 43·8 91·7 75·3 78·7 133·0 98·5 Nb 6·89 9·12 3·46 3·53 2·55 2·21 3·66 6·53 6·12 6·55 La 36·80 28·60 51·00 25·50 34·60 27·20 28·10 37·40 31·00 35·90 Ce 64·50 61·20 90·10 50·20 66·50 45·10 56·60 85·60 55·70 70·00 Pr 8·14 7·26 11·70 6·03 7·97 4·75 7·22 10·90 7·38 8·92 Nd 36·20 29·20 54·30 25·40 35·00 20·10 32·40 49·40 33·60 38·60 Sm 7·14 5·51 9·68 4·60 6·57 3·58 6·58 10·80 7·40 8·24 Eu 5·82 3·81 7·03 5·25 6·42 6·49 6·61 5·33 6·74 6·69 Gd 5·59 4·15 7·48 3·52 5·26 2·84 5·25 8·25 5·86 6·18 Tb 0·86 0·63 0·99 0·51 0·65 0·38 0·74 1·17 0·88 0·89 Dy 4·41 3·51 5·20 2·63 3·50 1·98 3·74 6·78 4·74 4·94 Ho 0·85 0·69 0·93 0·56 0·67 0·41 0·75 1·25 0·90 1·00 Er 2·31 1·92 2·38 1·42 1·62 1·00 1·76 3·02 2·35 2·48 Tm 0·31 0·27 0·30 0·18 0·21 0·12 0·25 0·44 0·33 0·35 Yb 1·81 1·60 1·56 1·33 1·23 1·02 1·44 2·65 1·87 2·21 Lu 0·31 0·23 0·25 0·17 0·17 0·13 0·23 0·38 0·31 0·32 Hf 1·33 2·34 1·28 1·54 1·00 2·12 1·78 2·08 3·15 2·51 Ta 0·30 0·38 0·18 0·21 0·10 0·11 0·19 0·27 0·30 0·30 Th 0·80 1·26 0·87 0·86 0·67 1·68 0·79 0·71 1·15 2·00 U 0·12 0·33 0·20 0·21 0·17 0·36 0·24 0·20 0·21 0·44 . Pgt–Aug syenite . . . . . Opx–Aug syenite . . Fay–Aug monzonite . . . Sample: . RAF . RAF . RAF . NoAp . NoAp . RAF . RAF . RAF . RAF . RAF . . 106481 . 106491 . 131525 . 2016-18 . 2017-21 . 131526 . 131807 . 106457 . 106458 . 106459 . SiO2 58·70 59·60 58·50 60·30 58·80 61·90 58·80 54·30 60·60 58·40 Al2O3 18·60 17·10 19·40 19·00 19·00 20·20 18·20 14·80 18·00 17·00 Fe2O3tot 5·31 6·39 4·69 3·82 4·95 1·59 5·88 13·60 5·68 7·78 TiO2 1·09 1·22 1·20 0·82 0·93 0·30 0·99 1·53 0·71 0·95 MgO 1·04 0·94 0·66 0·59 0·65 0·20 0·78 1·24 0·42 0·73 CaO 3·78 3·03 4·00 3·01 3·80 3·04 3·54 4·33 2·79 3·41 Na2O 5·20 5·00 5·63 5·22 5·42 5·85 5·18 4·25 5·10 4·93 K2O 4·60 5·16 4·37 5·66 4·81 5·40 5·19 4·42 5·74 4·99 MnO 0·12 0·14 0·09 0·08 0·08 0·03 0·15 0·41 0·17 0·22 P2O5 0·42 0·38 0·73 0·30 0·58 0·19 0·44 0·56 0·22 0·34 LOI –0·01 0·05 0·46 0·13 0·12 0·12 –0·07 –0·62 –0·13 –0·17 Total 98·90 99·10 99·70 98·90 99·10 98·90 99·10 98·90 99·40 98·60 Ba 3470 2520 2530 2800 3180 2440 2140 1200 1290 1750 Co 4·8 b.d.l. 10 b.d.l. 4·7 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Cr 32·4 46·3 16·6 17·9 b.d.l. 7·5 b.d.l. b.d.l. 23·2 34·5 Ni b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 14·3 15·4 11·5 10·9 11·4 13·5 11·5 6·9 16 11 Rb 37·1 52·3 29·8 46·2 34 44·1 46·3 40·9 65·2 51·8 Sc 9 9·2 6·8 7·9 10·3 b.d.l. 17·2 26·5 13·7 16·3 Sr 605 382 426 372 508 365 276 163 174 326 V 32·1 13·4 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 16·4 Zn 71·8 90·3 115 60·2 57·6 19·3 79·4 145 88·2 113 Y 22·50 16·20 26·10 13·20 17·40 10·40 19·50 30·30 21·80 23·00 Zr 46·5 88·6 47·9 54·2 43·8 91·7 75·3 78·7 133·0 98·5 Nb 6·89 9·12 3·46 3·53 2·55 2·21 3·66 6·53 6·12 6·55 La 36·80 28·60 51·00 25·50 34·60 27·20 28·10 37·40 31·00 35·90 Ce 64·50 61·20 90·10 50·20 66·50 45·10 56·60 85·60 55·70 70·00 Pr 8·14 7·26 11·70 6·03 7·97 4·75 7·22 10·90 7·38 8·92 Nd 36·20 29·20 54·30 25·40 35·00 20·10 32·40 49·40 33·60 38·60 Sm 7·14 5·51 9·68 4·60 6·57 3·58 6·58 10·80 7·40 8·24 Eu 5·82 3·81 7·03 5·25 6·42 6·49 6·61 5·33 6·74 6·69 Gd 5·59 4·15 7·48 3·52 5·26 2·84 5·25 8·25 5·86 6·18 Tb 0·86 0·63 0·99 0·51 0·65 0·38 0·74 1·17 0·88 0·89 Dy 4·41 3·51 5·20 2·63 3·50 1·98 3·74 6·78 4·74 4·94 Ho 0·85 0·69 0·93 0·56 0·67 0·41 0·75 1·25 0·90 1·00 Er 2·31 1·92 2·38 1·42 1·62 1·00 1·76 3·02 2·35 2·48 Tm 0·31 0·27 0·30 0·18 0·21 0·12 0·25 0·44 0·33 0·35 Yb 1·81 1·60 1·56 1·33 1·23 1·02 1·44 2·65 1·87 2·21 Lu 0·31 0·23 0·25 0·17 0·17 0·13 0·23 0·38 0·31 0·32 Hf 1·33 2·34 1·28 1·54 1·00 2·12 1·78 2·08 3·15 2·51 Ta 0·30 0·38 0·18 0·21 0·10 0·11 0·19 0·27 0·30 0·30 Th 0·80 1·26 0·87 0·86 0·67 1·68 0·79 0·71 1·15 2·00 U 0·12 0·33 0·20 0·21 0·17 0·36 0·24 0·20 0·21 0·44 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . . . . . NoAp . NoAp . . 106465 . 106467 . 131806 . 69918 . 69950 . 69966 . 95024 . 2016-72 . 2016-82 . SiO2 58·70 55·70 56·50 39·40 51·90 59·60 20·50 51·50 49·40 Al2O3 16·30 15·10 14·90 6·26 15·80 18·70 1·23 12·00 12·80 Fe2O3tot 8·50 11·40 12·00 33·80 13·20 5·21 50·80 15·90 18·80 TiO2 1·01 1·75 1·15 4·17 2·27 0·92 9·09 2·88 2·47 MgO 0·49 1·18 0·59 3·46 1·83 0·68 5·75 2·72 2·02 CaO 3·62 4·02 3·89 7·71 4·81 3·37 8·28 5·29 5·91 Na2O 5·04 4·54 4·39 1·66 4·44 5·28 0·12 3·35 3·62 K2O 5·01 4·71 4·93 1·64 3·63 5·13 0·04 3·63 3·20 MnO 0·28 0·29 0·40 0·90 0·27 0·12 1·12 0·36 0·49 P2O5 0·29 0·66 0·29 1·25 0·97 0·42 3·96 1·63 1·15 LOI –0·29 –0·28 –0·17 –0·65 –0·37 0·19 –2·23 –0·36 –0·80 Total 99·00 99·10 98·80 99·60 98·70 99·60 98·70 98·90 99·00 Ba 1270 1540 922 1030 n.a. 1850 b.d.l. 1760 2280 Co b.d.l. 4·8 b.d.l. 10·1 6·1 b.d.l. 19·7 14 6 Cr b.d.l. b.d.l. 44·5 6·3 6·3 b.d.l. b.d.l. 11 b.d.l. Ni b.d.l. b.d.l. b.d.l. b.d.l. 5·6 b.d.l. 6·4 b.d.l. b.d.l. Pb 12·7 18·9 10·4 b.d.l. n.a. 8·4 b.d.l. 14 11 Rb 60·8 61·2 56 14·2 35·8 46·1 b.d.l. 55 29 Sc 11 15·5 33·1 104 26·2 13·2 110 29 43 Sr 206 231 118 79·2 424 236 38·3 243 314 V b.d.l. b.d.l. 7·1 42·2 25·6 b.d.l. 109 40 26 Zn 140 203 172 345 163 68·8 516 224 283 Y 62·20 54·30 29·60 47·50 50·40 19·80 n.a. 71·60 69·40 Zr 1430·0 727·0 105·0 90·0 91·4 76·4 n.a. 531·0 149·0 Nb 34·40 16·90 6·99 6·33 10·80 4·18 n.a. 19·10 13·70 La 117·00 89·10 32·00 41·90 65·30 29·10 n.a. 111·00 91·90 Ce 253·00 192·00 70·70 103·00 163·00 57·30 n.a. 239·00 197·00 Pr 33·70 24·20 9·74 14·80 21·50 7·09 n.a. 31·20 27·20 Nd 154·00 97·30 44·50 72·80 97·20 30·80 n.a. 135·00 128·00 Sm 29·00 18·70 9·31 15·80 19·60 6·47 n.a. 27·50 25·10 Eu 5·37 4·12 5·13 3·82 5·42 6·60 n.a. 6·67 8·13 Gd 20·00 13·90 7·66 13·00 15·80 4·93 n.a. 19·90 18·80 Tb 2·63 2·08 1·09 1·82 2·18 0·73 n.a. 2·79 2·71 Dy 14·90 10·90 5·56 9·06 11·10 3·70 n.a. 14·90 13·30 Ho 2·82 2·14 1·16 1·86 2·06 0·73 n.a. 2·86 2·67 Er 6·90 6·08 3·09 4·31 5·44 1·82 n.a. 6·96 6·15 Tm 0·98 0·89 0·42 0·61 0·75 0·23 n.a. 1·05 0·92 Yb 6·03 5·28 3·11 3·95 4·68 1·57 n.a. 5·96 5·05 Lu 1·08 0·82 0·55 0·65 0·68 0·24 n.a. 0·92 0·82 Hf 27·90 15·40 2·54 2·76 2·62 1·95 n.a. 11·50 3·36 Ta 1·19 0·60 0·30 0·24 0·52 0·20 n.a. 0·75 0·54 Th 1·99 1·46 0·75 0·87 1·09 1·27 n.a. 3·91 1·36 U 0·59 0·57 0·21 0·23 0·29 0·28 n.a. 1·07 0·27 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . . . . . NoAp . NoAp . . 106465 . 106467 . 131806 . 69918 . 69950 . 69966 . 95024 . 2016-72 . 2016-82 . SiO2 58·70 55·70 56·50 39·40 51·90 59·60 20·50 51·50 49·40 Al2O3 16·30 15·10 14·90 6·26 15·80 18·70 1·23 12·00 12·80 Fe2O3tot 8·50 11·40 12·00 33·80 13·20 5·21 50·80 15·90 18·80 TiO2 1·01 1·75 1·15 4·17 2·27 0·92 9·09 2·88 2·47 MgO 0·49 1·18 0·59 3·46 1·83 0·68 5·75 2·72 2·02 CaO 3·62 4·02 3·89 7·71 4·81 3·37 8·28 5·29 5·91 Na2O 5·04 4·54 4·39 1·66 4·44 5·28 0·12 3·35 3·62 K2O 5·01 4·71 4·93 1·64 3·63 5·13 0·04 3·63 3·20 MnO 0·28 0·29 0·40 0·90 0·27 0·12 1·12 0·36 0·49 P2O5 0·29 0·66 0·29 1·25 0·97 0·42 3·96 1·63 1·15 LOI –0·29 –0·28 –0·17 –0·65 –0·37 0·19 –2·23 –0·36 –0·80 Total 99·00 99·10 98·80 99·60 98·70 99·60 98·70 98·90 99·00 Ba 1270 1540 922 1030 n.a. 1850 b.d.l. 1760 2280 Co b.d.l. 4·8 b.d.l. 10·1 6·1 b.d.l. 19·7 14 6 Cr b.d.l. b.d.l. 44·5 6·3 6·3 b.d.l. b.d.l. 11 b.d.l. Ni b.d.l. b.d.l. b.d.l. b.d.l. 5·6 b.d.l. 6·4 b.d.l. b.d.l. Pb 12·7 18·9 10·4 b.d.l. n.a. 8·4 b.d.l. 14 11 Rb 60·8 61·2 56 14·2 35·8 46·1 b.d.l. 55 29 Sc 11 15·5 33·1 104 26·2 13·2 110 29 43 Sr 206 231 118 79·2 424 236 38·3 243 314 V b.d.l. b.d.l. 7·1 42·2 25·6 b.d.l. 109 40 26 Zn 140 203 172 345 163 68·8 516 224 283 Y 62·20 54·30 29·60 47·50 50·40 19·80 n.a. 71·60 69·40 Zr 1430·0 727·0 105·0 90·0 91·4 76·4 n.a. 531·0 149·0 Nb 34·40 16·90 6·99 6·33 10·80 4·18 n.a. 19·10 13·70 La 117·00 89·10 32·00 41·90 65·30 29·10 n.a. 111·00 91·90 Ce 253·00 192·00 70·70 103·00 163·00 57·30 n.a. 239·00 197·00 Pr 33·70 24·20 9·74 14·80 21·50 7·09 n.a. 31·20 27·20 Nd 154·00 97·30 44·50 72·80 97·20 30·80 n.a. 135·00 128·00 Sm 29·00 18·70 9·31 15·80 19·60 6·47 n.a. 27·50 25·10 Eu 5·37 4·12 5·13 3·82 5·42 6·60 n.a. 6·67 8·13 Gd 20·00 13·90 7·66 13·00 15·80 4·93 n.a. 19·90 18·80 Tb 2·63 2·08 1·09 1·82 2·18 0·73 n.a. 2·79 2·71 Dy 14·90 10·90 5·56 9·06 11·10 3·70 n.a. 14·90 13·30 Ho 2·82 2·14 1·16 1·86 2·06 0·73 n.a. 2·86 2·67 Er 6·90 6·08 3·09 4·31 5·44 1·82 n.a. 6·96 6·15 Tm 0·98 0·89 0·42 0·61 0·75 0·23 n.a. 1·05 0·92 Yb 6·03 5·28 3·11 3·95 4·68 1·57 n.a. 5·96 5·05 Lu 1·08 0·82 0·55 0·65 0·68 0·24 n.a. 0·92 0·82 Hf 27·90 15·40 2·54 2·76 2·62 1·95 n.a. 11·50 3·36 Ta 1·19 0·60 0·30 0·24 0·52 0·20 n.a. 0·75 0·54 Th 1·99 1·46 0·75 0·87 1·09 1·27 n.a. 3·91 1·36 U 0·59 0·57 0·21 0·23 0·29 0·28 n.a. 1·07 0·27 b.d.l., below detection limit. Elements that are close to the detection limits were removed from the list. The complete dataset is available in Electronic Appendix 2. Open in new tab Table 1: Representative whole-rock analyses for the studied units of the Raftsund intrusion . Retrogressed monzonite and syenite . . . . . . . . Pgt–Aug syenite . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . . 82617 . 90366 . 90373 . 106407 . 106421 . 106447 . 106463 . 106474b . 106452 . 106471 . SiO2 59·90 60·40 61·40 57·80 59·70 62·30 59·90 59·50 60·90 59·40 Al2O3 17·80 18·10 18·60 17·30 17·90 20·00 17·60 18·10 18·80 17·30 Fe2O3tot 5·92 4·88 3·68 7·10 5·20 1·57 6·37 5·11 3·90 6·48 TiO2 0·92 0·59 0·55 1·10 1·07 0·30 0·81 0·97 0·70 0·98 MgO 0·69 0·48 0·51 1·16 0·87 0·05 0·52 0·69 0·65 1·07 CaO 2·81 2·45 2·39 3·14 2·57 2·32 2·59 3·20 2·67 2·88 Na2O 4·97 5·30 5·41 4·88 5·09 5·99 5·02 5·08 5·21 4·81 K2O 5·80 5·42 5·49 5·15 5·66 5·65 5·76 5·62 5·81 5·85 MnO 0·14 0·15 0·10 0·18 0·12 0·04 0·19 0·12 0·08 0·16 P2O5 0·35 0·18 0·21 0·49 0·36 0·11 0·29 0·32 0·27 0·43 LOI 0·16 0·30 0·27 0·27 0·35 0·13 0·16 –0·03 0·09 –0·08 Total 99·40 98·20 98·60 98·50 98·80 98·50 99·20 98·60 99·10 99·30 Ba 1530 1540 1760 1970 2480 1960 1220 2220 3230 1460 Co b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 4·2 Cr b.d.l. 5·2 7·1 35 38·8 13·9 55·5 10·6 8·6 6·5 Ni b.d.l. 5·5 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 15·6 15·8 12·1 14·8 15·3 14 12·6 12·3 13·9 12·5 Rb 59·9 63·3 78·1 49·8 53·9 60·9 57·5 46·3 50·3 48·6 Sc 14·6 11 8·6 15·9 10·9 b.d.l. 18·7 11·2 6·4 10 Sr 187 208 227 308 279 276 160 454 422 170 V b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 6·1 77·7 31·2 9 Zn 89·7 79·3 54·7 117 72·2 26·6 89·7 78·2 59·4 99 Y 15·80 16·70 11·40 24·40 18·20 4·36 23·60 17·30 10·90 24·10 Zr 199·0 178·0 97·3 67·9 49·1 166·0 167·0 39·4 50·5 34·8 Nb 6·02 6·30 7·49 4·54 6·20 2·19 6·28 2·85 3·42 2·58 La 23·10 26·70 18·30 34·70 27·80 15·30 34·40 23·60 22·20 33·60 Ce 50·10 54·30 36·10 70·70 53·40 24·10 65·90 44·30 42·80 64·60 Pr 6·26 6·43 4·23 9·04 7·12 2·74 8·61 5·56 5·12 8·34 Nd 25·90 26·20 17·10 37·80 32·10 10·30 38·30 24·80 20·20 36·40 Sm 5·35 5·33 3·40 7·64 6·45 1·88 8·28 5·22 4·15 7·46 Eu 5·15 4·43 4·06 4·34 4·92 5·74 6·29 4·38 5·08 4·64 Gd 4·14 3·85 2·61 6·00 4·95 1·43 6·27 4·05 3·26 5·91 Tb 0·65 0·63 0·43 0·90 0·65 0·18 0·88 0·64 0·45 0·88 Dy 3·39 3·51 2·39 4·59 3·89 1·10 5·12 3·25 2·69 4·72 Ho 0·69 0·68 0·48 0·98 0·74 0·21 1·02 0·66 0·46 0·90 Er 1·73 1·70 1·26 2·67 1·71 0·56 2·52 1·85 1·20 2·55 Tm 0·25 0·27 0·21 0·36 0·23 0·07 0·38 0·23 0·16 0·35 Yb 1·63 1·66 1·11 2·18 1·41 0·45 2·10 1·45 0·94 2·02 Lu 0·24 0·29 0·20 0·34 0·20 0·07 0·33 0·21 0·13 0·31 Hf 4·10 3·90 2·53 1·73 1·32 3·79 3·88 1·17 1·28 0·94 Ta 0·32 0·28 0·37 0·23 0·33 0·18 0·29 0·15 0·20 0·11 Th 0·69 1·37 1·80 1·57 0·51 0·76 1·29 0·42 0·87 0·40 U 0·27 0·40 0·81 0·32 0·13 0·29 0·28 0·12 0·21 0·10 . Retrogressed monzonite and syenite . . . . . . . . Pgt–Aug syenite . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . . 82617 . 90366 . 90373 . 106407 . 106421 . 106447 . 106463 . 106474b . 106452 . 106471 . SiO2 59·90 60·40 61·40 57·80 59·70 62·30 59·90 59·50 60·90 59·40 Al2O3 17·80 18·10 18·60 17·30 17·90 20·00 17·60 18·10 18·80 17·30 Fe2O3tot 5·92 4·88 3·68 7·10 5·20 1·57 6·37 5·11 3·90 6·48 TiO2 0·92 0·59 0·55 1·10 1·07 0·30 0·81 0·97 0·70 0·98 MgO 0·69 0·48 0·51 1·16 0·87 0·05 0·52 0·69 0·65 1·07 CaO 2·81 2·45 2·39 3·14 2·57 2·32 2·59 3·20 2·67 2·88 Na2O 4·97 5·30 5·41 4·88 5·09 5·99 5·02 5·08 5·21 4·81 K2O 5·80 5·42 5·49 5·15 5·66 5·65 5·76 5·62 5·81 5·85 MnO 0·14 0·15 0·10 0·18 0·12 0·04 0·19 0·12 0·08 0·16 P2O5 0·35 0·18 0·21 0·49 0·36 0·11 0·29 0·32 0·27 0·43 LOI 0·16 0·30 0·27 0·27 0·35 0·13 0·16 –0·03 0·09 –0·08 Total 99·40 98·20 98·60 98·50 98·80 98·50 99·20 98·60 99·10 99·30 Ba 1530 1540 1760 1970 2480 1960 1220 2220 3230 1460 Co b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 4·2 Cr b.d.l. 5·2 7·1 35 38·8 13·9 55·5 10·6 8·6 6·5 Ni b.d.l. 5·5 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 15·6 15·8 12·1 14·8 15·3 14 12·6 12·3 13·9 12·5 Rb 59·9 63·3 78·1 49·8 53·9 60·9 57·5 46·3 50·3 48·6 Sc 14·6 11 8·6 15·9 10·9 b.d.l. 18·7 11·2 6·4 10 Sr 187 208 227 308 279 276 160 454 422 170 V b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 6·1 77·7 31·2 9 Zn 89·7 79·3 54·7 117 72·2 26·6 89·7 78·2 59·4 99 Y 15·80 16·70 11·40 24·40 18·20 4·36 23·60 17·30 10·90 24·10 Zr 199·0 178·0 97·3 67·9 49·1 166·0 167·0 39·4 50·5 34·8 Nb 6·02 6·30 7·49 4·54 6·20 2·19 6·28 2·85 3·42 2·58 La 23·10 26·70 18·30 34·70 27·80 15·30 34·40 23·60 22·20 33·60 Ce 50·10 54·30 36·10 70·70 53·40 24·10 65·90 44·30 42·80 64·60 Pr 6·26 6·43 4·23 9·04 7·12 2·74 8·61 5·56 5·12 8·34 Nd 25·90 26·20 17·10 37·80 32·10 10·30 38·30 24·80 20·20 36·40 Sm 5·35 5·33 3·40 7·64 6·45 1·88 8·28 5·22 4·15 7·46 Eu 5·15 4·43 4·06 4·34 4·92 5·74 6·29 4·38 5·08 4·64 Gd 4·14 3·85 2·61 6·00 4·95 1·43 6·27 4·05 3·26 5·91 Tb 0·65 0·63 0·43 0·90 0·65 0·18 0·88 0·64 0·45 0·88 Dy 3·39 3·51 2·39 4·59 3·89 1·10 5·12 3·25 2·69 4·72 Ho 0·69 0·68 0·48 0·98 0·74 0·21 1·02 0·66 0·46 0·90 Er 1·73 1·70 1·26 2·67 1·71 0·56 2·52 1·85 1·20 2·55 Tm 0·25 0·27 0·21 0·36 0·23 0·07 0·38 0·23 0·16 0·35 Yb 1·63 1·66 1·11 2·18 1·41 0·45 2·10 1·45 0·94 2·02 Lu 0·24 0·29 0·20 0·34 0·20 0·07 0·33 0·21 0·13 0·31 Hf 4·10 3·90 2·53 1·73 1·32 3·79 3·88 1·17 1·28 0·94 Ta 0·32 0·28 0·37 0·23 0·33 0·18 0·29 0·15 0·20 0·11 Th 0·69 1·37 1·80 1·57 0·51 0·76 1·29 0·42 0·87 0·40 U 0·27 0·40 0·81 0·32 0·13 0·29 0·28 0·12 0·21 0·10 . Pgt–Aug syenite . . . . . Opx–Aug syenite . . Fay–Aug monzonite . . . Sample: . RAF . RAF . RAF . NoAp . NoAp . RAF . RAF . RAF . RAF . RAF . . 106481 . 106491 . 131525 . 2016-18 . 2017-21 . 131526 . 131807 . 106457 . 106458 . 106459 . SiO2 58·70 59·60 58·50 60·30 58·80 61·90 58·80 54·30 60·60 58·40 Al2O3 18·60 17·10 19·40 19·00 19·00 20·20 18·20 14·80 18·00 17·00 Fe2O3tot 5·31 6·39 4·69 3·82 4·95 1·59 5·88 13·60 5·68 7·78 TiO2 1·09 1·22 1·20 0·82 0·93 0·30 0·99 1·53 0·71 0·95 MgO 1·04 0·94 0·66 0·59 0·65 0·20 0·78 1·24 0·42 0·73 CaO 3·78 3·03 4·00 3·01 3·80 3·04 3·54 4·33 2·79 3·41 Na2O 5·20 5·00 5·63 5·22 5·42 5·85 5·18 4·25 5·10 4·93 K2O 4·60 5·16 4·37 5·66 4·81 5·40 5·19 4·42 5·74 4·99 MnO 0·12 0·14 0·09 0·08 0·08 0·03 0·15 0·41 0·17 0·22 P2O5 0·42 0·38 0·73 0·30 0·58 0·19 0·44 0·56 0·22 0·34 LOI –0·01 0·05 0·46 0·13 0·12 0·12 –0·07 –0·62 –0·13 –0·17 Total 98·90 99·10 99·70 98·90 99·10 98·90 99·10 98·90 99·40 98·60 Ba 3470 2520 2530 2800 3180 2440 2140 1200 1290 1750 Co 4·8 b.d.l. 10 b.d.l. 4·7 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Cr 32·4 46·3 16·6 17·9 b.d.l. 7·5 b.d.l. b.d.l. 23·2 34·5 Ni b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 14·3 15·4 11·5 10·9 11·4 13·5 11·5 6·9 16 11 Rb 37·1 52·3 29·8 46·2 34 44·1 46·3 40·9 65·2 51·8 Sc 9 9·2 6·8 7·9 10·3 b.d.l. 17·2 26·5 13·7 16·3 Sr 605 382 426 372 508 365 276 163 174 326 V 32·1 13·4 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 16·4 Zn 71·8 90·3 115 60·2 57·6 19·3 79·4 145 88·2 113 Y 22·50 16·20 26·10 13·20 17·40 10·40 19·50 30·30 21·80 23·00 Zr 46·5 88·6 47·9 54·2 43·8 91·7 75·3 78·7 133·0 98·5 Nb 6·89 9·12 3·46 3·53 2·55 2·21 3·66 6·53 6·12 6·55 La 36·80 28·60 51·00 25·50 34·60 27·20 28·10 37·40 31·00 35·90 Ce 64·50 61·20 90·10 50·20 66·50 45·10 56·60 85·60 55·70 70·00 Pr 8·14 7·26 11·70 6·03 7·97 4·75 7·22 10·90 7·38 8·92 Nd 36·20 29·20 54·30 25·40 35·00 20·10 32·40 49·40 33·60 38·60 Sm 7·14 5·51 9·68 4·60 6·57 3·58 6·58 10·80 7·40 8·24 Eu 5·82 3·81 7·03 5·25 6·42 6·49 6·61 5·33 6·74 6·69 Gd 5·59 4·15 7·48 3·52 5·26 2·84 5·25 8·25 5·86 6·18 Tb 0·86 0·63 0·99 0·51 0·65 0·38 0·74 1·17 0·88 0·89 Dy 4·41 3·51 5·20 2·63 3·50 1·98 3·74 6·78 4·74 4·94 Ho 0·85 0·69 0·93 0·56 0·67 0·41 0·75 1·25 0·90 1·00 Er 2·31 1·92 2·38 1·42 1·62 1·00 1·76 3·02 2·35 2·48 Tm 0·31 0·27 0·30 0·18 0·21 0·12 0·25 0·44 0·33 0·35 Yb 1·81 1·60 1·56 1·33 1·23 1·02 1·44 2·65 1·87 2·21 Lu 0·31 0·23 0·25 0·17 0·17 0·13 0·23 0·38 0·31 0·32 Hf 1·33 2·34 1·28 1·54 1·00 2·12 1·78 2·08 3·15 2·51 Ta 0·30 0·38 0·18 0·21 0·10 0·11 0·19 0·27 0·30 0·30 Th 0·80 1·26 0·87 0·86 0·67 1·68 0·79 0·71 1·15 2·00 U 0·12 0·33 0·20 0·21 0·17 0·36 0·24 0·20 0·21 0·44 . Pgt–Aug syenite . . . . . Opx–Aug syenite . . Fay–Aug monzonite . . . Sample: . RAF . RAF . RAF . NoAp . NoAp . RAF . RAF . RAF . RAF . RAF . . 106481 . 106491 . 131525 . 2016-18 . 2017-21 . 131526 . 131807 . 106457 . 106458 . 106459 . SiO2 58·70 59·60 58·50 60·30 58·80 61·90 58·80 54·30 60·60 58·40 Al2O3 18·60 17·10 19·40 19·00 19·00 20·20 18·20 14·80 18·00 17·00 Fe2O3tot 5·31 6·39 4·69 3·82 4·95 1·59 5·88 13·60 5·68 7·78 TiO2 1·09 1·22 1·20 0·82 0·93 0·30 0·99 1·53 0·71 0·95 MgO 1·04 0·94 0·66 0·59 0·65 0·20 0·78 1·24 0·42 0·73 CaO 3·78 3·03 4·00 3·01 3·80 3·04 3·54 4·33 2·79 3·41 Na2O 5·20 5·00 5·63 5·22 5·42 5·85 5·18 4·25 5·10 4·93 K2O 4·60 5·16 4·37 5·66 4·81 5·40 5·19 4·42 5·74 4·99 MnO 0·12 0·14 0·09 0·08 0·08 0·03 0·15 0·41 0·17 0·22 P2O5 0·42 0·38 0·73 0·30 0·58 0·19 0·44 0·56 0·22 0·34 LOI –0·01 0·05 0·46 0·13 0·12 0·12 –0·07 –0·62 –0·13 –0·17 Total 98·90 99·10 99·70 98·90 99·10 98·90 99·10 98·90 99·40 98·60 Ba 3470 2520 2530 2800 3180 2440 2140 1200 1290 1750 Co 4·8 b.d.l. 10 b.d.l. 4·7 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Cr 32·4 46·3 16·6 17·9 b.d.l. 7·5 b.d.l. b.d.l. 23·2 34·5 Ni b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. Pb 14·3 15·4 11·5 10·9 11·4 13·5 11·5 6·9 16 11 Rb 37·1 52·3 29·8 46·2 34 44·1 46·3 40·9 65·2 51·8 Sc 9 9·2 6·8 7·9 10·3 b.d.l. 17·2 26·5 13·7 16·3 Sr 605 382 426 372 508 365 276 163 174 326 V 32·1 13·4 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 16·4 Zn 71·8 90·3 115 60·2 57·6 19·3 79·4 145 88·2 113 Y 22·50 16·20 26·10 13·20 17·40 10·40 19·50 30·30 21·80 23·00 Zr 46·5 88·6 47·9 54·2 43·8 91·7 75·3 78·7 133·0 98·5 Nb 6·89 9·12 3·46 3·53 2·55 2·21 3·66 6·53 6·12 6·55 La 36·80 28·60 51·00 25·50 34·60 27·20 28·10 37·40 31·00 35·90 Ce 64·50 61·20 90·10 50·20 66·50 45·10 56·60 85·60 55·70 70·00 Pr 8·14 7·26 11·70 6·03 7·97 4·75 7·22 10·90 7·38 8·92 Nd 36·20 29·20 54·30 25·40 35·00 20·10 32·40 49·40 33·60 38·60 Sm 7·14 5·51 9·68 4·60 6·57 3·58 6·58 10·80 7·40 8·24 Eu 5·82 3·81 7·03 5·25 6·42 6·49 6·61 5·33 6·74 6·69 Gd 5·59 4·15 7·48 3·52 5·26 2·84 5·25 8·25 5·86 6·18 Tb 0·86 0·63 0·99 0·51 0·65 0·38 0·74 1·17 0·88 0·89 Dy 4·41 3·51 5·20 2·63 3·50 1·98 3·74 6·78 4·74 4·94 Ho 0·85 0·69 0·93 0·56 0·67 0·41 0·75 1·25 0·90 1·00 Er 2·31 1·92 2·38 1·42 1·62 1·00 1·76 3·02 2·35 2·48 Tm 0·31 0·27 0·30 0·18 0·21 0·12 0·25 0·44 0·33 0·35 Yb 1·81 1·60 1·56 1·33 1·23 1·02 1·44 2·65 1·87 2·21 Lu 0·31 0·23 0·25 0·17 0·17 0·13 0·23 0·38 0·31 0·32 Hf 1·33 2·34 1·28 1·54 1·00 2·12 1·78 2·08 3·15 2·51 Ta 0·30 0·38 0·18 0·21 0·10 0·11 0·19 0·27 0·30 0·30 Th 0·80 1·26 0·87 0·86 0·67 1·68 0·79 0·71 1·15 2·00 U 0·12 0·33 0·20 0·21 0·17 0·36 0·24 0·20 0·21 0·44 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . . . . . NoAp . NoAp . . 106465 . 106467 . 131806 . 69918 . 69950 . 69966 . 95024 . 2016-72 . 2016-82 . SiO2 58·70 55·70 56·50 39·40 51·90 59·60 20·50 51·50 49·40 Al2O3 16·30 15·10 14·90 6·26 15·80 18·70 1·23 12·00 12·80 Fe2O3tot 8·50 11·40 12·00 33·80 13·20 5·21 50·80 15·90 18·80 TiO2 1·01 1·75 1·15 4·17 2·27 0·92 9·09 2·88 2·47 MgO 0·49 1·18 0·59 3·46 1·83 0·68 5·75 2·72 2·02 CaO 3·62 4·02 3·89 7·71 4·81 3·37 8·28 5·29 5·91 Na2O 5·04 4·54 4·39 1·66 4·44 5·28 0·12 3·35 3·62 K2O 5·01 4·71 4·93 1·64 3·63 5·13 0·04 3·63 3·20 MnO 0·28 0·29 0·40 0·90 0·27 0·12 1·12 0·36 0·49 P2O5 0·29 0·66 0·29 1·25 0·97 0·42 3·96 1·63 1·15 LOI –0·29 –0·28 –0·17 –0·65 –0·37 0·19 –2·23 –0·36 –0·80 Total 99·00 99·10 98·80 99·60 98·70 99·60 98·70 98·90 99·00 Ba 1270 1540 922 1030 n.a. 1850 b.d.l. 1760 2280 Co b.d.l. 4·8 b.d.l. 10·1 6·1 b.d.l. 19·7 14 6 Cr b.d.l. b.d.l. 44·5 6·3 6·3 b.d.l. b.d.l. 11 b.d.l. Ni b.d.l. b.d.l. b.d.l. b.d.l. 5·6 b.d.l. 6·4 b.d.l. b.d.l. Pb 12·7 18·9 10·4 b.d.l. n.a. 8·4 b.d.l. 14 11 Rb 60·8 61·2 56 14·2 35·8 46·1 b.d.l. 55 29 Sc 11 15·5 33·1 104 26·2 13·2 110 29 43 Sr 206 231 118 79·2 424 236 38·3 243 314 V b.d.l. b.d.l. 7·1 42·2 25·6 b.d.l. 109 40 26 Zn 140 203 172 345 163 68·8 516 224 283 Y 62·20 54·30 29·60 47·50 50·40 19·80 n.a. 71·60 69·40 Zr 1430·0 727·0 105·0 90·0 91·4 76·4 n.a. 531·0 149·0 Nb 34·40 16·90 6·99 6·33 10·80 4·18 n.a. 19·10 13·70 La 117·00 89·10 32·00 41·90 65·30 29·10 n.a. 111·00 91·90 Ce 253·00 192·00 70·70 103·00 163·00 57·30 n.a. 239·00 197·00 Pr 33·70 24·20 9·74 14·80 21·50 7·09 n.a. 31·20 27·20 Nd 154·00 97·30 44·50 72·80 97·20 30·80 n.a. 135·00 128·00 Sm 29·00 18·70 9·31 15·80 19·60 6·47 n.a. 27·50 25·10 Eu 5·37 4·12 5·13 3·82 5·42 6·60 n.a. 6·67 8·13 Gd 20·00 13·90 7·66 13·00 15·80 4·93 n.a. 19·90 18·80 Tb 2·63 2·08 1·09 1·82 2·18 0·73 n.a. 2·79 2·71 Dy 14·90 10·90 5·56 9·06 11·10 3·70 n.a. 14·90 13·30 Ho 2·82 2·14 1·16 1·86 2·06 0·73 n.a. 2·86 2·67 Er 6·90 6·08 3·09 4·31 5·44 1·82 n.a. 6·96 6·15 Tm 0·98 0·89 0·42 0·61 0·75 0·23 n.a. 1·05 0·92 Yb 6·03 5·28 3·11 3·95 4·68 1·57 n.a. 5·96 5·05 Lu 1·08 0·82 0·55 0·65 0·68 0·24 n.a. 0·92 0·82 Hf 27·90 15·40 2·54 2·76 2·62 1·95 n.a. 11·50 3·36 Ta 1·19 0·60 0·30 0·24 0·52 0·20 n.a. 0·75 0·54 Th 1·99 1·46 0·75 0·87 1·09 1·27 n.a. 3·91 1·36 U 0·59 0·57 0·21 0·23 0·29 0·28 n.a. 1·07 0·27 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . . . . . NoAp . NoAp . . 106465 . 106467 . 131806 . 69918 . 69950 . 69966 . 95024 . 2016-72 . 2016-82 . SiO2 58·70 55·70 56·50 39·40 51·90 59·60 20·50 51·50 49·40 Al2O3 16·30 15·10 14·90 6·26 15·80 18·70 1·23 12·00 12·80 Fe2O3tot 8·50 11·40 12·00 33·80 13·20 5·21 50·80 15·90 18·80 TiO2 1·01 1·75 1·15 4·17 2·27 0·92 9·09 2·88 2·47 MgO 0·49 1·18 0·59 3·46 1·83 0·68 5·75 2·72 2·02 CaO 3·62 4·02 3·89 7·71 4·81 3·37 8·28 5·29 5·91 Na2O 5·04 4·54 4·39 1·66 4·44 5·28 0·12 3·35 3·62 K2O 5·01 4·71 4·93 1·64 3·63 5·13 0·04 3·63 3·20 MnO 0·28 0·29 0·40 0·90 0·27 0·12 1·12 0·36 0·49 P2O5 0·29 0·66 0·29 1·25 0·97 0·42 3·96 1·63 1·15 LOI –0·29 –0·28 –0·17 –0·65 –0·37 0·19 –2·23 –0·36 –0·80 Total 99·00 99·10 98·80 99·60 98·70 99·60 98·70 98·90 99·00 Ba 1270 1540 922 1030 n.a. 1850 b.d.l. 1760 2280 Co b.d.l. 4·8 b.d.l. 10·1 6·1 b.d.l. 19·7 14 6 Cr b.d.l. b.d.l. 44·5 6·3 6·3 b.d.l. b.d.l. 11 b.d.l. Ni b.d.l. b.d.l. b.d.l. b.d.l. 5·6 b.d.l. 6·4 b.d.l. b.d.l. Pb 12·7 18·9 10·4 b.d.l. n.a. 8·4 b.d.l. 14 11 Rb 60·8 61·2 56 14·2 35·8 46·1 b.d.l. 55 29 Sc 11 15·5 33·1 104 26·2 13·2 110 29 43 Sr 206 231 118 79·2 424 236 38·3 243 314 V b.d.l. b.d.l. 7·1 42·2 25·6 b.d.l. 109 40 26 Zn 140 203 172 345 163 68·8 516 224 283 Y 62·20 54·30 29·60 47·50 50·40 19·80 n.a. 71·60 69·40 Zr 1430·0 727·0 105·0 90·0 91·4 76·4 n.a. 531·0 149·0 Nb 34·40 16·90 6·99 6·33 10·80 4·18 n.a. 19·10 13·70 La 117·00 89·10 32·00 41·90 65·30 29·10 n.a. 111·00 91·90 Ce 253·00 192·00 70·70 103·00 163·00 57·30 n.a. 239·00 197·00 Pr 33·70 24·20 9·74 14·80 21·50 7·09 n.a. 31·20 27·20 Nd 154·00 97·30 44·50 72·80 97·20 30·80 n.a. 135·00 128·00 Sm 29·00 18·70 9·31 15·80 19·60 6·47 n.a. 27·50 25·10 Eu 5·37 4·12 5·13 3·82 5·42 6·60 n.a. 6·67 8·13 Gd 20·00 13·90 7·66 13·00 15·80 4·93 n.a. 19·90 18·80 Tb 2·63 2·08 1·09 1·82 2·18 0·73 n.a. 2·79 2·71 Dy 14·90 10·90 5·56 9·06 11·10 3·70 n.a. 14·90 13·30 Ho 2·82 2·14 1·16 1·86 2·06 0·73 n.a. 2·86 2·67 Er 6·90 6·08 3·09 4·31 5·44 1·82 n.a. 6·96 6·15 Tm 0·98 0·89 0·42 0·61 0·75 0·23 n.a. 1·05 0·92 Yb 6·03 5·28 3·11 3·95 4·68 1·57 n.a. 5·96 5·05 Lu 1·08 0·82 0·55 0·65 0·68 0·24 n.a. 0·92 0·82 Hf 27·90 15·40 2·54 2·76 2·62 1·95 n.a. 11·50 3·36 Ta 1·19 0·60 0·30 0·24 0·52 0·20 n.a. 0·75 0·54 Th 1·99 1·46 0·75 0·87 1·09 1·27 n.a. 3·91 1·36 U 0·59 0·57 0·21 0·23 0·29 0·28 n.a. 1·07 0·27 b.d.l., below detection limit. Elements that are close to the detection limits were removed from the list. The complete dataset is available in Electronic Appendix 2. Open in new tab Pgt–Aug syenite and Fay–Aug monzonite Type II monzonite and syenite display linear trends in many binary diagrams (Fig. 9). The concentration of SiO2 in the Pgt–Aug syenite varies between 57 and 63 wt%, whereas the Fay–Aug monzonite is less silica-rich (54–61 wt%). Fayalite-bearing samples tend to have higher concentrations of Fe2 O3tot ⁠, MnO, CaO and TiO2 and slightly lower alkali contents than the pigeonite-bearing samples (Fig. 9), yet there is considerable overlap between the two groups. Concentrations of MgO, and P2O5 overlap completely (not shown). The Opx–Aug-bearing samples fill the gap between the two groups. Pigeonite-bearing samples can be distinguished from the fayalite-bearing ones based on their trace element chemistry in many diagrams (Fig. 10); nevertheless, there is often an overlap in the data from the two units. The Pgt–Aug syenite is enriched in large ion lithophile elements (LILE) such as Ba (not shown) and Sr (Fig. 10a) compared with the Fay–Aug monzonite, but depleted in Sc and Zn. (Fig. 10b). Cobalt, Mo, and Ni are usually close to or below the detection limit in both units. Fig. 10. Open in new tabDownload slide Binary diagrams of whole-rock trace element composition. Fig. 10. Open in new tabDownload slide Binary diagrams of whole-rock trace element composition. The fayalite-bearing unit shows a wide range of rare earth element (REE) and high field strength element (HFSE) concentrations and is more enriched in these elements than the Pgt–Aug syenite (Figs 10e, d and 11a). Zirconium displays the most variation and the greatest enrichment in the Fay–Aug monzonite, with concentrations varying between a few hundred ppm and 3000 ppm (Fig. 10d). The Eu anomaly is highly variable in the Type II unit (Figs 10c and 11). Pigeonite-bearing samples all display large positive anomalies (2–5, with one sample at 11), whereas Fay–Aug monzonite samples display both positive and negative Eu anomalies between 0·5 and 3·6. The Eu anomaly is negatively correlated to total REE abundances: samples with the higher total REE are associated with the most negative anomalies (not shown). Fig. 11. Open in new tabDownload slide Spider diagrams for Type II monzonite and associated Fe–Ti–P-rich rocks. Same legend as in Fig. 8. Fig. 11. Open in new tabDownload slide Spider diagrams for Type II monzonite and associated Fe–Ti–P-rich rocks. Same legend as in Fig. 8. Retrogressed samples overlap mainly with the Pgt–Aug syenite, although some samples could be retrogressed Fay–Aug monzonites. Fe–Ti–P-rich rocks The chemistry of the Fe–Ti–P-rich rocks is highly variable with SiO2 between 20 and 53 wt%. When plotted against silica content, the data define an approximately linear trend for most of the major elements, from the least felsic samples to the Pgt–Aug syenite and their retrogressed equivalent (Fig. 9). The Fe–Ti–P-rich rocks are extremely enriched in TiO2 (up to 10 wt%), Fe2 O3tot (up to 52 wt%), CaO (up to 14 wt%), MnO (> 1·2 wt%) and P2O5 (up to 6 wt%), but are depleted in Al2O3 and alkalis, Ba, Rb and Sr (Figs 9 and 10a). Transition metals such as Cu and Ni, which were below the detection limit in both the Pgt–Aug syenite and the Fay–Aug monzonite, are present on the order of tens of ppm to 100 ppm. Scandium, Co, V and Zn are also strongly enriched in the Fe–Ti–P-rich rocks. Chromium values overlap with those measured in the host syenite, although in many samples Cr abundance is below the detection limit. Rare earth elements are also more concentrated in the Fe–Ti–P-rich rocks than in Pgt–Aug syenite; however, the two datasets overlap slightly (Fig. 11b). Concentrations of HFSE in the Fe–Ti–P-rich rocks are low compared with the Fay–Aug monzonite, but overlap with their host Pgt–Aug syenites. All Fe–Ti–P-rich rocks contain less than 250 ppm Zr, with the exception of one sample that contains around 530 ppm (red arrow in Fig. 10d). Finally, Fe–Ti–P-rich rocks tend to have small, negative Eu anomalies, unlike many syenites and monzonite, which have positive ones (Figs 10c and 11b). Mineral chemistry Pyroxene Representative microprobe data of pyroxene and LA ICP-MS data of augite data are presented in Table 2 and 3 respectively. Table 2: Representative pyroxene microprobe analyses . Retrogressed monzonite, Hadseløya . . . . . . . Pgt–Aug syenite . . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . . 106433 . 106433 . 106433 . 106433 . 106448 . 106448 . 106448 . 106454 . 106454 . 106483 . . Z1-Cpx1 . Z1-Cpx2 . Z4-Cpx1 . Z4-Cpx18 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z3-Cpx4 . Z3-Opx* . Z4-Cpx-3 . SiO2 50·45 50·20 50·62 51·09 49·60 50·54 49·83 51·43 49·09 50·66 TiO2 0·06 0·08 0·09 0·08 0·05 0·07 0·04 0·13 0·07 0·23 Al2O3 0·93 1·07 0·95 0·85 0·62 0·71 0·57 0·78 0·20 1·13 FeOtot 16·72 15·74 16·54 17·50 20·27 19·10 20·11 16·49 37·39 16·68 MnO 1·08 1·13 1·15 0·90 0·87 0·76 0·78 0·51 1·38 0·55 MgO 7·55 7·82 7·70 7·06 5·48 5·98 5·69 8·88 11·02 9·38 CaO 21·44 21·93 21·83 20·89 21·69 22·17 21·70 21·37 0·57 20·26 Na2O 1·05 1·05 1·01 1·29 0·73 0·69 0·74 0·85 0·06 0·39 Total 99·29 99·04 99·89 99·66 99·31 100·03 99·45 100·45 99·78 99·30 Wo 46·76 47·68 47·08 46·34 47·32 48·19 47·24 45·47 1·24 43·32 En 22·92 23·66 23·11 21·79 16·65 18·09 17·23 26·27 33·20 27·91 Fs 30·32 28·66 29·81 31·87 36·03 33·72 35·53 28·26 65·56 28·77 Pgt–Aug syenite Fayalite–Aug monzonite Fe–Ti–P-rich rocks Sample: RAF RAF RAF RAF RAF RAF RAF RAF 106483 106483 106483 106457 106457 106465 106465 106465 69918 69918 Z4-Opx-4* Z2-Pig1 Z2-Opx2* Z1-cpx3 Z2-opx6 Z1-Cpx4 Z2-opx5 Z5-Cpx7 Z3-Cpx5 Z2-Cpx6 SiO2 49·22 49·83 49·58 49·46 48·12 49·12 46·53 48·10 49·75 49·78 TiO2 0·07 0·09 0·10 0·14 0·00 0·11 0·00 0·17 0·18 0·17 Al2O3 0·25 0·58 0·25 0·78 0·10 0·75 0·13 0·67 1·20 0·94 FeOtot 35·76 30·34 35·79 21·22 42·40 25·70 48·73 28·96 20·42 20·07 MnO 1·28 1·05 1·35 0·93 1·68 1·09 1·74 1·31 0·84 0·87 MgO 12·19 11·00 12·50 5·96 7·68 3·45 2·81 3·43 6·63 7·50 CaO 0·60 7·48 0·53 20·32 0·47 19·40 0·63 16·36 20·56 19·89 Na2O 0·00 0·17 0·04 0·43 0·00 0·51 0·00 0·40 0·47 0·40 Total 99·37 100·54 100·14 99·25 100·44 100·14 100·58 99·42 100·05 99·62 Wo 1·29 15·82 1·13 44·27 1·04 42·99 1·43 36·54 44·32 42·61 En 36·49 32·36 37·05 18·05 23·43 10·63 8·90 10·66 19·89 22·36 Fs 62·22 51·82 61·82 37·68 75·53 46·38 89·67 52·80 35·79 35·03 . Retrogressed monzonite, Hadseløya . . . . . . . Pgt–Aug syenite . . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . . 106433 . 106433 . 106433 . 106433 . 106448 . 106448 . 106448 . 106454 . 106454 . 106483 . . Z1-Cpx1 . Z1-Cpx2 . Z4-Cpx1 . Z4-Cpx18 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z3-Cpx4 . Z3-Opx* . Z4-Cpx-3 . SiO2 50·45 50·20 50·62 51·09 49·60 50·54 49·83 51·43 49·09 50·66 TiO2 0·06 0·08 0·09 0·08 0·05 0·07 0·04 0·13 0·07 0·23 Al2O3 0·93 1·07 0·95 0·85 0·62 0·71 0·57 0·78 0·20 1·13 FeOtot 16·72 15·74 16·54 17·50 20·27 19·10 20·11 16·49 37·39 16·68 MnO 1·08 1·13 1·15 0·90 0·87 0·76 0·78 0·51 1·38 0·55 MgO 7·55 7·82 7·70 7·06 5·48 5·98 5·69 8·88 11·02 9·38 CaO 21·44 21·93 21·83 20·89 21·69 22·17 21·70 21·37 0·57 20·26 Na2O 1·05 1·05 1·01 1·29 0·73 0·69 0·74 0·85 0·06 0·39 Total 99·29 99·04 99·89 99·66 99·31 100·03 99·45 100·45 99·78 99·30 Wo 46·76 47·68 47·08 46·34 47·32 48·19 47·24 45·47 1·24 43·32 En 22·92 23·66 23·11 21·79 16·65 18·09 17·23 26·27 33·20 27·91 Fs 30·32 28·66 29·81 31·87 36·03 33·72 35·53 28·26 65·56 28·77 Pgt–Aug syenite Fayalite–Aug monzonite Fe–Ti–P-rich rocks Sample: RAF RAF RAF RAF RAF RAF RAF RAF 106483 106483 106483 106457 106457 106465 106465 106465 69918 69918 Z4-Opx-4* Z2-Pig1 Z2-Opx2* Z1-cpx3 Z2-opx6 Z1-Cpx4 Z2-opx5 Z5-Cpx7 Z3-Cpx5 Z2-Cpx6 SiO2 49·22 49·83 49·58 49·46 48·12 49·12 46·53 48·10 49·75 49·78 TiO2 0·07 0·09 0·10 0·14 0·00 0·11 0·00 0·17 0·18 0·17 Al2O3 0·25 0·58 0·25 0·78 0·10 0·75 0·13 0·67 1·20 0·94 FeOtot 35·76 30·34 35·79 21·22 42·40 25·70 48·73 28·96 20·42 20·07 MnO 1·28 1·05 1·35 0·93 1·68 1·09 1·74 1·31 0·84 0·87 MgO 12·19 11·00 12·50 5·96 7·68 3·45 2·81 3·43 6·63 7·50 CaO 0·60 7·48 0·53 20·32 0·47 19·40 0·63 16·36 20·56 19·89 Na2O 0·00 0·17 0·04 0·43 0·00 0·51 0·00 0·40 0·47 0·40 Total 99·37 100·54 100·14 99·25 100·44 100·14 100·58 99·42 100·05 99·62 Wo 1·29 15·82 1·13 44·27 1·04 42·99 1·43 36·54 44·32 42·61 En 36·49 32·36 37·05 18·05 23·43 10·63 8·90 10·66 19·89 22·36 Fs 62·22 51·82 61·82 37·68 75·53 46·38 89·67 52·80 35·79 35·03 . Fe–Ti–P-rich rocks . . . . . . . . . . Sample: . 69946 . 69946 . 69962 . 69962 . 69964 . 69964 . 69964-2 . 69964-2 . 69964-2 . 69964-2 . . Z1-Cpx8 . Z3-Cpx9 . Z1-Cpx2 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z1-Cpx5 . Z2-Cpx8 . Z2-Cpx6 . Z2-Cpx5 . SiO2 50·82 51·17 50·28 50·40 48·47 50·60 51·71 50·69 51·09 50·81 TiO2 0·36 0·28 0·21 0·22 1·34 0·33 0·25 0·37 0·28 0·44 Al2O3 1·49 1·29 1·53 1·49 1·35 1·60 1·34 1·66 1·48 1·73 FeOtot 14·03 15·06 17·41 16·16 20·51 17·37 13·92 15·61 14·00 14·51 MnO 0·63 0·66 0·80 0·81 0·89 0·84 0·63 0·68 0·57 0·64 MgO 11·53 12·02 9·02 8·93 8·90 9·14 11·22 10·47 10·69 10·25 CaO 20·02 18·85 19·34 20·54 18·26 20·19 20·04 19·68 20·77 20·50 Na2O 0·53 0·48 0·58 0·68 0·58 0·60 0·60 0·57 0·42 0·53 Total 99·41 99·81 99·18 99·22 100·29 100·67 99·71 99·74 99·30 99·42 Wo 42·13 39·39 41·93 44·44 38·56 42·83 42·62 41·89 44·18 43·99 En 33·78 34·94 27·22 26·88 26·16 26·98 33·21 31·02 31·63 30·62 Fs 24·09 25·66 30·84 28·68 35·28 30·19 24·17 27·09 24·20 25·39 . Fe–Ti–P-rich rocks . . . . . . . . . . Sample: . 69946 . 69946 . 69962 . 69962 . 69964 . 69964 . 69964-2 . 69964-2 . 69964-2 . 69964-2 . . Z1-Cpx8 . Z3-Cpx9 . Z1-Cpx2 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z1-Cpx5 . Z2-Cpx8 . Z2-Cpx6 . Z2-Cpx5 . SiO2 50·82 51·17 50·28 50·40 48·47 50·60 51·71 50·69 51·09 50·81 TiO2 0·36 0·28 0·21 0·22 1·34 0·33 0·25 0·37 0·28 0·44 Al2O3 1·49 1·29 1·53 1·49 1·35 1·60 1·34 1·66 1·48 1·73 FeOtot 14·03 15·06 17·41 16·16 20·51 17·37 13·92 15·61 14·00 14·51 MnO 0·63 0·66 0·80 0·81 0·89 0·84 0·63 0·68 0·57 0·64 MgO 11·53 12·02 9·02 8·93 8·90 9·14 11·22 10·47 10·69 10·25 CaO 20·02 18·85 19·34 20·54 18·26 20·19 20·04 19·68 20·77 20·50 Na2O 0·53 0·48 0·58 0·68 0·58 0·60 0·60 0·57 0·42 0·53 Total 99·41 99·81 99·18 99·22 100·29 100·67 99·71 99·74 99·30 99·42 Wo 42·13 39·39 41·93 44·44 38·56 42·83 42·62 41·89 44·18 43·99 En 33·78 34·94 27·22 26·88 26·16 26·98 33·21 31·02 31·63 30·62 Fs 24·09 25·66 30·84 28·68 35·28 30·19 24·17 27·09 24·20 25·39 Open in new tab Table 2: Representative pyroxene microprobe analyses . Retrogressed monzonite, Hadseløya . . . . . . . Pgt–Aug syenite . . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . . 106433 . 106433 . 106433 . 106433 . 106448 . 106448 . 106448 . 106454 . 106454 . 106483 . . Z1-Cpx1 . Z1-Cpx2 . Z4-Cpx1 . Z4-Cpx18 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z3-Cpx4 . Z3-Opx* . Z4-Cpx-3 . SiO2 50·45 50·20 50·62 51·09 49·60 50·54 49·83 51·43 49·09 50·66 TiO2 0·06 0·08 0·09 0·08 0·05 0·07 0·04 0·13 0·07 0·23 Al2O3 0·93 1·07 0·95 0·85 0·62 0·71 0·57 0·78 0·20 1·13 FeOtot 16·72 15·74 16·54 17·50 20·27 19·10 20·11 16·49 37·39 16·68 MnO 1·08 1·13 1·15 0·90 0·87 0·76 0·78 0·51 1·38 0·55 MgO 7·55 7·82 7·70 7·06 5·48 5·98 5·69 8·88 11·02 9·38 CaO 21·44 21·93 21·83 20·89 21·69 22·17 21·70 21·37 0·57 20·26 Na2O 1·05 1·05 1·01 1·29 0·73 0·69 0·74 0·85 0·06 0·39 Total 99·29 99·04 99·89 99·66 99·31 100·03 99·45 100·45 99·78 99·30 Wo 46·76 47·68 47·08 46·34 47·32 48·19 47·24 45·47 1·24 43·32 En 22·92 23·66 23·11 21·79 16·65 18·09 17·23 26·27 33·20 27·91 Fs 30·32 28·66 29·81 31·87 36·03 33·72 35·53 28·26 65·56 28·77 Pgt–Aug syenite Fayalite–Aug monzonite Fe–Ti–P-rich rocks Sample: RAF RAF RAF RAF RAF RAF RAF RAF 106483 106483 106483 106457 106457 106465 106465 106465 69918 69918 Z4-Opx-4* Z2-Pig1 Z2-Opx2* Z1-cpx3 Z2-opx6 Z1-Cpx4 Z2-opx5 Z5-Cpx7 Z3-Cpx5 Z2-Cpx6 SiO2 49·22 49·83 49·58 49·46 48·12 49·12 46·53 48·10 49·75 49·78 TiO2 0·07 0·09 0·10 0·14 0·00 0·11 0·00 0·17 0·18 0·17 Al2O3 0·25 0·58 0·25 0·78 0·10 0·75 0·13 0·67 1·20 0·94 FeOtot 35·76 30·34 35·79 21·22 42·40 25·70 48·73 28·96 20·42 20·07 MnO 1·28 1·05 1·35 0·93 1·68 1·09 1·74 1·31 0·84 0·87 MgO 12·19 11·00 12·50 5·96 7·68 3·45 2·81 3·43 6·63 7·50 CaO 0·60 7·48 0·53 20·32 0·47 19·40 0·63 16·36 20·56 19·89 Na2O 0·00 0·17 0·04 0·43 0·00 0·51 0·00 0·40 0·47 0·40 Total 99·37 100·54 100·14 99·25 100·44 100·14 100·58 99·42 100·05 99·62 Wo 1·29 15·82 1·13 44·27 1·04 42·99 1·43 36·54 44·32 42·61 En 36·49 32·36 37·05 18·05 23·43 10·63 8·90 10·66 19·89 22·36 Fs 62·22 51·82 61·82 37·68 75·53 46·38 89·67 52·80 35·79 35·03 . Retrogressed monzonite, Hadseløya . . . . . . . Pgt–Aug syenite . . . Sample: . HAD . HAD . HAD . HAD . HAD . HAD . HAD . RAF . RAF . RAF . . 106433 . 106433 . 106433 . 106433 . 106448 . 106448 . 106448 . 106454 . 106454 . 106483 . . Z1-Cpx1 . Z1-Cpx2 . Z4-Cpx1 . Z4-Cpx18 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z3-Cpx4 . Z3-Opx* . Z4-Cpx-3 . SiO2 50·45 50·20 50·62 51·09 49·60 50·54 49·83 51·43 49·09 50·66 TiO2 0·06 0·08 0·09 0·08 0·05 0·07 0·04 0·13 0·07 0·23 Al2O3 0·93 1·07 0·95 0·85 0·62 0·71 0·57 0·78 0·20 1·13 FeOtot 16·72 15·74 16·54 17·50 20·27 19·10 20·11 16·49 37·39 16·68 MnO 1·08 1·13 1·15 0·90 0·87 0·76 0·78 0·51 1·38 0·55 MgO 7·55 7·82 7·70 7·06 5·48 5·98 5·69 8·88 11·02 9·38 CaO 21·44 21·93 21·83 20·89 21·69 22·17 21·70 21·37 0·57 20·26 Na2O 1·05 1·05 1·01 1·29 0·73 0·69 0·74 0·85 0·06 0·39 Total 99·29 99·04 99·89 99·66 99·31 100·03 99·45 100·45 99·78 99·30 Wo 46·76 47·68 47·08 46·34 47·32 48·19 47·24 45·47 1·24 43·32 En 22·92 23·66 23·11 21·79 16·65 18·09 17·23 26·27 33·20 27·91 Fs 30·32 28·66 29·81 31·87 36·03 33·72 35·53 28·26 65·56 28·77 Pgt–Aug syenite Fayalite–Aug monzonite Fe–Ti–P-rich rocks Sample: RAF RAF RAF RAF RAF RAF RAF RAF 106483 106483 106483 106457 106457 106465 106465 106465 69918 69918 Z4-Opx-4* Z2-Pig1 Z2-Opx2* Z1-cpx3 Z2-opx6 Z1-Cpx4 Z2-opx5 Z5-Cpx7 Z3-Cpx5 Z2-Cpx6 SiO2 49·22 49·83 49·58 49·46 48·12 49·12 46·53 48·10 49·75 49·78 TiO2 0·07 0·09 0·10 0·14 0·00 0·11 0·00 0·17 0·18 0·17 Al2O3 0·25 0·58 0·25 0·78 0·10 0·75 0·13 0·67 1·20 0·94 FeOtot 35·76 30·34 35·79 21·22 42·40 25·70 48·73 28·96 20·42 20·07 MnO 1·28 1·05 1·35 0·93 1·68 1·09 1·74 1·31 0·84 0·87 MgO 12·19 11·00 12·50 5·96 7·68 3·45 2·81 3·43 6·63 7·50 CaO 0·60 7·48 0·53 20·32 0·47 19·40 0·63 16·36 20·56 19·89 Na2O 0·00 0·17 0·04 0·43 0·00 0·51 0·00 0·40 0·47 0·40 Total 99·37 100·54 100·14 99·25 100·44 100·14 100·58 99·42 100·05 99·62 Wo 1·29 15·82 1·13 44·27 1·04 42·99 1·43 36·54 44·32 42·61 En 36·49 32·36 37·05 18·05 23·43 10·63 8·90 10·66 19·89 22·36 Fs 62·22 51·82 61·82 37·68 75·53 46·38 89·67 52·80 35·79 35·03 . Fe–Ti–P-rich rocks . . . . . . . . . . Sample: . 69946 . 69946 . 69962 . 69962 . 69964 . 69964 . 69964-2 . 69964-2 . 69964-2 . 69964-2 . . Z1-Cpx8 . Z3-Cpx9 . Z1-Cpx2 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z1-Cpx5 . Z2-Cpx8 . Z2-Cpx6 . Z2-Cpx5 . SiO2 50·82 51·17 50·28 50·40 48·47 50·60 51·71 50·69 51·09 50·81 TiO2 0·36 0·28 0·21 0·22 1·34 0·33 0·25 0·37 0·28 0·44 Al2O3 1·49 1·29 1·53 1·49 1·35 1·60 1·34 1·66 1·48 1·73 FeOtot 14·03 15·06 17·41 16·16 20·51 17·37 13·92 15·61 14·00 14·51 MnO 0·63 0·66 0·80 0·81 0·89 0·84 0·63 0·68 0·57 0·64 MgO 11·53 12·02 9·02 8·93 8·90 9·14 11·22 10·47 10·69 10·25 CaO 20·02 18·85 19·34 20·54 18·26 20·19 20·04 19·68 20·77 20·50 Na2O 0·53 0·48 0·58 0·68 0·58 0·60 0·60 0·57 0·42 0·53 Total 99·41 99·81 99·18 99·22 100·29 100·67 99·71 99·74 99·30 99·42 Wo 42·13 39·39 41·93 44·44 38·56 42·83 42·62 41·89 44·18 43·99 En 33·78 34·94 27·22 26·88 26·16 26·98 33·21 31·02 31·63 30·62 Fs 24·09 25·66 30·84 28·68 35·28 30·19 24·17 27·09 24·20 25·39 . Fe–Ti–P-rich rocks . . . . . . . . . . Sample: . 69946 . 69946 . 69962 . 69962 . 69964 . 69964 . 69964-2 . 69964-2 . 69964-2 . 69964-2 . . Z1-Cpx8 . Z3-Cpx9 . Z1-Cpx2 . Z1-Cpx1 . Z2-Cpx2 . Z3-Cpx1 . Z1-Cpx5 . Z2-Cpx8 . Z2-Cpx6 . Z2-Cpx5 . SiO2 50·82 51·17 50·28 50·40 48·47 50·60 51·71 50·69 51·09 50·81 TiO2 0·36 0·28 0·21 0·22 1·34 0·33 0·25 0·37 0·28 0·44 Al2O3 1·49 1·29 1·53 1·49 1·35 1·60 1·34 1·66 1·48 1·73 FeOtot 14·03 15·06 17·41 16·16 20·51 17·37 13·92 15·61 14·00 14·51 MnO 0·63 0·66 0·80 0·81 0·89 0·84 0·63 0·68 0·57 0·64 MgO 11·53 12·02 9·02 8·93 8·90 9·14 11·22 10·47 10·69 10·25 CaO 20·02 18·85 19·34 20·54 18·26 20·19 20·04 19·68 20·77 20·50 Na2O 0·53 0·48 0·58 0·68 0·58 0·60 0·60 0·57 0·42 0·53 Total 99·41 99·81 99·18 99·22 100·29 100·67 99·71 99·74 99·30 99·42 Wo 42·13 39·39 41·93 44·44 38·56 42·83 42·62 41·89 44·18 43·99 En 33·78 34·94 27·22 26·88 26·16 26·98 33·21 31·02 31·63 30·62 Fs 24·09 25·66 30·84 28·68 35·28 30·19 24·17 27·09 24·20 25·39 Open in new tab Table 3: Representative LA ICP-MS analyses of augite (ppm), except internal standard SiO2, given in wt% . Pgt–Aug syenite . . . . Fay–Aug monzonite . . . . . Sample: . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106483 . 106483 . 106483 . 106483 . 106457 . 106457 . 106457 . 106465 . 106465 . . Z4_Cpx3c . Z4_Cpx4r . Z5_Cpx1c . Z5_Cpx2i . Z1_Cpx1c . Z1_Cpx2r . Z4_Cpx1c . Z4_Cpx1c . Z4_Cpx2i . SiO2 (IS) 50·89 50·89 50·89 50·89 49·25 49·25 49·25 49·25 49·25 Mg 54122 60817 58903 66869 38352 29016 44238 21890 17624 Al 4538 4393 5539 4767 4274 3374 3694 2725 2030 P 15·33 5·74 7·13 9·21 10·43 7·39 12·32 11·12 1874·33 Ca 124853 170556 119640 125506 149852 138871 126022 188839 127584 Sc 212·08 253·94 195·01 178·16 374·47 341·3 266·3 195·89 153·24 Ti 633·63 616·45 836·31 653·82 865·64 613·68 856·02 475·63 494·12 V 7·56 10·36 9·76 9·81 12·13 13·99 10·37 6·21 7·25 Cr 0·77 1·63 1·24 0·57 1·94 3·07 1·52 1·74 1·25 Mn 6483 5103 6866 5522 8786 7791 8818 14032 8485 Fe 171057 139149 172649 135634 201566 175408 224913 280012 176325 Co 19·22 16·19 19·87 19·72 10·28 9·13 10·21 10·37 7·53 Ni 1·33 1·68 0·8 1·54 1·97 2·07 2·03 1·7 b.d.l. Zn 398·66 283·02 398·04 335·78 432·7 486·48 488·4 900·86 701·3 Ga 5·22 5·05 5·49 4·9 6·61 4·81 4·44 5·32 4·9 Rb 0·048 b.d.l. b.d.l. b.d.l. 0·027 b.d.l. 0·035 b.d.l. b.d.l. Sr 11·02 12·41 10·28 12·41 7·2 7·14 7·11 9·23 9·61 Y 76·93 84·66 75·49 81·01 91·98 91·34 78 77·23 129·17 Zr 99·43 52·59 188·23 164·4 103·66 55·9 198·91 60·69 27·6 Nb 0·01 b.d.l. b.d.l. 0·01 0·01 0·00 0·01 0·11 0·10 Ba 0·151 b.d.l. 0·144 0·047 b.d.l. 0·026 0·24 0·12 b.d.l. La 11·26 11·62 13·33 12·31 16·29 12·48 19·02 0·98 77·71 Ce 57·16 55·46 55·11 48·78 78·38 71·28 79·82 11·88 314·94 Pr 9·77 11·62 9·7 9·66 16·42 11·29 11·71 3·59 43·97 Nd 48·55 53·97 42·24 51·51 69·99 58·49 71·31 26·01 201·1 Sm 17·57 17·53 14·43 16·17 22·35 17·98 19·64 12·89 47·89 Eu 2·575 3·06 2·152 2·61 2·49 2·149 1·89 1·06 2·68 Gd 15·02 18·56 13·57 16·12 22·1 24·7 18·54 14·34 43·76 Tb 2·4 2·66 2·13 2·54 3·32 2·68 2·35 2·34 5·7 Dy 16·21 17·62 14·15 15·75 22·03 17·35 12·81 17·3 35·58 Ho 3·07 3·81 2·75 2·92 3·75 3·2 3·22 3·04 5·27 Er 8·86 9·42 7·13 8·97 10·35 10·51 7·61 9·72 16·84 Tm 1·182 1·261 1·094 1·41 1·89 1·52 1·37 1·41 2·17 Yb 7·91 8·66 8·1 9·21 11·91 9·58 8·68 13·28 18·44 Lu 1·32 1·501 1·349 1·215 1·777 1·541 1·479 2·86 3·7 Hf 6·09 5·46 7·5 6·97 7·07 5·16 8·08 3·08 2·52 Ta b.d.l. 0·01 b.d.l. b.d.l. 0·01 b.d.l. b.d.l. b.d.l. b.d.l. Pb 0·395 0·416 0·428 0·41 0·958 0·935 0·942 2·8 2·36 Th 0·102 0·014 0·049 0·100 0·104 0·087 0·162 b.d.l. 0·780 U 0·017 0·010 0·003 0·009 0·021 0·015 0·016 b.d.l. 0·610 . Pgt–Aug syenite . . . . Fay–Aug monzonite . . . . . Sample: . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106483 . 106483 . 106483 . 106483 . 106457 . 106457 . 106457 . 106465 . 106465 . . Z4_Cpx3c . Z4_Cpx4r . Z5_Cpx1c . Z5_Cpx2i . Z1_Cpx1c . Z1_Cpx2r . Z4_Cpx1c . Z4_Cpx1c . Z4_Cpx2i . SiO2 (IS) 50·89 50·89 50·89 50·89 49·25 49·25 49·25 49·25 49·25 Mg 54122 60817 58903 66869 38352 29016 44238 21890 17624 Al 4538 4393 5539 4767 4274 3374 3694 2725 2030 P 15·33 5·74 7·13 9·21 10·43 7·39 12·32 11·12 1874·33 Ca 124853 170556 119640 125506 149852 138871 126022 188839 127584 Sc 212·08 253·94 195·01 178·16 374·47 341·3 266·3 195·89 153·24 Ti 633·63 616·45 836·31 653·82 865·64 613·68 856·02 475·63 494·12 V 7·56 10·36 9·76 9·81 12·13 13·99 10·37 6·21 7·25 Cr 0·77 1·63 1·24 0·57 1·94 3·07 1·52 1·74 1·25 Mn 6483 5103 6866 5522 8786 7791 8818 14032 8485 Fe 171057 139149 172649 135634 201566 175408 224913 280012 176325 Co 19·22 16·19 19·87 19·72 10·28 9·13 10·21 10·37 7·53 Ni 1·33 1·68 0·8 1·54 1·97 2·07 2·03 1·7 b.d.l. Zn 398·66 283·02 398·04 335·78 432·7 486·48 488·4 900·86 701·3 Ga 5·22 5·05 5·49 4·9 6·61 4·81 4·44 5·32 4·9 Rb 0·048 b.d.l. b.d.l. b.d.l. 0·027 b.d.l. 0·035 b.d.l. b.d.l. Sr 11·02 12·41 10·28 12·41 7·2 7·14 7·11 9·23 9·61 Y 76·93 84·66 75·49 81·01 91·98 91·34 78 77·23 129·17 Zr 99·43 52·59 188·23 164·4 103·66 55·9 198·91 60·69 27·6 Nb 0·01 b.d.l. b.d.l. 0·01 0·01 0·00 0·01 0·11 0·10 Ba 0·151 b.d.l. 0·144 0·047 b.d.l. 0·026 0·24 0·12 b.d.l. La 11·26 11·62 13·33 12·31 16·29 12·48 19·02 0·98 77·71 Ce 57·16 55·46 55·11 48·78 78·38 71·28 79·82 11·88 314·94 Pr 9·77 11·62 9·7 9·66 16·42 11·29 11·71 3·59 43·97 Nd 48·55 53·97 42·24 51·51 69·99 58·49 71·31 26·01 201·1 Sm 17·57 17·53 14·43 16·17 22·35 17·98 19·64 12·89 47·89 Eu 2·575 3·06 2·152 2·61 2·49 2·149 1·89 1·06 2·68 Gd 15·02 18·56 13·57 16·12 22·1 24·7 18·54 14·34 43·76 Tb 2·4 2·66 2·13 2·54 3·32 2·68 2·35 2·34 5·7 Dy 16·21 17·62 14·15 15·75 22·03 17·35 12·81 17·3 35·58 Ho 3·07 3·81 2·75 2·92 3·75 3·2 3·22 3·04 5·27 Er 8·86 9·42 7·13 8·97 10·35 10·51 7·61 9·72 16·84 Tm 1·182 1·261 1·094 1·41 1·89 1·52 1·37 1·41 2·17 Yb 7·91 8·66 8·1 9·21 11·91 9·58 8·68 13·28 18·44 Lu 1·32 1·501 1·349 1·215 1·777 1·541 1·479 2·86 3·7 Hf 6·09 5·46 7·5 6·97 7·07 5·16 8·08 3·08 2·52 Ta b.d.l. 0·01 b.d.l. b.d.l. 0·01 b.d.l. b.d.l. b.d.l. b.d.l. Pb 0·395 0·416 0·428 0·41 0·958 0·935 0·942 2·8 2·36 Th 0·102 0·014 0·049 0·100 0·104 0·087 0·162 b.d.l. 0·780 U 0·017 0·010 0·003 0·009 0·021 0·015 0·016 b.d.l. 0·610 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . 69918 . 69918 . 69962 . 69964-2 . 69964 . RAF . . 106465 . 106467 . 106467 . Z1_Cpx23 . Z1_Cpx24 . Z1_Cpx86 . Z2_Cpx31 . Z2_Cpx73 . 106403 . . Z4_Cpx3r . Z3_Cpx5s . Z8_Cpx5c . 3c . 3i . 3r . 5-rim . 7-int . Z2_Cpx2r . SiO2 (IS) 49·25 49·25 49·25 49·29 49·29 50·66 50·95 50·08 50·19 Mg 24098 47221 36412 52791 54157 75863 85156 67518 34675 Al 1697 3113 2281 5832 5372 7960 6266 9020 3319 P 12·99 b.d.l. 12·55 19·65 23·36 28·63 12·77 19·5 13·23 Ca 173410 196989 141707 132518 138652 154190 146791 126970 118747 Sc 151 163 180 394 404 435 332 370 294 Ti 242 760 459 1191 1101 4045 1538 2588 686 V 4·66 11·93 10·2 6·28 6·44 14·63 21·02 12·62 3·76 Cr b.d.l. b.d.l. 0·86 0·99 0·96 0·83 b.d.l. 0·82 1·14 Mn 7729 8510 6864 7474 7362 6186 5082 6197 6812 Fe 292480 193422 178927 186521 193618 138445 132974 141339 187854 Co 11·14 18·62 16·7 10·74 10·71 10·22 17·07 10·5 7·84 Ni b.d.l. 1·39 b.d.l. b.d.l. b.d.l. 1·6 b.d.l. 1·65 1·53 Zn 651·35 997·52 695·43 448·67 471·46 399·67 274 259 464·11 Ga 3·78 6·93 6·49 7·23 6·89 7·5 6·82 7·97 5·24 Rb b.d.l. 0·1 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·101 Sr 14·72 9·02 8·56 6·18 6·4 14·41 18·4 12·43 7·01 Y 37·31 77·07 37·95 57 53 70 77 77 25·83 Zr 11·49 38·67 15·76 89 79 150 88 206 80·23 Nb 0·03 0·02 0·02 0·01 b.d.l. 0·05 0·01 0·03 0·01 Ba 0·05 1·84 b.d.l. 0·04 0·09 0·37 b.d.l. b.d.l. 0·247 La 2·46 14·24 1·96 7·97 7·88 13·23 11·58 14·05 3·55 Ce 21·7 65·45 15·47 34·5 33·56 51·03 51·09 56·88 18·34 Pr 5·24 12·92 4·37 6·9 6·98 9·68 10·66 11·03 3·53 Nd 31·35 67·25 25·68 36·08 36·23 49·79 53·84 56·3 19·73 Sm 13·54 21·53 10·83 12·06 11·26 15·86 17·25 17·12 7·13 Eu 1·16 2·54 1·43 1·77 1·72 2·37 3·09 2·54 0·946 Gd 11·35 20·16 10·66 12·05 11·32 15·45 17·68 16·66 7·15 Tb 1·49 2·91 1·61 1·89 1·855 2·42 2·7 2·61 1·013 Dy 10·17 16·69 9·22 11·42 11·15 14·22 16·55 15·14 7·19 Ho 1·82 3·53 1·74 2·33 2·18 2·7 3·26 2·99 1·327 Er 5·37 11·05 5·36 6·31 6·28 7·33 9·39 8·32 3·45 Tm 0·77 1·84 0·79 1·012 0·876 1 1·325 1·25 0·425 Yb 5·94 15·69 7·18 6·92 6·24 6·74 8·26 8·53 3·01 Lu 1·55 2·83 1·73 1·193 1·051 1·02 1·219 1·331 0·595 Hf 0·77 2·48 1·23 3·57 3·31 4·32 5·2 5·26 3·45 Ta 0·01 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·01 b.d.l. Pb 3·22 3·43 3·02 0·644 0·581 1·52 0·714 0·926 1·166 Th b.d.l. 0·010 b.d.l. 0·045 0·035 0·027 0·062 0·093 0·034 U b.d.l. 0·010 0·020 0·007 0·007 0·010 0·015 0·024 0·025 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . 69918 . 69918 . 69962 . 69964-2 . 69964 . RAF . . 106465 . 106467 . 106467 . Z1_Cpx23 . Z1_Cpx24 . Z1_Cpx86 . Z2_Cpx31 . Z2_Cpx73 . 106403 . . Z4_Cpx3r . Z3_Cpx5s . Z8_Cpx5c . 3c . 3i . 3r . 5-rim . 7-int . Z2_Cpx2r . SiO2 (IS) 49·25 49·25 49·25 49·29 49·29 50·66 50·95 50·08 50·19 Mg 24098 47221 36412 52791 54157 75863 85156 67518 34675 Al 1697 3113 2281 5832 5372 7960 6266 9020 3319 P 12·99 b.d.l. 12·55 19·65 23·36 28·63 12·77 19·5 13·23 Ca 173410 196989 141707 132518 138652 154190 146791 126970 118747 Sc 151 163 180 394 404 435 332 370 294 Ti 242 760 459 1191 1101 4045 1538 2588 686 V 4·66 11·93 10·2 6·28 6·44 14·63 21·02 12·62 3·76 Cr b.d.l. b.d.l. 0·86 0·99 0·96 0·83 b.d.l. 0·82 1·14 Mn 7729 8510 6864 7474 7362 6186 5082 6197 6812 Fe 292480 193422 178927 186521 193618 138445 132974 141339 187854 Co 11·14 18·62 16·7 10·74 10·71 10·22 17·07 10·5 7·84 Ni b.d.l. 1·39 b.d.l. b.d.l. b.d.l. 1·6 b.d.l. 1·65 1·53 Zn 651·35 997·52 695·43 448·67 471·46 399·67 274 259 464·11 Ga 3·78 6·93 6·49 7·23 6·89 7·5 6·82 7·97 5·24 Rb b.d.l. 0·1 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·101 Sr 14·72 9·02 8·56 6·18 6·4 14·41 18·4 12·43 7·01 Y 37·31 77·07 37·95 57 53 70 77 77 25·83 Zr 11·49 38·67 15·76 89 79 150 88 206 80·23 Nb 0·03 0·02 0·02 0·01 b.d.l. 0·05 0·01 0·03 0·01 Ba 0·05 1·84 b.d.l. 0·04 0·09 0·37 b.d.l. b.d.l. 0·247 La 2·46 14·24 1·96 7·97 7·88 13·23 11·58 14·05 3·55 Ce 21·7 65·45 15·47 34·5 33·56 51·03 51·09 56·88 18·34 Pr 5·24 12·92 4·37 6·9 6·98 9·68 10·66 11·03 3·53 Nd 31·35 67·25 25·68 36·08 36·23 49·79 53·84 56·3 19·73 Sm 13·54 21·53 10·83 12·06 11·26 15·86 17·25 17·12 7·13 Eu 1·16 2·54 1·43 1·77 1·72 2·37 3·09 2·54 0·946 Gd 11·35 20·16 10·66 12·05 11·32 15·45 17·68 16·66 7·15 Tb 1·49 2·91 1·61 1·89 1·855 2·42 2·7 2·61 1·013 Dy 10·17 16·69 9·22 11·42 11·15 14·22 16·55 15·14 7·19 Ho 1·82 3·53 1·74 2·33 2·18 2·7 3·26 2·99 1·327 Er 5·37 11·05 5·36 6·31 6·28 7·33 9·39 8·32 3·45 Tm 0·77 1·84 0·79 1·012 0·876 1 1·325 1·25 0·425 Yb 5·94 15·69 7·18 6·92 6·24 6·74 8·26 8·53 3·01 Lu 1·55 2·83 1·73 1·193 1·051 1·02 1·219 1·331 0·595 Hf 0·77 2·48 1·23 3·57 3·31 4·32 5·2 5·26 3·45 Ta 0·01 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·01 b.d.l. Pb 3·22 3·43 3·02 0·644 0·581 1·52 0·714 0·926 1·166 Th b.d.l. 0·010 b.d.l. 0·045 0·035 0·027 0·062 0·093 0·034 U b.d.l. 0·010 0·020 0·007 0·007 0·010 0·015 0·024 0·025 Open in new tab Table 3: Representative LA ICP-MS analyses of augite (ppm), except internal standard SiO2, given in wt% . Pgt–Aug syenite . . . . Fay–Aug monzonite . . . . . Sample: . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106483 . 106483 . 106483 . 106483 . 106457 . 106457 . 106457 . 106465 . 106465 . . Z4_Cpx3c . Z4_Cpx4r . Z5_Cpx1c . Z5_Cpx2i . Z1_Cpx1c . Z1_Cpx2r . Z4_Cpx1c . Z4_Cpx1c . Z4_Cpx2i . SiO2 (IS) 50·89 50·89 50·89 50·89 49·25 49·25 49·25 49·25 49·25 Mg 54122 60817 58903 66869 38352 29016 44238 21890 17624 Al 4538 4393 5539 4767 4274 3374 3694 2725 2030 P 15·33 5·74 7·13 9·21 10·43 7·39 12·32 11·12 1874·33 Ca 124853 170556 119640 125506 149852 138871 126022 188839 127584 Sc 212·08 253·94 195·01 178·16 374·47 341·3 266·3 195·89 153·24 Ti 633·63 616·45 836·31 653·82 865·64 613·68 856·02 475·63 494·12 V 7·56 10·36 9·76 9·81 12·13 13·99 10·37 6·21 7·25 Cr 0·77 1·63 1·24 0·57 1·94 3·07 1·52 1·74 1·25 Mn 6483 5103 6866 5522 8786 7791 8818 14032 8485 Fe 171057 139149 172649 135634 201566 175408 224913 280012 176325 Co 19·22 16·19 19·87 19·72 10·28 9·13 10·21 10·37 7·53 Ni 1·33 1·68 0·8 1·54 1·97 2·07 2·03 1·7 b.d.l. Zn 398·66 283·02 398·04 335·78 432·7 486·48 488·4 900·86 701·3 Ga 5·22 5·05 5·49 4·9 6·61 4·81 4·44 5·32 4·9 Rb 0·048 b.d.l. b.d.l. b.d.l. 0·027 b.d.l. 0·035 b.d.l. b.d.l. Sr 11·02 12·41 10·28 12·41 7·2 7·14 7·11 9·23 9·61 Y 76·93 84·66 75·49 81·01 91·98 91·34 78 77·23 129·17 Zr 99·43 52·59 188·23 164·4 103·66 55·9 198·91 60·69 27·6 Nb 0·01 b.d.l. b.d.l. 0·01 0·01 0·00 0·01 0·11 0·10 Ba 0·151 b.d.l. 0·144 0·047 b.d.l. 0·026 0·24 0·12 b.d.l. La 11·26 11·62 13·33 12·31 16·29 12·48 19·02 0·98 77·71 Ce 57·16 55·46 55·11 48·78 78·38 71·28 79·82 11·88 314·94 Pr 9·77 11·62 9·7 9·66 16·42 11·29 11·71 3·59 43·97 Nd 48·55 53·97 42·24 51·51 69·99 58·49 71·31 26·01 201·1 Sm 17·57 17·53 14·43 16·17 22·35 17·98 19·64 12·89 47·89 Eu 2·575 3·06 2·152 2·61 2·49 2·149 1·89 1·06 2·68 Gd 15·02 18·56 13·57 16·12 22·1 24·7 18·54 14·34 43·76 Tb 2·4 2·66 2·13 2·54 3·32 2·68 2·35 2·34 5·7 Dy 16·21 17·62 14·15 15·75 22·03 17·35 12·81 17·3 35·58 Ho 3·07 3·81 2·75 2·92 3·75 3·2 3·22 3·04 5·27 Er 8·86 9·42 7·13 8·97 10·35 10·51 7·61 9·72 16·84 Tm 1·182 1·261 1·094 1·41 1·89 1·52 1·37 1·41 2·17 Yb 7·91 8·66 8·1 9·21 11·91 9·58 8·68 13·28 18·44 Lu 1·32 1·501 1·349 1·215 1·777 1·541 1·479 2·86 3·7 Hf 6·09 5·46 7·5 6·97 7·07 5·16 8·08 3·08 2·52 Ta b.d.l. 0·01 b.d.l. b.d.l. 0·01 b.d.l. b.d.l. b.d.l. b.d.l. Pb 0·395 0·416 0·428 0·41 0·958 0·935 0·942 2·8 2·36 Th 0·102 0·014 0·049 0·100 0·104 0·087 0·162 b.d.l. 0·780 U 0·017 0·010 0·003 0·009 0·021 0·015 0·016 b.d.l. 0·610 . Pgt–Aug syenite . . . . Fay–Aug monzonite . . . . . Sample: . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106483 . 106483 . 106483 . 106483 . 106457 . 106457 . 106457 . 106465 . 106465 . . Z4_Cpx3c . Z4_Cpx4r . Z5_Cpx1c . Z5_Cpx2i . Z1_Cpx1c . Z1_Cpx2r . Z4_Cpx1c . Z4_Cpx1c . Z4_Cpx2i . SiO2 (IS) 50·89 50·89 50·89 50·89 49·25 49·25 49·25 49·25 49·25 Mg 54122 60817 58903 66869 38352 29016 44238 21890 17624 Al 4538 4393 5539 4767 4274 3374 3694 2725 2030 P 15·33 5·74 7·13 9·21 10·43 7·39 12·32 11·12 1874·33 Ca 124853 170556 119640 125506 149852 138871 126022 188839 127584 Sc 212·08 253·94 195·01 178·16 374·47 341·3 266·3 195·89 153·24 Ti 633·63 616·45 836·31 653·82 865·64 613·68 856·02 475·63 494·12 V 7·56 10·36 9·76 9·81 12·13 13·99 10·37 6·21 7·25 Cr 0·77 1·63 1·24 0·57 1·94 3·07 1·52 1·74 1·25 Mn 6483 5103 6866 5522 8786 7791 8818 14032 8485 Fe 171057 139149 172649 135634 201566 175408 224913 280012 176325 Co 19·22 16·19 19·87 19·72 10·28 9·13 10·21 10·37 7·53 Ni 1·33 1·68 0·8 1·54 1·97 2·07 2·03 1·7 b.d.l. Zn 398·66 283·02 398·04 335·78 432·7 486·48 488·4 900·86 701·3 Ga 5·22 5·05 5·49 4·9 6·61 4·81 4·44 5·32 4·9 Rb 0·048 b.d.l. b.d.l. b.d.l. 0·027 b.d.l. 0·035 b.d.l. b.d.l. Sr 11·02 12·41 10·28 12·41 7·2 7·14 7·11 9·23 9·61 Y 76·93 84·66 75·49 81·01 91·98 91·34 78 77·23 129·17 Zr 99·43 52·59 188·23 164·4 103·66 55·9 198·91 60·69 27·6 Nb 0·01 b.d.l. b.d.l. 0·01 0·01 0·00 0·01 0·11 0·10 Ba 0·151 b.d.l. 0·144 0·047 b.d.l. 0·026 0·24 0·12 b.d.l. La 11·26 11·62 13·33 12·31 16·29 12·48 19·02 0·98 77·71 Ce 57·16 55·46 55·11 48·78 78·38 71·28 79·82 11·88 314·94 Pr 9·77 11·62 9·7 9·66 16·42 11·29 11·71 3·59 43·97 Nd 48·55 53·97 42·24 51·51 69·99 58·49 71·31 26·01 201·1 Sm 17·57 17·53 14·43 16·17 22·35 17·98 19·64 12·89 47·89 Eu 2·575 3·06 2·152 2·61 2·49 2·149 1·89 1·06 2·68 Gd 15·02 18·56 13·57 16·12 22·1 24·7 18·54 14·34 43·76 Tb 2·4 2·66 2·13 2·54 3·32 2·68 2·35 2·34 5·7 Dy 16·21 17·62 14·15 15·75 22·03 17·35 12·81 17·3 35·58 Ho 3·07 3·81 2·75 2·92 3·75 3·2 3·22 3·04 5·27 Er 8·86 9·42 7·13 8·97 10·35 10·51 7·61 9·72 16·84 Tm 1·182 1·261 1·094 1·41 1·89 1·52 1·37 1·41 2·17 Yb 7·91 8·66 8·1 9·21 11·91 9·58 8·68 13·28 18·44 Lu 1·32 1·501 1·349 1·215 1·777 1·541 1·479 2·86 3·7 Hf 6·09 5·46 7·5 6·97 7·07 5·16 8·08 3·08 2·52 Ta b.d.l. 0·01 b.d.l. b.d.l. 0·01 b.d.l. b.d.l. b.d.l. b.d.l. Pb 0·395 0·416 0·428 0·41 0·958 0·935 0·942 2·8 2·36 Th 0·102 0·014 0·049 0·100 0·104 0·087 0·162 b.d.l. 0·780 U 0·017 0·010 0·003 0·009 0·021 0·015 0·016 b.d.l. 0·610 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . 69918 . 69918 . 69962 . 69964-2 . 69964 . RAF . . 106465 . 106467 . 106467 . Z1_Cpx23 . Z1_Cpx24 . Z1_Cpx86 . Z2_Cpx31 . Z2_Cpx73 . 106403 . . Z4_Cpx3r . Z3_Cpx5s . Z8_Cpx5c . 3c . 3i . 3r . 5-rim . 7-int . Z2_Cpx2r . SiO2 (IS) 49·25 49·25 49·25 49·29 49·29 50·66 50·95 50·08 50·19 Mg 24098 47221 36412 52791 54157 75863 85156 67518 34675 Al 1697 3113 2281 5832 5372 7960 6266 9020 3319 P 12·99 b.d.l. 12·55 19·65 23·36 28·63 12·77 19·5 13·23 Ca 173410 196989 141707 132518 138652 154190 146791 126970 118747 Sc 151 163 180 394 404 435 332 370 294 Ti 242 760 459 1191 1101 4045 1538 2588 686 V 4·66 11·93 10·2 6·28 6·44 14·63 21·02 12·62 3·76 Cr b.d.l. b.d.l. 0·86 0·99 0·96 0·83 b.d.l. 0·82 1·14 Mn 7729 8510 6864 7474 7362 6186 5082 6197 6812 Fe 292480 193422 178927 186521 193618 138445 132974 141339 187854 Co 11·14 18·62 16·7 10·74 10·71 10·22 17·07 10·5 7·84 Ni b.d.l. 1·39 b.d.l. b.d.l. b.d.l. 1·6 b.d.l. 1·65 1·53 Zn 651·35 997·52 695·43 448·67 471·46 399·67 274 259 464·11 Ga 3·78 6·93 6·49 7·23 6·89 7·5 6·82 7·97 5·24 Rb b.d.l. 0·1 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·101 Sr 14·72 9·02 8·56 6·18 6·4 14·41 18·4 12·43 7·01 Y 37·31 77·07 37·95 57 53 70 77 77 25·83 Zr 11·49 38·67 15·76 89 79 150 88 206 80·23 Nb 0·03 0·02 0·02 0·01 b.d.l. 0·05 0·01 0·03 0·01 Ba 0·05 1·84 b.d.l. 0·04 0·09 0·37 b.d.l. b.d.l. 0·247 La 2·46 14·24 1·96 7·97 7·88 13·23 11·58 14·05 3·55 Ce 21·7 65·45 15·47 34·5 33·56 51·03 51·09 56·88 18·34 Pr 5·24 12·92 4·37 6·9 6·98 9·68 10·66 11·03 3·53 Nd 31·35 67·25 25·68 36·08 36·23 49·79 53·84 56·3 19·73 Sm 13·54 21·53 10·83 12·06 11·26 15·86 17·25 17·12 7·13 Eu 1·16 2·54 1·43 1·77 1·72 2·37 3·09 2·54 0·946 Gd 11·35 20·16 10·66 12·05 11·32 15·45 17·68 16·66 7·15 Tb 1·49 2·91 1·61 1·89 1·855 2·42 2·7 2·61 1·013 Dy 10·17 16·69 9·22 11·42 11·15 14·22 16·55 15·14 7·19 Ho 1·82 3·53 1·74 2·33 2·18 2·7 3·26 2·99 1·327 Er 5·37 11·05 5·36 6·31 6·28 7·33 9·39 8·32 3·45 Tm 0·77 1·84 0·79 1·012 0·876 1 1·325 1·25 0·425 Yb 5·94 15·69 7·18 6·92 6·24 6·74 8·26 8·53 3·01 Lu 1·55 2·83 1·73 1·193 1·051 1·02 1·219 1·331 0·595 Hf 0·77 2·48 1·23 3·57 3·31 4·32 5·2 5·26 3·45 Ta 0·01 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·01 b.d.l. Pb 3·22 3·43 3·02 0·644 0·581 1·52 0·714 0·926 1·166 Th b.d.l. 0·010 b.d.l. 0·045 0·035 0·027 0·062 0·093 0·034 U b.d.l. 0·010 0·020 0·007 0·007 0·010 0·015 0·024 0·025 . Fay–Aug monzonite . . . Fe–Ti–P-rich rocks . . . . . . Sample: . RAF . RAF . RAF . 69918 . 69918 . 69962 . 69964-2 . 69964 . RAF . . 106465 . 106467 . 106467 . Z1_Cpx23 . Z1_Cpx24 . Z1_Cpx86 . Z2_Cpx31 . Z2_Cpx73 . 106403 . . Z4_Cpx3r . Z3_Cpx5s . Z8_Cpx5c . 3c . 3i . 3r . 5-rim . 7-int . Z2_Cpx2r . SiO2 (IS) 49·25 49·25 49·25 49·29 49·29 50·66 50·95 50·08 50·19 Mg 24098 47221 36412 52791 54157 75863 85156 67518 34675 Al 1697 3113 2281 5832 5372 7960 6266 9020 3319 P 12·99 b.d.l. 12·55 19·65 23·36 28·63 12·77 19·5 13·23 Ca 173410 196989 141707 132518 138652 154190 146791 126970 118747 Sc 151 163 180 394 404 435 332 370 294 Ti 242 760 459 1191 1101 4045 1538 2588 686 V 4·66 11·93 10·2 6·28 6·44 14·63 21·02 12·62 3·76 Cr b.d.l. b.d.l. 0·86 0·99 0·96 0·83 b.d.l. 0·82 1·14 Mn 7729 8510 6864 7474 7362 6186 5082 6197 6812 Fe 292480 193422 178927 186521 193618 138445 132974 141339 187854 Co 11·14 18·62 16·7 10·74 10·71 10·22 17·07 10·5 7·84 Ni b.d.l. 1·39 b.d.l. b.d.l. b.d.l. 1·6 b.d.l. 1·65 1·53 Zn 651·35 997·52 695·43 448·67 471·46 399·67 274 259 464·11 Ga 3·78 6·93 6·49 7·23 6·89 7·5 6·82 7·97 5·24 Rb b.d.l. 0·1 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·101 Sr 14·72 9·02 8·56 6·18 6·4 14·41 18·4 12·43 7·01 Y 37·31 77·07 37·95 57 53 70 77 77 25·83 Zr 11·49 38·67 15·76 89 79 150 88 206 80·23 Nb 0·03 0·02 0·02 0·01 b.d.l. 0·05 0·01 0·03 0·01 Ba 0·05 1·84 b.d.l. 0·04 0·09 0·37 b.d.l. b.d.l. 0·247 La 2·46 14·24 1·96 7·97 7·88 13·23 11·58 14·05 3·55 Ce 21·7 65·45 15·47 34·5 33·56 51·03 51·09 56·88 18·34 Pr 5·24 12·92 4·37 6·9 6·98 9·68 10·66 11·03 3·53 Nd 31·35 67·25 25·68 36·08 36·23 49·79 53·84 56·3 19·73 Sm 13·54 21·53 10·83 12·06 11·26 15·86 17·25 17·12 7·13 Eu 1·16 2·54 1·43 1·77 1·72 2·37 3·09 2·54 0·946 Gd 11·35 20·16 10·66 12·05 11·32 15·45 17·68 16·66 7·15 Tb 1·49 2·91 1·61 1·89 1·855 2·42 2·7 2·61 1·013 Dy 10·17 16·69 9·22 11·42 11·15 14·22 16·55 15·14 7·19 Ho 1·82 3·53 1·74 2·33 2·18 2·7 3·26 2·99 1·327 Er 5·37 11·05 5·36 6·31 6·28 7·33 9·39 8·32 3·45 Tm 0·77 1·84 0·79 1·012 0·876 1 1·325 1·25 0·425 Yb 5·94 15·69 7·18 6·92 6·24 6·74 8·26 8·53 3·01 Lu 1·55 2·83 1·73 1·193 1·051 1·02 1·219 1·331 0·595 Hf 0·77 2·48 1·23 3·57 3·31 4·32 5·2 5·26 3·45 Ta 0·01 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0·01 b.d.l. Pb 3·22 3·43 3·02 0·644 0·581 1·52 0·714 0·926 1·166 Th b.d.l. 0·010 b.d.l. 0·045 0·035 0·027 0·062 0·093 0·034 U b.d.l. 0·010 0·020 0·007 0·007 0·010 0·015 0·024 0·025 Open in new tab All pyroxenes plot in the quadrilateral field (Fig. 12a) (Morimoto et al., 1988). Fig. 12. Open in new tabDownload slide Mineral compositions. (a) Quadrilateral pyroxene classification (Morimoto et al., 1988). (b) AlIV vs Ti in augite. (c) MnO vs olivine forsterite content. (d) Fe2TiO4 vs FeAlO4 component in titanomagnetite and magnetite. (e) Feldspar classification. (f) FeO vs CaO in feldspars for microprobe data associated with a detection limit of 188 ppm for Ca and 408 ppm for Fe. Fig. 12. Open in new tabDownload slide Mineral compositions. (a) Quadrilateral pyroxene classification (Morimoto et al., 1988). (b) AlIV vs Ti in augite. (c) MnO vs olivine forsterite content. (d) Fe2TiO4 vs FeAlO4 component in titanomagnetite and magnetite. (e) Feldspar classification. (f) FeO vs CaO in feldspars for microprobe data associated with a detection limit of 188 ppm for Ca and 408 ppm for Fe. Pigeonite and augite have undergone exsolution, indicating that they re-equilibrated at lower temperature (Fig. 12a and b). As a result, microprobe analyses do not strictly represent the magmatic compositions. Augite displays discrete micrometer-scale orthopyroxene exsolution and thin ilmenite–magnetite lamellae and may display normal, reverse and oscillatory zoning in a single sample. Some former pigeonite is completely recrystallized into Aug + Opx, but partly inverted pigeonite crystals are found in some of the Fe–Ti–P-rich rocks along Raftsundet. Primary orthopyroxene, where present, crystallized late and is not affected by exsolution. The Pgt–Aug syenite contains augite, which does not show any consistent variation of the major elements. Its Mg number [Mg#; 100 × Mg/(Mg + Fe)] varies between 51 and 57 and it contains low contents of MnO (<0·7 wt%) and TiO2 (<0·28 wt%). The Mg# of augite from the Fe–Ti–P-rich rocks overlaps that of augite from the Pgt–Aug syenite, with the most Fe-rich augite from the Fe–Ti–P-rich rocks overlapping the most magnesian augite from the Fay–Aug monzonite. In general, augite from the Fe–Ti–P-rich rocks is higher in AlIV and Ti than the other augite; however, there is partial overlap with augite from the Pgt–Aug syenite. Analysed augite from the Pgt–Aug syenite, presented in Fig. 13, consists of single crystals occurring in the feldspar matrix and does not derive from the inversion of pigeonite. Fig. 13. Open in new tabDownload slide Trace element concentration of augite. (a–d) Binary diagrams. (e, f) REE spider diagrams. Fig. 13. Open in new tabDownload slide Trace element concentration of augite. (a–d) Binary diagrams. (e, f) REE spider diagrams. Augite from the Fe–Ti–P-rich rocks contains higher Ti, Al and Sc concentrations, despite wide variations, than is found in augite associated with syenite and in the Fay–Aug monzonite (Fig. 13). Augite from the Fe–Ti–P-rich rocks displays negative Eu anomalies, which vary between 0·4 and 0·6. All orthopyroxene in Pgt–Aug syenite formed by inversion of the pigeonite and displays little chemical variation, with Mg# between 34 and 37. Orthopyroxene from the Fay–Aug unit contains more MnO than orthopyroxene from other units. One analysis of orthopyroxene rimming fayalite has Mg#<10. Augite in the Fay–Aug monzonite is more Fe-rich than augite from the rest of the intrusion (Mg# 0·38–0·18). One sample stands out, with Mg# between 0·20 and 0·18. Minor components such as Ti and Al in the tetrahedral site are present in relatively low concentrations (Fig. 12b). Manganese is slightly more elevated in the augite from the fayalite-bearing samples; however, there is a considerable overlap (not shown here). Augite from the Fay–Aug monzonite is enriched in Zn, although it displays wide variations and overlaps with augite from the Fe–Ti–P-rich rocks (not shown). Augite from the Fay–Aug monzonite also displays larger negative Eu anomalies, which range from 0·15 to 0·5. Their La/Sm ratio is highly variable. The most Fe-rich sample contains augite with the lowest ratio for these two elements. It also corresponds to the sample containing magmatic allanite. Olivine Representative olivine microprobe analyses are presented in Table 4. Table 4: Representative olivine microprobe analyses . Fayalite–augite monzonite . . . . Fe–Ti–P-rich rocks . . . . . Sample: . RAF . RAF . RAF . RAF . . . . . . . 106457 . 106457 . 106465 . 106465 . 69946 . 69962 . 69964 . 69964-2 . 2017-29 . . Z1-Ol1 . Z2-Ol4 . Z1-Ol3 . Z5-Ol9 . Z1-Ol5_rim . Z2-Ol10-c . Z1-Ol7 . Z2-Ol2 . Z2-2 . SiO2 29·58 29·84 29·30 29·61 31·85 31·99 31·45 31·72 30·94 TiO2 0·00 0·03 0·04 0·00 0·00 0·11 0·03 0·00 0·03 Al2O3 0·00 0·01 0·00 0·01 0·00 0·01 0·01 0·00 0·00 FeOtot 66·16 65·32 66·69 66·44 54·96 55·27 57·76 56·60 57·08 MnO 1·90 2·00 2·75 2·68 1·32 1·88 1·91 1·47 1·87 MgO 2·39 3·04 1·03 0·97 12·41 10·50 9·59 10·79 10·31 CaO 0·05 0·01 0·03 0·03 0·00 0·92 0·07 0·03 0·00 Na2O 0·00 0·00 0·00 0·00 0·00 0·04 0·00 0·00 0·00 Cr2O3 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 Total 100·08 100·25 99·85 99·75 100·55 100·71 100·82 100·61 100·24 Fo (%) 6·05 7·65 2·69 2·54 28·70 25·29 22·84 25·37 24·36 . Fayalite–augite monzonite . . . . Fe–Ti–P-rich rocks . . . . . Sample: . RAF . RAF . RAF . RAF . . . . . . . 106457 . 106457 . 106465 . 106465 . 69946 . 69962 . 69964 . 69964-2 . 2017-29 . . Z1-Ol1 . Z2-Ol4 . Z1-Ol3 . Z5-Ol9 . Z1-Ol5_rim . Z2-Ol10-c . Z1-Ol7 . Z2-Ol2 . Z2-2 . SiO2 29·58 29·84 29·30 29·61 31·85 31·99 31·45 31·72 30·94 TiO2 0·00 0·03 0·04 0·00 0·00 0·11 0·03 0·00 0·03 Al2O3 0·00 0·01 0·00 0·01 0·00 0·01 0·01 0·00 0·00 FeOtot 66·16 65·32 66·69 66·44 54·96 55·27 57·76 56·60 57·08 MnO 1·90 2·00 2·75 2·68 1·32 1·88 1·91 1·47 1·87 MgO 2·39 3·04 1·03 0·97 12·41 10·50 9·59 10·79 10·31 CaO 0·05 0·01 0·03 0·03 0·00 0·92 0·07 0·03 0·00 Na2O 0·00 0·00 0·00 0·00 0·00 0·04 0·00 0·00 0·00 Cr2O3 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 Total 100·08 100·25 99·85 99·75 100·55 100·71 100·82 100·61 100·24 Fo (%) 6·05 7·65 2·69 2·54 28·70 25·29 22·84 25·37 24·36 Open in new tab Table 4: Representative olivine microprobe analyses . Fayalite–augite monzonite . . . . Fe–Ti–P-rich rocks . . . . . Sample: . RAF . RAF . RAF . RAF . . . . . . . 106457 . 106457 . 106465 . 106465 . 69946 . 69962 . 69964 . 69964-2 . 2017-29 . . Z1-Ol1 . Z2-Ol4 . Z1-Ol3 . Z5-Ol9 . Z1-Ol5_rim . Z2-Ol10-c . Z1-Ol7 . Z2-Ol2 . Z2-2 . SiO2 29·58 29·84 29·30 29·61 31·85 31·99 31·45 31·72 30·94 TiO2 0·00 0·03 0·04 0·00 0·00 0·11 0·03 0·00 0·03 Al2O3 0·00 0·01 0·00 0·01 0·00 0·01 0·01 0·00 0·00 FeOtot 66·16 65·32 66·69 66·44 54·96 55·27 57·76 56·60 57·08 MnO 1·90 2·00 2·75 2·68 1·32 1·88 1·91 1·47 1·87 MgO 2·39 3·04 1·03 0·97 12·41 10·50 9·59 10·79 10·31 CaO 0·05 0·01 0·03 0·03 0·00 0·92 0·07 0·03 0·00 Na2O 0·00 0·00 0·00 0·00 0·00 0·04 0·00 0·00 0·00 Cr2O3 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 Total 100·08 100·25 99·85 99·75 100·55 100·71 100·82 100·61 100·24 Fo (%) 6·05 7·65 2·69 2·54 28·70 25·29 22·84 25·37 24·36 . Fayalite–augite monzonite . . . . Fe–Ti–P-rich rocks . . . . . Sample: . RAF . RAF . RAF . RAF . . . . . . . 106457 . 106457 . 106465 . 106465 . 69946 . 69962 . 69964 . 69964-2 . 2017-29 . . Z1-Ol1 . Z2-Ol4 . Z1-Ol3 . Z5-Ol9 . Z1-Ol5_rim . Z2-Ol10-c . Z1-Ol7 . Z2-Ol2 . Z2-2 . SiO2 29·58 29·84 29·30 29·61 31·85 31·99 31·45 31·72 30·94 TiO2 0·00 0·03 0·04 0·00 0·00 0·11 0·03 0·00 0·03 Al2O3 0·00 0·01 0·00 0·01 0·00 0·01 0·01 0·00 0·00 FeOtot 66·16 65·32 66·69 66·44 54·96 55·27 57·76 56·60 57·08 MnO 1·90 2·00 2·75 2·68 1·32 1·88 1·91 1·47 1·87 MgO 2·39 3·04 1·03 0·97 12·41 10·50 9·59 10·79 10·31 CaO 0·05 0·01 0·03 0·03 0·00 0·92 0·07 0·03 0·00 Na2O 0·00 0·00 0·00 0·00 0·00 0·04 0·00 0·00 0·00 Cr2O3 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 Total 100·08 100·25 99·85 99·75 100·55 100·71 100·82 100·61 100·24 Fo (%) 6·05 7·65 2·69 2·54 28·70 25·29 22·84 25·37 24·36 Open in new tab Olivine in the monzonite is fayalitic (Fo17–8·3), whereas olivine in the Fe–Ti–P-rich rocks is slightly more magnesian (Fo22–29) (Fig. 12c). Fayalitic olivine tends to be enriched in MnO (1·74–2·88 wt%) compared with the more magnesian-rich olivine (1·22–2·06 wt%). Fe–Ti oxides Representative Fe–Ti oxide microprobe data are presented in Table 5. Table 5: Representative microprobe analyses of Fe–Ti oxides . Retro. monz. . . Pgt–Aug monzonite . . Fay–Aug monzonite . . . . . Sample: . HAD . HAD . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106448 . 106448 . 106483 . 106483 . 106457 . 106457 . 106465 . 106465 . 106475 . . Z3-ox5 . Z4-ox6 . Z3-Ox5 . Z3-Ox5 . Z1-ox5 . Z2-ox9 . Z1-Ox9 . Z1-Ox15 . Z2-Ox11 . SiO2 0·01 0·00 0·10 0·00 b.d.l. 0·11 0·03 0·01 0·01 TiO2 51·98 51·49 0·07 50·42 51·79 1·55 50·39 50·56 50·89 Al2O3 0·05 0·02 0·33 0·00 0·02 0·53 0·03 0·06 0·05 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·32 46·23 92·86 48·82 46·78 91·77 48·08 47·65 47·80 MnO 2·30 2·13 0·00 0·72 0·95 0·04 1·10 1·01 1·03 MgO 0·11 0·11 0·02 0·13 0·11 0·02 0·04 0·06 0·09 CaO b.d.l. b.d.l. b.d.l. 0·01 0·04 0·05 0·04 0·06 0·00 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO 0·00 0·01 0·00 0·05 0·03 0·03 0·01 0·00 0·10 V2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Total 99·77 99·99 93·37 100·15 99·72 94·10 99·72 99·41 99·97 Mineral Ilm Ilm Magn Ilm Ilm Magn Ilm Ilm Ilm Fe–Ti–P-rich rocks Sample: 69918 69918 69946 69946 69946 69962 69962 69964 69964 Z1-Op16 Z2-Op14 Z3-Op14 Z1-op10 Z1-Op11 Z3-Op13 Z1-Op13-b Z3-Op16 Z3-Op15 SiO2 0·02 0·15 b.d.l. 0·09 0·47 0·01 0·13 0·01 0·08 TiO2 53·32 1·58 50·56 1·75 3·46 51·77 4·62 13·70 13·96 Al2O3 0·00 0·73 0·01 0·71 1·24 0·03 0·86 3·23 3·01 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·50 91·73 47·39 91·86 88·34 46·67 88·75 79·13 78·33 MnO 1·58 0·05 1·00 0·05 0·29 1·30 0·17 0·71 0·70 MgO 0·20 0·04 0·67 0·04 0·09 0·51 0·07 0·27 0·23 CaO b.d.l. b.d.l. b.d.l. b.d.l. 0·02 b.d.l. 0·01 0·01 0·02 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. V2O3 0·01 0·06 0·02 0·16 0·15 0·02 0·11 0·03 0·09 Total 100·64 94·43 99·65 94·69 94·07 100·30 94·76 97·16 96·53 Mineral Ilm Magn Ilm Magn Usp Ilm Usp Usp Usp . Retro. monz. . . Pgt–Aug monzonite . . Fay–Aug monzonite . . . . . Sample: . HAD . HAD . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106448 . 106448 . 106483 . 106483 . 106457 . 106457 . 106465 . 106465 . 106475 . . Z3-ox5 . Z4-ox6 . Z3-Ox5 . Z3-Ox5 . Z1-ox5 . Z2-ox9 . Z1-Ox9 . Z1-Ox15 . Z2-Ox11 . SiO2 0·01 0·00 0·10 0·00 b.d.l. 0·11 0·03 0·01 0·01 TiO2 51·98 51·49 0·07 50·42 51·79 1·55 50·39 50·56 50·89 Al2O3 0·05 0·02 0·33 0·00 0·02 0·53 0·03 0·06 0·05 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·32 46·23 92·86 48·82 46·78 91·77 48·08 47·65 47·80 MnO 2·30 2·13 0·00 0·72 0·95 0·04 1·10 1·01 1·03 MgO 0·11 0·11 0·02 0·13 0·11 0·02 0·04 0·06 0·09 CaO b.d.l. b.d.l. b.d.l. 0·01 0·04 0·05 0·04 0·06 0·00 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO 0·00 0·01 0·00 0·05 0·03 0·03 0·01 0·00 0·10 V2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Total 99·77 99·99 93·37 100·15 99·72 94·10 99·72 99·41 99·97 Mineral Ilm Ilm Magn Ilm Ilm Magn Ilm Ilm Ilm Fe–Ti–P-rich rocks Sample: 69918 69918 69946 69946 69946 69962 69962 69964 69964 Z1-Op16 Z2-Op14 Z3-Op14 Z1-op10 Z1-Op11 Z3-Op13 Z1-Op13-b Z3-Op16 Z3-Op15 SiO2 0·02 0·15 b.d.l. 0·09 0·47 0·01 0·13 0·01 0·08 TiO2 53·32 1·58 50·56 1·75 3·46 51·77 4·62 13·70 13·96 Al2O3 0·00 0·73 0·01 0·71 1·24 0·03 0·86 3·23 3·01 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·50 91·73 47·39 91·86 88·34 46·67 88·75 79·13 78·33 MnO 1·58 0·05 1·00 0·05 0·29 1·30 0·17 0·71 0·70 MgO 0·20 0·04 0·67 0·04 0·09 0·51 0·07 0·27 0·23 CaO b.d.l. b.d.l. b.d.l. b.d.l. 0·02 b.d.l. 0·01 0·01 0·02 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. V2O3 0·01 0·06 0·02 0·16 0·15 0·02 0·11 0·03 0·09 Total 100·64 94·43 99·65 94·69 94·07 100·30 94·76 97·16 96·53 Mineral Ilm Magn Ilm Magn Usp Ilm Usp Usp Usp n.a., non-available. Open in new tab Table 5: Representative microprobe analyses of Fe–Ti oxides . Retro. monz. . . Pgt–Aug monzonite . . Fay–Aug monzonite . . . . . Sample: . HAD . HAD . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106448 . 106448 . 106483 . 106483 . 106457 . 106457 . 106465 . 106465 . 106475 . . Z3-ox5 . Z4-ox6 . Z3-Ox5 . Z3-Ox5 . Z1-ox5 . Z2-ox9 . Z1-Ox9 . Z1-Ox15 . Z2-Ox11 . SiO2 0·01 0·00 0·10 0·00 b.d.l. 0·11 0·03 0·01 0·01 TiO2 51·98 51·49 0·07 50·42 51·79 1·55 50·39 50·56 50·89 Al2O3 0·05 0·02 0·33 0·00 0·02 0·53 0·03 0·06 0·05 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·32 46·23 92·86 48·82 46·78 91·77 48·08 47·65 47·80 MnO 2·30 2·13 0·00 0·72 0·95 0·04 1·10 1·01 1·03 MgO 0·11 0·11 0·02 0·13 0·11 0·02 0·04 0·06 0·09 CaO b.d.l. b.d.l. b.d.l. 0·01 0·04 0·05 0·04 0·06 0·00 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO 0·00 0·01 0·00 0·05 0·03 0·03 0·01 0·00 0·10 V2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Total 99·77 99·99 93·37 100·15 99·72 94·10 99·72 99·41 99·97 Mineral Ilm Ilm Magn Ilm Ilm Magn Ilm Ilm Ilm Fe–Ti–P-rich rocks Sample: 69918 69918 69946 69946 69946 69962 69962 69964 69964 Z1-Op16 Z2-Op14 Z3-Op14 Z1-op10 Z1-Op11 Z3-Op13 Z1-Op13-b Z3-Op16 Z3-Op15 SiO2 0·02 0·15 b.d.l. 0·09 0·47 0·01 0·13 0·01 0·08 TiO2 53·32 1·58 50·56 1·75 3·46 51·77 4·62 13·70 13·96 Al2O3 0·00 0·73 0·01 0·71 1·24 0·03 0·86 3·23 3·01 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·50 91·73 47·39 91·86 88·34 46·67 88·75 79·13 78·33 MnO 1·58 0·05 1·00 0·05 0·29 1·30 0·17 0·71 0·70 MgO 0·20 0·04 0·67 0·04 0·09 0·51 0·07 0·27 0·23 CaO b.d.l. b.d.l. b.d.l. b.d.l. 0·02 b.d.l. 0·01 0·01 0·02 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. V2O3 0·01 0·06 0·02 0·16 0·15 0·02 0·11 0·03 0·09 Total 100·64 94·43 99·65 94·69 94·07 100·30 94·76 97·16 96·53 Mineral Ilm Magn Ilm Magn Usp Ilm Usp Usp Usp . Retro. monz. . . Pgt–Aug monzonite . . Fay–Aug monzonite . . . . . Sample: . HAD . HAD . RAF . RAF . RAF . RAF . RAF . RAF . RAF . . 106448 . 106448 . 106483 . 106483 . 106457 . 106457 . 106465 . 106465 . 106475 . . Z3-ox5 . Z4-ox6 . Z3-Ox5 . Z3-Ox5 . Z1-ox5 . Z2-ox9 . Z1-Ox9 . Z1-Ox15 . Z2-Ox11 . SiO2 0·01 0·00 0·10 0·00 b.d.l. 0·11 0·03 0·01 0·01 TiO2 51·98 51·49 0·07 50·42 51·79 1·55 50·39 50·56 50·89 Al2O3 0·05 0·02 0·33 0·00 0·02 0·53 0·03 0·06 0·05 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·32 46·23 92·86 48·82 46·78 91·77 48·08 47·65 47·80 MnO 2·30 2·13 0·00 0·72 0·95 0·04 1·10 1·01 1·03 MgO 0·11 0·11 0·02 0·13 0·11 0·02 0·04 0·06 0·09 CaO b.d.l. b.d.l. b.d.l. 0·01 0·04 0·05 0·04 0·06 0·00 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO 0·00 0·01 0·00 0·05 0·03 0·03 0·01 0·00 0·10 V2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Total 99·77 99·99 93·37 100·15 99·72 94·10 99·72 99·41 99·97 Mineral Ilm Ilm Magn Ilm Ilm Magn Ilm Ilm Ilm Fe–Ti–P-rich rocks Sample: 69918 69918 69946 69946 69946 69962 69962 69964 69964 Z1-Op16 Z2-Op14 Z3-Op14 Z1-op10 Z1-Op11 Z3-Op13 Z1-Op13-b Z3-Op16 Z3-Op15 SiO2 0·02 0·15 b.d.l. 0·09 0·47 0·01 0·13 0·01 0·08 TiO2 53·32 1·58 50·56 1·75 3·46 51·77 4·62 13·70 13·96 Al2O3 0·00 0·73 0·01 0·71 1·24 0·03 0·86 3·23 3·01 Cr2O3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. FeOtot 45·50 91·73 47·39 91·86 88·34 46·67 88·75 79·13 78·33 MnO 1·58 0·05 1·00 0·05 0·29 1·30 0·17 0·71 0·70 MgO 0·20 0·04 0·67 0·04 0·09 0·51 0·07 0·27 0·23 CaO b.d.l. b.d.l. b.d.l. b.d.l. 0·02 b.d.l. 0·01 0·01 0·02 ZnO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. NiO n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. V2O3 0·01 0·06 0·02 0·16 0·15 0·02 0·11 0·03 0·09 Total 100·64 94·43 99·65 94·69 94·07 100·30 94·76 97·16 96·53 Mineral Ilm Magn Ilm Magn Usp Ilm Usp Usp Usp n.a., non-available. Open in new tab Both Pgt–Aug syenite and Fay–Aug monzonite contain titanomagnetite that now consists of magnetite with lamellae of ilmenite and rounded micrometer-scale exsolution of spinel, and ilmenite. Both ilmenite and magnetite are depleted in elements such as Mn and Mg in ilmenite (not shown) and Ti and Al in magnetite (Fig. 12d), indicating low temperature re-equilibration. Most Fe–Ti–P-rich rocks contain two main Fe–Ti oxides (Fig. 12d). As in the Pgt–Aug syenite, titanomagnetite was stable and is now present as magnetite with lamellar exsolution of ilmenite and micrometer-scale exsolution of spinel. Ilmenite is also present and can reach several modal per cent (Fig. 8b). Both oxides display more chemical variation than their equivalents in the associated monzonite and syenite. One sample contains titanomagnetite, with important Al2O3 (2–3 wt%) and TiO2 (11–14 wt%) components (Fig. 12d). Ilmenite generally contains between 0·47 and 0·7 wt% MgO, which is distinctly higher than ilmenite in the host syenite (MgO <0·3 wt%) (not shown) and is also slightly enriched in MnO compared with the ilmenite in the monzonite and syenite. Feldspar Representative feldspar microprobe data are presented in Table 6. Table 6: Representative microprobe analyses of feldspars . Retrogressed monzosyenite, Hadseløya . . . . Pgt–Aug syenite . . . . Fay–Aug monz. . Sample: . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . RAF . . 90366 . 90366 . 106448 . 106448 . 106454 . 106454 . 106483 . 106483 . RAF106457 . . Z1-fsp1 . Z1-fsp3 . Z1-fsp7 . Z1-fsp8 . Z1-fsp4-b . Z1-fsp4-d* . Z1-fsp4-d . Z1-plag6 . Z1-fsp16 . SiO2 64·84 63·39 67·95 63·15 63·29 63·96 62·48 62·00 63·20 TiO2 0·00 0·01 0·03 0·00 0·02 0·00 0·00 0·06 0·06 Al2O3 21·89 18·37 20·12 22·90 18·28 22·55 23·90 23·74 22·76 FeO 0·03 0·04 0·05 0·00 0·04 0·04 0·10 0·37 0·13 MnO 0·00 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 MgO 0·00 0·01 0·00 0·00 0·01 0·00 0·00 0·00 0·00 CaO 2·86 0·00 0·50 4·13 0·03 3·41 4·80 4·90 3·83 Na2O 9·77 0·72 10·95 9·41 1·06 9·79 8·80 8·62 9·46 K2O 0·27 16·50 0·10 0·24 15·46 0·10 0·18 0·37 0·21 Total 99·66 99·05 99·72 99·84 98·20 99·86 100·25 100·06 99·66 Ab (%) 85·43 11·67 97·25 79·93 17·25 83·63 76·45 75·31 81·25 An (%) 13·80 0·00 2·44 19·39 0·29 16·10 23·04 23·63 18·16 Or (%) 0·77 88·33 0·30 0·67 82·45 0·27 0·51 1·05 0·59 Fay–Aug monz. Fe–Ti–P-rich rocks Sample: RAF RAF Pl film Plagioclase films 106457 106465 RAF106466 69946 69964-2 69918 69918 2017-29 2017-32 Z1-Fsp8 Z1-fsp7 Z1-Pl2 Z2-fsp2-b Z3-fsp7-d Z2-fsp3-d Z2-fsp3-b Z2-4 Z2-1 SiO2 64·12 64·43 64·88 63·67 64·02 63·94 64·09 61·23 61·03 TiO2 0·00 0·00 0·00 0·04 0·02 0·01 0·02 0·00 0·01 Al2O3 18·49 18·47 21·71 20·54 20·02 20·12 21·14 23·83 23·70 FeO 0·07 0·02 0·22 0·10 0·09 0·04 0·08 0·15 0·13 MnO 0·00 0·00 0·01 0·00 0·00 0·01 0·01 0·00 0·01 MgO 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 CaO 0·04 0·01 2·96 1·71 1·40 1·47 2·35 5·64 5·35 Na2O 1·53 1·00 9·84 5·06 5·01 5·15 6·60 8·40 8·58 K2O 14·82 16·00 0·11 8·34 8·92 8·43 5·64 0·18 0·09 Total 99·10 99·93 99·73 99·46 99·48 99·17 99·93 99·43 98·90 Ab (%) 23·77 15·89 85·48 57·82 57·48 58·98 67·66 72·57 74·18 An (%) 0·37 0·08 14·21 10·82 8·88 9·28 13·29 26·93 25·56 Or (%) 75·86 84·04 0·31 31·36 33·63 31·74 19·05 0·50 0·26 . Retrogressed monzosyenite, Hadseløya . . . . Pgt–Aug syenite . . . . Fay–Aug monz. . Sample: . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . RAF . . 90366 . 90366 . 106448 . 106448 . 106454 . 106454 . 106483 . 106483 . RAF106457 . . Z1-fsp1 . Z1-fsp3 . Z1-fsp7 . Z1-fsp8 . Z1-fsp4-b . Z1-fsp4-d* . Z1-fsp4-d . Z1-plag6 . Z1-fsp16 . SiO2 64·84 63·39 67·95 63·15 63·29 63·96 62·48 62·00 63·20 TiO2 0·00 0·01 0·03 0·00 0·02 0·00 0·00 0·06 0·06 Al2O3 21·89 18·37 20·12 22·90 18·28 22·55 23·90 23·74 22·76 FeO 0·03 0·04 0·05 0·00 0·04 0·04 0·10 0·37 0·13 MnO 0·00 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 MgO 0·00 0·01 0·00 0·00 0·01 0·00 0·00 0·00 0·00 CaO 2·86 0·00 0·50 4·13 0·03 3·41 4·80 4·90 3·83 Na2O 9·77 0·72 10·95 9·41 1·06 9·79 8·80 8·62 9·46 K2O 0·27 16·50 0·10 0·24 15·46 0·10 0·18 0·37 0·21 Total 99·66 99·05 99·72 99·84 98·20 99·86 100·25 100·06 99·66 Ab (%) 85·43 11·67 97·25 79·93 17·25 83·63 76·45 75·31 81·25 An (%) 13·80 0·00 2·44 19·39 0·29 16·10 23·04 23·63 18·16 Or (%) 0·77 88·33 0·30 0·67 82·45 0·27 0·51 1·05 0·59 Fay–Aug monz. Fe–Ti–P-rich rocks Sample: RAF RAF Pl film Plagioclase films 106457 106465 RAF106466 69946 69964-2 69918 69918 2017-29 2017-32 Z1-Fsp8 Z1-fsp7 Z1-Pl2 Z2-fsp2-b Z3-fsp7-d Z2-fsp3-d Z2-fsp3-b Z2-4 Z2-1 SiO2 64·12 64·43 64·88 63·67 64·02 63·94 64·09 61·23 61·03 TiO2 0·00 0·00 0·00 0·04 0·02 0·01 0·02 0·00 0·01 Al2O3 18·49 18·47 21·71 20·54 20·02 20·12 21·14 23·83 23·70 FeO 0·07 0·02 0·22 0·10 0·09 0·04 0·08 0·15 0·13 MnO 0·00 0·00 0·01 0·00 0·00 0·01 0·01 0·00 0·01 MgO 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 CaO 0·04 0·01 2·96 1·71 1·40 1·47 2·35 5·64 5·35 Na2O 1·53 1·00 9·84 5·06 5·01 5·15 6·60 8·40 8·58 K2O 14·82 16·00 0·11 8·34 8·92 8·43 5·64 0·18 0·09 Total 99·10 99·93 99·73 99·46 99·48 99·17 99·93 99·43 98·90 Ab (%) 23·77 15·89 85·48 57·82 57·48 58·98 67·66 72·57 74·18 An (%) 0·37 0·08 14·21 10·82 8·88 9·28 13·29 26·93 25·56 Or (%) 75·86 84·04 0·31 31·36 33·63 31·74 19·05 0·50 0·26 Open in new tab Table 6: Representative microprobe analyses of feldspars . Retrogressed monzosyenite, Hadseløya . . . . Pgt–Aug syenite . . . . Fay–Aug monz. . Sample: . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . RAF . . 90366 . 90366 . 106448 . 106448 . 106454 . 106454 . 106483 . 106483 . RAF106457 . . Z1-fsp1 . Z1-fsp3 . Z1-fsp7 . Z1-fsp8 . Z1-fsp4-b . Z1-fsp4-d* . Z1-fsp4-d . Z1-plag6 . Z1-fsp16 . SiO2 64·84 63·39 67·95 63·15 63·29 63·96 62·48 62·00 63·20 TiO2 0·00 0·01 0·03 0·00 0·02 0·00 0·00 0·06 0·06 Al2O3 21·89 18·37 20·12 22·90 18·28 22·55 23·90 23·74 22·76 FeO 0·03 0·04 0·05 0·00 0·04 0·04 0·10 0·37 0·13 MnO 0·00 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 MgO 0·00 0·01 0·00 0·00 0·01 0·00 0·00 0·00 0·00 CaO 2·86 0·00 0·50 4·13 0·03 3·41 4·80 4·90 3·83 Na2O 9·77 0·72 10·95 9·41 1·06 9·79 8·80 8·62 9·46 K2O 0·27 16·50 0·10 0·24 15·46 0·10 0·18 0·37 0·21 Total 99·66 99·05 99·72 99·84 98·20 99·86 100·25 100·06 99·66 Ab (%) 85·43 11·67 97·25 79·93 17·25 83·63 76·45 75·31 81·25 An (%) 13·80 0·00 2·44 19·39 0·29 16·10 23·04 23·63 18·16 Or (%) 0·77 88·33 0·30 0·67 82·45 0·27 0·51 1·05 0·59 Fay–Aug monz. Fe–Ti–P-rich rocks Sample: RAF RAF Pl film Plagioclase films 106457 106465 RAF106466 69946 69964-2 69918 69918 2017-29 2017-32 Z1-Fsp8 Z1-fsp7 Z1-Pl2 Z2-fsp2-b Z3-fsp7-d Z2-fsp3-d Z2-fsp3-b Z2-4 Z2-1 SiO2 64·12 64·43 64·88 63·67 64·02 63·94 64·09 61·23 61·03 TiO2 0·00 0·00 0·00 0·04 0·02 0·01 0·02 0·00 0·01 Al2O3 18·49 18·47 21·71 20·54 20·02 20·12 21·14 23·83 23·70 FeO 0·07 0·02 0·22 0·10 0·09 0·04 0·08 0·15 0·13 MnO 0·00 0·00 0·01 0·00 0·00 0·01 0·01 0·00 0·01 MgO 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 CaO 0·04 0·01 2·96 1·71 1·40 1·47 2·35 5·64 5·35 Na2O 1·53 1·00 9·84 5·06 5·01 5·15 6·60 8·40 8·58 K2O 14·82 16·00 0·11 8·34 8·92 8·43 5·64 0·18 0·09 Total 99·10 99·93 99·73 99·46 99·48 99·17 99·93 99·43 98·90 Ab (%) 23·77 15·89 85·48 57·82 57·48 58·98 67·66 72·57 74·18 An (%) 0·37 0·08 14·21 10·82 8·88 9·28 13·29 26·93 25·56 Or (%) 75·86 84·04 0·31 31·36 33·63 31·74 19·05 0·50 0·26 . Retrogressed monzosyenite, Hadseløya . . . . Pgt–Aug syenite . . . . Fay–Aug monz. . Sample: . HAD . HAD . HAD . HAD . RAF . RAF . RAF . RAF . RAF . . 90366 . 90366 . 106448 . 106448 . 106454 . 106454 . 106483 . 106483 . RAF106457 . . Z1-fsp1 . Z1-fsp3 . Z1-fsp7 . Z1-fsp8 . Z1-fsp4-b . Z1-fsp4-d* . Z1-fsp4-d . Z1-plag6 . Z1-fsp16 . SiO2 64·84 63·39 67·95 63·15 63·29 63·96 62·48 62·00 63·20 TiO2 0·00 0·01 0·03 0·00 0·02 0·00 0·00 0·06 0·06 Al2O3 21·89 18·37 20·12 22·90 18·28 22·55 23·90 23·74 22·76 FeO 0·03 0·04 0·05 0·00 0·04 0·04 0·10 0·37 0·13 MnO 0·00 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 MgO 0·00 0·01 0·00 0·00 0·01 0·00 0·00 0·00 0·00 CaO 2·86 0·00 0·50 4·13 0·03 3·41 4·80 4·90 3·83 Na2O 9·77 0·72 10·95 9·41 1·06 9·79 8·80 8·62 9·46 K2O 0·27 16·50 0·10 0·24 15·46 0·10 0·18 0·37 0·21 Total 99·66 99·05 99·72 99·84 98·20 99·86 100·25 100·06 99·66 Ab (%) 85·43 11·67 97·25 79·93 17·25 83·63 76·45 75·31 81·25 An (%) 13·80 0·00 2·44 19·39 0·29 16·10 23·04 23·63 18·16 Or (%) 0·77 88·33 0·30 0·67 82·45 0·27 0·51 1·05 0·59 Fay–Aug monz. Fe–Ti–P-rich rocks Sample: RAF RAF Pl film Plagioclase films 106457 106465 RAF106466 69946 69964-2 69918 69918 2017-29 2017-32 Z1-Fsp8 Z1-fsp7 Z1-Pl2 Z2-fsp2-b Z3-fsp7-d Z2-fsp3-d Z2-fsp3-b Z2-4 Z2-1 SiO2 64·12 64·43 64·88 63·67 64·02 63·94 64·09 61·23 61·03 TiO2 0·00 0·00 0·00 0·04 0·02 0·01 0·02 0·00 0·01 Al2O3 18·49 18·47 21·71 20·54 20·02 20·12 21·14 23·83 23·70 FeO 0·07 0·02 0·22 0·10 0·09 0·04 0·08 0·15 0·13 MnO 0·00 0·00 0·01 0·00 0·00 0·01 0·01 0·00 0·01 MgO 0·02 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 CaO 0·04 0·01 2·96 1·71 1·40 1·47 2·35 5·64 5·35 Na2O 1·53 1·00 9·84 5·06 5·01 5·15 6·60 8·40 8·58 K2O 14·82 16·00 0·11 8·34 8·92 8·43 5·64 0·18 0·09 Total 99·10 99·93 99·73 99·46 99·48 99·17 99·93 99·43 98·90 Ab (%) 23·77 15·89 85·48 57·82 57·48 58·98 67·66 72·57 74·18 An (%) 0·37 0·08 14·21 10·82 8·88 9·28 13·29 26·93 25·56 Or (%) 75·86 84·04 0·31 31·36 33·63 31·74 19·05 0·50 0·26 Open in new tab The composition of ternary feldspar cannot be reconstructed using imaging methods, therefore most of the feldspars analyses reflect low-temperature equilibration, with the exception of a few samples of the Fe–Ti–P-rich rocks (Fig. 12e). Feldspars in retrogressed monzonite and syenite are recrystallized into sodium-rich plagioclase (An2–24) and orthoclase to microcline (An0–0·2 Ab10–15 Or84–89). Plagioclase from Pgt–Aug syenite are more An-rich (An16–23) than the ones found in the Fay–Aug monzonite (An6–18). In Fe–Ti–P-rich rocks, plagioclase in symplectites is An23–26 Ab74–76 Or0·54–0·55 (Fig. 7b) and is similar to plagioclase forming thin films around ternary feldspar (An25–28 Ab72–74 Or0·2–0·58) and to plagioclase exsolved from ternary feldspars (Fig. 12e). However, the content of Ca and Fe in the plagioclase films is overall higher (0·13–0·23 wt% FeO, Fig. 12f) than that of ternary feldspars (0·02–0·12 wt% FeO), with the exception of one analysis (0·29 wt% FeO). A similar relationship is observed in the Fay–Aug monzonite where plagioclase forming films (An12–14 Ab85–87 Or0·3–0·6) in Fe-rich mineral clusters are slightly more Ca- and Fe-rich (0·08–0·22 wt% FeO) than the plagioclase exsolved from ternary feldspars (An0·1–11·9 Ab13-91 Or0·3–81, 0·01–0·09 wt% FeO). DISCUSSION Evolution and differentiation of intrusive intermediate and felsic magmas forming large batholiths has been the focus of a debate for several decades (e.g. Bowen, 1928; Philpotts, 1976; DePaolo, 1981). In the past decade, developments in mineral chemistry and high-precision U–Pb geochronology have been applied to unravel the emplacement and evolution of magmatic systems (e.g. Coleman et al., 2004; Schoene et al., 2012; Coint et al., 2013a, 2013b; Samperton et al., 2015; Barnes et al., 2016; Szymanowski et al., 2019). These studies indicate the following: (1) large volume of mush, not necessary always eruptible, can accumulate in magmatic reservoirs (Bachmann & Bergantz, 2003), therefore magmatic processes such as fractional crystallization, mingling, assimilation and accumulation are still viable to explain the evolution of intrusions; (2) whole-rock data rarely represent melt compositions because of accumulation (Deering & Bachmann, 2010; Barnes et al., 2016); (3) mineral composition provide valuable insights on the evolution of intrusions (Coint et al., 2013a; Samperton et al., 2015; Ubide et al., 2015). For the Raftsund intrusion, uncertainties associated with high-precision U–Pb thermal ionization mass spectrometry (TIMS) ages are too large (±1–2 Ma; Corfu, 2004a) to assess the timing of emplacement; however, magmatic minerals and microtextures are well preserved and can be used to decipher the evolution of the intrusive system. Effect of exsolution and extent of the metamorphic overprint on whole-rock and mineral chemistry Several studies have mentioned medium- to high-pressure metamorphism after the crystallization of the 1800 Ma plutons in the Lofoten–Vesterålen region (e.g. Markl & Bucher, 1997; Markl et al., 1998a; Steltenpohl et al., 2003, 2006; Fournier et al., 2014; Froitzheim et al., 2016). Thus, it is important to assess the consequences of such an event on the chemical composition of both whole-rocks and minerals. Retrogressed samples, where extensive recrystallization occurred (Electronic Appendix 5), were primarily analysed for whole-rock compositions with a few mineral analyses. Overlap between the whole-rock data of retrogressed samples and those preserving primary magmatic assemblages (Figs 10–12) indicates that for both mobile and immobile elements, the whole-rock compositions were not affected by subsequent metamorphism. All samples used for detailed microtextural description (Figs 6–8) and microprobe analyses (Fig. 12), unless labelled as retrogressed, display magmatic textures and mineral assemblage consistent with crystallization from a dry, ferroan magma at 925–850°C and 4 kbar conditions, as determined from the QUILF equilibria (Markl et al., 1998b). Exsolution-related problems Primary igneous minerals and textures are generally well preserved in the Raftsund intrusion, but many crystals underwent exsolution during cooling (Figs 3, 4, 7 and 8). Ternary feldspars, for example, display complex exsolution patterns and it is clear from the microprobe data that many feldspars do not preserve primary magmatic compositions (Fig. 12e). Ternary feldspar in several Fe–Ti–P-rich rocks, however, preserves high-temperature composition and equilibrated slightly above 900 °C, according to the ternary feldspar geothermometer (Fuhrman & Lindsley, 1988; Markl et al., 1998b). Pyroxene is also exsolved, although augite from the Fe–Ti–P-rich rocks and the Fay–Aug monzonite preserves higher temperature compositions (Fig. 12a) than augite in the Pgt–Aug syenite. During cooling, augite is likely to exsolve orthopyroxene and a minor amount of Fe–Ti oxides such as ilmenite and magnetite. High concentrations of transition metals and Al, such as seen in augite from the Fe–Ti–P-rich rocks (Figs 12b and 13a, b), could reflect accidental sampling of exsolved phases, rather than enrichment of these elements in primary phases. If so, microprobe and laser data should show different results, as the analytical spots of the microprobe are much smaller than laser spots. We imaged the crater left by the laser after analysis in representative samples to determine the exact location of the analysis. In many cases, orthopyroxene lamellae are very thin (<1–2 µm) and their effect is seen only in a few defocused microprobe analyses. We therefore conclude that the enrichment in transition metals and Al is of primary origin. Other elements in augite, such as the REE, are not likely to be affected by exsolution. Heavy REE reach 2–20 times chondrites in orthopyroxene whereas they are up to 20–200 times chondrites in augite. Magnetite and ilmenite, also found as exsolution in augite, do not incorporate much of these elements (Jang & Naslund, 2003). Diffusion-related problems The Raftsund intrusion, and particularly the fayalite-bearing monzonite, was studied for the development of metamorphic coronas formed under granulite-facies conditions (Griffin & Heier, 1973; Markl et al., 1998a). Fayalite, but also magnetite in some of the Raftsund samples, is the root of corona textures composed of orthopyroxene–garnet or orthopyroxene (Electronic Appendix 5). Pressure and temperature estimates based on Ti in amphibole and garnet–orthopyroxene assemblages gave conditions of 780–840 °C and pressures between 4 and 10 kbar (Markl et al., 1998a). The former study pointed out that the formation of these coronas was associated with centimeter-scale diffusion of ions such as Fe, Mg and locally Al at the contact between K-feldspar, exsolved from ternary feldspar, and the ferromagnesian silicates. The same study also pointed out the lack of water available during the metamorphism. This lack of free H2O confined diffusion to the coronas (Markl et al., 1998a). Therefore, minerals have undergone locally important diffusion of the 2+ cations; however, Markl et al. (1998b) showed that, in many cases, mineral assemblages equilibrated at magmatic conditions (850–930 °C). Cations with 3+ and 4+ valence are subject to sluggish diffusion (Brady & Cherniak, 2010), especially in minerals such as augite (Cherniak & Dimanov, 2010). Several lines of evidence show that primary mineral chemistry is preserved. For example, augite in the Fay–Aug syenite displays variable LREE content (Fig. 13), which can be attributed to the crystallization of nearby allanite of clearly magmatic origin (Fig. 4b). To summarize, with the exception of local Grt–Opx coronas around fayalite, which demonstrate millimeter-scale diffusion during metamorphism, and extensive exsolution of ternary feldspar and pigeonite from the syenite, the compositions of the magmatic minerals in samples from the Pgt–Aug syenite and the Fay–Aug monzonite are commonly preserved. The significance of assimilation and fractional crystallization Previous studies of the Paleoproterozoic Lofoten intrusions emphasized the role of assimilation–fractionation crystallization (AFC) in formation of the monzonites and related rocks (Wade, 1985; Markl et al., 1998b; Markl & Frost, 1999). Wade (1985) used isotopic constraints to show that the monzonites underwent extensive fractionation plus assimilation of melt from surrounding migmatitic basement. More recently, Markl and co-workers showed that the compositions of Lofoten ferrodiorite correspond to the composition of residual liquid in anorthosite complexes. They also demonstrated that nearly all rocks of the AMCG suite can be modelled as a mixture of Archean crust and an 1800 Ma mantle component (Markl & Frost, 1999; Markl, 2001a; Markl & Höhndorf, 2003). A direct geochemical comparison of samples from this work with those from earlier studies is not possible because Fe–Ti–P-rich rocks samples studied here are generally more Fe-rich than samples examined by Wade (1985) and Markl & Höhndorf (2003). Furthermore, previous studies were of more regional scope; many samples are not from the monzonite II unit or even from the Raftsund intrusion. We concur that the parental liquid of the Raftsund was probably residual melt related to anorthosite formation, as shown by Markl & Frost (1999) based on partition coefficient calculations and REE element modelling (Markl, 2001a). Radiogenic isotopes have probably been used as the strongest argument for the Lofoten monzonites being ferrodiorites strongly contaminated with migmatitic basement (Wade, 1985; Markl & Höhndorf, 2003). Considering the strong isotopic contrast between mantle-derived ferrodiorites and basement it is surprising to see considerable overlap between monzonites (mangerites) and ferrodiorites in age-corrected 87Sr/86Sr and 143Nd/144Nd and lead isotopic ratios (figs 4 and 5 of Markl & Höhndorf, 2003). Limited data are available from the Raftsund intrusion but one ferrodiorite, which in this study, would correspond to a Fe–Ti–P-rich rock, and a monzonite from Hamarøya were analysed by Markl & Höhndorf (2003), and the two samples have similar compositions, with the ferrodiorite having slightly more radiogenic Sr and less radiogenic Nd isotope ratios. This is problematic in a scenario where monzonites are the product of mixing of ferrodiorites and basement, as one would expect the monzonites to have isotopic compositions between the ferrodiorites and the much more radiogenic basement. Fractional crystallization alone cannot explain the geochemical evolution of the Type II unit of the Raftsund either. The Fay–Aug monzonite, the most Fe-rich and therefore evolved part of the intrusion, is also the most enriched in MgO, TiO2, CaO, REE, Zr and Sc compared with the Pgt–Aug syenite (Figs 9 and 10). Because both units locally contain quartz, the system was not undersaturated in silica, therefore such a decrease in SiO2 correlated with increasing Fe2 O3tot cannot be accounted for by fractional crystallization. Formation of the Fe–Ti–P-rich rocks Hydrothermal remobilization is a popular process to explain iron oxide–apatite deposits (Rhodes & Oreskes, 1995; Pollard, 2006; Westhues et al., 2017). This mechanism has mostly been advocated for Kiruna-type iron oxide-apatite deposits dominated by magnetite as the main oxide, but has also been suggested to play a role in AMCG-related deposits (Li et al., 2014; Charlier et al., 2015). The peculiar Nordre Følstad nelsonite, described by Ihlen et al. (2014), is exposed outside the Raftsund intrusion in supracrustal granulitic gneisses, but is potentially genetically related to Raftsund. The occurrence of monomineralic clusters of biotite at the contact between granitic breccia fragments or wall rock and Fe–Ti oxide led Ihlen et al. (2014) to suggest that the Nordre Følstad nelsonite was formed from a hydrous Fe–Ti–P–Mg melt interacting with the supracrustal rocks. Fe–Ti–P-rich rocks in the Pgt–Aug syenite, as described above, contain minor hornblende or biotite interpreted to be late magmatic phases or of secondary origin, contradicting a strong role of hydrous fluids for their origin. Another strong argument against hydrothermal mobilization is the high TiO2 (1–12 wt%) and Zr concentrations, which are considered immobile in most hydrothermal fluids (e.g. Floyd & Winchester, 1975; Finlow-Bates & Stumpfl, 1981). Furthermore, the stability of subhedral Fe-rich olivine and/or pigeonite, augite, all anhydrous high-temperature phases, argues strongly for a magmatic origin. Gravity-driven accumulation is a common process in layered intrusions (e.g. Wager & Brown, 1968; Naslund & McBirney, 1996; Namur et al., 2015a) and is often proposed to form nelsonites and associated Fe–Ti–P rocks (e.g. Emslie, 1978; Eales & Cawthorn, 1996; Dymek & Owens, 2001; Charlier et al., 2008, 2009; Tollari et al., 2008; Duchesne & Liégeois, 2015). The Raftsund is locally strongly layered (Griffin et al., 1974) and mineral accumulation inevitably occurred during the evolution of the intrusion. Several arguments, however, indicate that this mechanism is not solely responsible for the formation of the Fe–Ti–P-rich rocks in the Pgt–Aug syenite. Fe–Ti–P-rich rocks considered here occur in much more irregular shapes and sizes than layering in layered mafic intrusions where cumulate processes have been advocated as a main driver for such rocks (Fig. 5). Moreover, the presence of Fe-rich olivine in the Fe–Ti–P-rich rocks hosted in the Pgt–Aug syenite cannot be accounted for by such a process. In the Fay–Aug monzonite, accumulation could explain the high Zr values (Fig. 10d); however, the distribution of zircon (Fig. 7d), exclusively associated with Fe-rich mineral clusters, dispersed in the rock, is not consistent with such an explanation either. Another process that results in separation of dense Fe–Mg minerals from feldspathic ones, often neglected in intrusive systems, is liquid immiscibility. Although this process has gained considerable attention in studies of mafic intrusions, it has also been suggested to be active in several monzonitic intrusions (Philpotts, 1981; Chen et al., 2013; Duchesne & Liégeois, 2015; Wang et al., 2017), and has also been often rejected (e.g. Duchesne et al., 1987; Vander Auwera et al., 1998; Charlier et al., 2008; Zhao & Chen, 2009). If unmixing takes place, its effect on whole-rock data depends on whether the Fe-rich melt was able to segregate from the Si-rich melt. In the case of the Raftsund, one could argue that the Fe–Ti–P-rich rocks resulted from crystallization of an Fe-rich melt, and the feldspathic part from crystallization of the Si-rich melt. In the following discussion we explore signs of immiscibility in the rocks and demonstrate that unmixing of two immiscible liquids is the most viable process to explain both textural and geochemical data. Microtexture A variety of microtextures is preserved in pristine samples of the Type II monzonite. On the island of Hamarøya, where the mafic minerals form an intergrown network of apatite, Fe–Ti oxides and Fe-rich silicates (Fig. 5d), ternary feldspars are intergrown with Fe-rich minerals (Fig. 7e). All phases, except apatite, are anhedral and there is no evidence of disequilibrium. In larger Fe–Ti–P-rich rock bodies, such as the one illustrated in Figure 5b and e, where the content of ternary feldspar tends to decrease toward the center of the lens, there is textural evidence of disequilibrium between ternary feldspar and the network of intergrown Fe-rich minerals. In this example, ternary feldspars are resorbed (Fig. 6c and d), supporting the idea that ternary feldspar did not belong to the mineralizations but instead was inherited from the syenite, a separate ‘magmatic system’. Other textures, such as fish-hook pyroxene, result from resorption of pyroxene (Fig. 7a and b) and its replacement by plagioclase–augite symplectite at the contact with ternary feldspar. This reactive symplectite, previously described in several layered intrusions such as the Skaergaard (Holness et al., 2011) and the Sept Iles intrusions (Namur et al., 2012), indicates a disequilibrium that could be attributed to interaction of the pigeonite with a Si–Al–alkali-rich melt. These disequilibrium textures attest to the presence of two separate melt systems, one Fe–Ca, P and Ti-rich, resulting in the formation of the Fe–Ti–P-rich rocks and one Si, Al, and alkali-rich, resulting into the Pgt–Aug syenite. Furthermore, evidence of a conjugate Fe-rich melt is expressed as thin interstitial plagioclase films that are more Ca- and Fe-rich than the plagioclase exsolution from the ternary feldspars (Fig. 12f). Similar films, locally observed at contacts between ternary feldspar and intergrown Fe-rich minerals (Fig. 7c), and locally in small Fe-rich mineral clusters in the Fay–Aug monzonite (Fig. 7d), indicate that the last melt in equilibrium with the Fe–Ti–P-rich rocks was depleted in alkalis, especially potassium and crystallized plagioclase instead of ternary feldspar in the Si-rich conjugate system. Finally, evidence of this Fe-rich melt is preserved in a 100 µm wide microcrystalline vein (Fig. 8a). This late-stage vein also indicates that the Fe-rich melt was mobile and able to cut across a mostly solidified mush. Mineralogical evidence If liquid immiscibility is a viable process for the formation of the Fe–Ti–P-rich rocks that display disequilibrium textures with the surrounding Pgt–Aug syenite, evidence should also be present in terms of mineral composition and potentially mineral assemblages, assuming the two melts were no longer in equilibrium with one another. A few Fe–Ti–P-rich samples contain augite and pigeonite rimmed by late Fe-rich olivine whereas others exclusively contain Fe-rich olivine and augite as the main silicate phases. The stability of the olivine versus pigeonite has been assessed previously (Namur et al., 2012). According to experiments (Grove & Juster, 1989; Shi, 1993), pigeonite stability is favoured by high alkali and SiO2 contents in the melt at constant P2O5. The addition of phosphorus in the melt also tends to stabilize pigeonite (Toplis et al., 1994), by increasing the activity of silica (Kushiro, 1975; Bogaerts & Schmidt, 2006). The variation of phosphorus in the melt from which the Fe–Ti–P-rich rocks crystallized is not possible to assess here; however, there is no correlation between P2O5 contents and mineral assemblages. Therefore, we suggest that the stability of Fe-olivine in the Fe–Ti–P-rich rocks results mainly from lower SiO2 activity and low alkali content. The Fe-rich melt formed throughout the Pgt–Aug syenitic unit therefore had variable composition, which explains the variety of mineral assemblages. Augite and titanomagnetite from the Fe–Ti–P-rich rocks have higher concentrations of Ti and Al compared with the ones in the associated Pgt–Aug syenite (Fig. 12b and d). This difference indicates that melts from which the Fe–Ti–P-rich rocks crystallized were more Al- and Ti-rich or that there were no other major phases competing for these elements when augite crystallized. Titanium is incorporated only by these two phases, therefore high Ti concentrations in both minerals result from higher concentrations in the melt. High concentration of Al is more puzzling. Feldspar is the main sink for Al in intermediate magmas; however, there is strong evidence for resorption of the ternary feldspar in the Fe–Ti–P-rich rocks, suggesting that it did not co-crystallize with the Fe-rich minerals. Therefore, high Al in the augite and titanomagnetite probably reflects the paucity of feldspar co-crystallizing from melt forming the Fe–Ti–P-rich rocks. Comparison between Fe- and silica-rich melts obtained experimentally and the Raftsund system As previously mentioned, accumulation processes are ubiquitous in intrusive rocks and thus the melt composition is unlikely to be preserved in Raftsund rocks; nevertheless, valuable information can be retrieved on the nature of the magma(s) involved in the formation of these intrusive rocks. According to several experiments (e.g. Veksler et al., 2006; Veksler, 2009; Charlier & Grove, 2012), the Fe-rich melt derived from silicate–liquid immiscibility should be enriched in elements such as Ti, Ca, P and Mg, whereas alkalis will concentrate in the Si-rich melt. In Figure 9, the experiments conducted by Charlier & Grove (2012) were chosen for comparison because of the compositional similarities to the Raftsund system. Many of the Fe–Ti–P-rich rocks found in the Pgt–Aug syenite have compositions that are closely reproduced by the Fe-rich melt in the experiments (Fig. 9c–g), although the silicate-rich melt obtained in the experiment reaches granitic composition and is less alkaline than Type II Raftsund monzonite. The CaO/Al2O3 ratio is a good indicator for immiscibility as fractionation between the two elements during fractional crystallization is limited (Jakobsen et al., 2005). Accumulation of augite would result in fractionation of the ratio but at a silica content much higher than what is observed in the Fe–Ti–P-rich rocks (Fig. 9g). Accumulation of olivine could also slightly fractionate the ratio but not to values above two as observed in the dataset. Finally, accumulation of Fe–Ti oxides should not greatly modify the ratio unless their Al component was significant, which is not the case here. The process should also be visible in the whole-rock trace element data (Veksler et al., 2006). According to experiments, most of the trace elements tend to concentrate in the Fe-rich melts, except LILE and alkali elements, which remain in the Si-rich melt, although partition coefficients are affected by many parameters such as water content and oxygen fugacity (Watson, 1976; Veksler et al., 2006; Lester et al., 2013b; Veksler & Charlier, 2015). The behaviour of HFSE is more variable and strongly depends on the oxygen fugacity. The latter elements partition strongly into the Fe-rich melt at higher fO2 conditions [nickel–nickel oxide (NNO) buffer], whereas they are more evenly distributed (partition coefficients close to one) at fO2 = QFM conditions (Lester et al., 2013b). Iron–Ti–P-rich rocks are enriched in Sc, Zn and REE compared with the host syenite (Fig. 10), as predicted by experiments (Veksler et al., 2006) and observed in intrusive systems where liquid immiscibility played an important role (Markl, 2001b). Zirconium is slightly more enriched in the Fe–Ti–P-rich rocks but there is a consequent overlap between the two units, also consistent with a weak enrichment of HFSE in the Fe-rich melt. Strontium, however, is depleted in the Fe–Ti–P-rich rocks compared with the syenite. Sr2+ is predicted to behave like Ca2+ and should be enriched in the Fe-rich melt. Major element oxides Fe2 O3tot ⁠, MgO, TiO2, CaO, MnO and P2O5, in the Fay–Aug monzonite, are positively correlated with transition metals (e.g. Sc, Co and V) (Figs 9 and 10). Samples from this unit fall on the same trend as the Pgt–Aug syenite and associated Fe–Ti–P-rich rocks, indicating that the Fay–Aug monzonite also results from liquid immiscibility and that the chemical variations reflect the proportion of Fe-rich melt versus conjugate Si-rich melt in a sample. The lack of consistent positive correlation of HFSE (Zr, Hf, Nb, Ta, Hf, Th) and REE with the major elements plus the transition metals cited above indicates that either some of the rocks are partial cumulates of accessory phases controlling the concentration of these elements (zircon or allanite), or that these elements partitioned differently during immiscibility depending on the various conditions mentioned above. Zirconium displays the most dramatic variations, with concentrations reaching several thousand ppm in some samples (Fig. 10d) and resulting in a large modal proportion of zircon (Fig. 7d). Such enrichment has been described in other intrusions where immiscibility was shown to be important (Markl, 2001b) and is consistent with the texture observed in the Fay–Aug monzonite where accessory minerals are persistently associated with Fe-rich mineral clusters (Fig. 4b). However, the lack of partition coefficient for trace elements between the two conjugate melts and the fact that whole-rock analyses do not represent melt compositions do not allow further interpretation of the data. The texture of the Fay–Aug monzonite, with clustering of Fe-rich silicates, ilmenite, zircon and allanite (Figs 4b and 13f) in millimeter-scale clusters that are enriched in REE, HFSE and Zn and surrounded by a matrix of ternary feldspars, suggests that this unit is also the result of liquid immiscibility. The separation between the two melts occurs to such an extent that it is visible in the bulk rock data. However, unlike the Pgt–Aug syenite, Fe-rich melt pockets mostly remained small and dispersed. The small Fe-rich droplets could have sunk preferentially toward the bottom of the intrusion, leaving a crystallized rock composed of a larger proportion of Fe-rich pockets compared with the conjugate Si-rich melt. Can augite trace elements be used to trace liquid immiscibility? In this section we test whether trace element contents in augite can be used to identify liquid immiscibility. This mineral was chosen because it is likely to record most of the magmatic evolution of the intrusion. Augite from the Pgt–Aug syenite and associated Fe–Ti–P-rich rocks No consistent core to rim zonation was observed in these crystals. Augite from the Fe–Ti–P-rich rocks contains higher overall contents of Al, Sc and Ti than augite in the associated Pgt–Aug syenite, although the two datasets overlap (Fig. 13a and b). High concentrations of Sc in augite from the Fe–Ti–P-rich rocks indicate that the primary melt was also Sc-rich but that its concentrations decreased with evolution of the system and crystallization of augite, the main sink for Sc (Nielsen et al., 1992; Chen et al., 2017). Co-crystallization of large amounts of apatite (Fig. 6) resulted in lower REE concentrations in augite from the Fe–Ti–P-rich rocks. The lack of change in the Eu anomaly or the La/Sm ratio indicates that the crystallization of apatite did not affect the REE pattern of the augite and that apatite probably has a REE pattern subparallel to that of the augite, with little LREE variation. Augite in Fay–Aug monzonite Augite from the Fay–Aug monzonite, found in Fe-rich mineral + zircon ± allanite clusters, displays large LREE variations (Fig. 13d and f), which can be attributed to the co-crystallization of allanite (Fig. 4b). The occurrence of small Fe-rich mineral clusters, rarely interconnected, suggests that each small bubble of Fe-rich melt might have functioned as a small closed system. We conclude from the results above that useful information can be retrieved from the trace element chemistry of phases such as augite that are stable during much of the evolution of the magmatic system; however, interpretation of the augite dataset would be difficult without context for the samples and an understanding of the mineralogy and chemistry of the Fe–Ti–P-rich. The large chemical variations recorded in augite from the Fe–Ti–P-rich rocks and in the Fe-rich mineral clusters from the Fay–Aug monzonite indicate that the Fe-rich melt pockets behaved more or less like closed systems and that all minerals co-crystallized, limiting the extent of accumulation. Composition of the parental melt of the Raftsund Type II monzonite and comparison with jotunite/ferrodiorite and ferromonzodiorite around the world In the following section we assess whether some of the rocks sampled in the Raftsund represent possible melt compositions that arrive at the level of emplacement, before liquid immiscibility occurred. Here we focus on the Pgt–Aug part of the intrusion and its associated Fe–Ti–P-rich rocks where segregation between two immiscible melts was the most efficient. The starting composition must plot somewhere on the trend defined by both the syenite and the Fe–Ti–P-rich rocks (Fig. 9). Whole-rock data show continuous trends in many diagrams between the Pgt–Aug syenite and the associated Fe–Ti–P-rich rocks. On Hamarøya, Fe–Ti–P-rich rocks show no microtextural evidence of disequilibrium between the different phases with only local segregation between Fe-rich minerals and ternary feldspar (Fig. 7e). These samples represent the most likely starting melt composition (Fig. 9) and plot in the monzodioritic field (SiO2 between 49·4 and 51 wt%, K2O + Na2O between 6·7 and 8 wt%). These samples are relatively similar in composition to monzodiorite, also referred to as ferrodiorite (Mitchell et al., 1996; Scoates et al., 1996; Scoates and Chamberlain, 2003), jotunite (Vander Auwera et al., 1998) and monzonorite (Duchesne et al., 1989), associated with monzonitic intrusions, mafic layered intrusions and anorthosite complexes around the world (Fig. 14) (Owens et al., 1993; Mitchell et al., 1996; Vander Auwera et al., 1998; Frost et al., 1999; Markl, 2001a). World-wide, monzodiorite is typically enriched in LREE compared with HREE and displays small to no Eu anomalies. Moreover, except for monzodiorite associated with the Laramie Anorthosite, USA, they all display low concentrations of U, Th, Nb, Ta, and negative anomalies in Sr, Ti and generally also in Zr. A few samples from the Rogaland Anorthosite Complex, Norway, contain larger amounts of zirconium, although here we did not incorporate the high-Zr monzodiorite from Duchesne & Liégeois (2015). Monzodiorite associated with AMCG suites has been interpreted in various ways: as parental melts to anorthositic complexes (Duchesne et al., 1974; Duchesne & Demaiffe, 1978; Demaiffe & Hertogen, 1981) and mafic layered intrusions (Vander Auwera et al., 1998), as transitional melts associated with co-magmatic AMCG sequences (Wilmart et al., 1989; Owens et al., 1993; Duchesne & Wilmart, 1997), as direct melts of the lower crust (Duchesne et al., 1985, 1989), as related to mantle-derived basalt unrelated to AMCG magmatism (Emslie, 1985), and as a result of liquid immiscibility (Philpotts, 1981). Finally, monzodiorites were also interpreted to be residual melt after fractionation to form anorthositic rocks (Ashwal, 1982; Morse, 1982; Wiebe, 1990; Emslie et al., 1994). Markl (2001a) supported the latter explanation and interpreted ferrodiorite in the Eidsfjord mafic complex, a unit adjacent to the Raftsund intrusion (Fig. 1), to represent residual liquid after formation of the gabbros and anorthosite. Monzodiorite found in the Eidsfjord mafic complex does not exactly match that found in the Raftsund, because REE concentrations of the latter are higher; however, both spider diagrams and REE element patterns are parallel, suggesting a possible linkage between the two rock types. The magma at the origin of the Raftsund was therefore monzodioritic in composition. It then underwent immiscibility and separated into two components: a syenitic magma and a monzodioritic to monzogabbroic one, depending on the area. The specific composition of the immiscible magmas is difficult to constrain owing to too many unknowns, including the role of crystal accumulation. Fig. 14. Open in new tabDownload slide Comparison between potential parental melt composition for the Pgt–Aug syenite and monzodiorite associated with AMCG worldwide. (a) REE diagram, normalized to chondrite (Sun & McDonough, 1989). (b) Spider diagram normalized to the primitive mantle (Sun & McDonough, 1989). Fig. 14. Open in new tabDownload slide Comparison between potential parental melt composition for the Pgt–Aug syenite and monzodiorite associated with AMCG worldwide. (a) REE diagram, normalized to chondrite (Sun & McDonough, 1989). (b) Spider diagram normalized to the primitive mantle (Sun & McDonough, 1989). Petrogenetic model The following section is an attempt to develop a petrogenetic model of the intrusion on the basis of geological, geochemical and mineralogical data (Fig. 15a). The nature of the contact between the Pgt–Aug syenite and Fay–Aug monzonite (Fig. 1) is not well constrained. The transition seems to be gradual; however, the lack of textural variation between the two units makes it difficult to identify in the field. Based on their mineralogy and whole-rock geochemistry, the Pgt–Aug syenite and the Fay–Aug monzonite cannot be related by fractional crystallization or accumulation processes as the evolved (Fe-rich) unit is also the least enriched in silica, in a system where aSiO2 approaches unity. It is therefore likely that the two units correspond to two different magma types emplaced next to each other. Orthopyroxene rims around both intergrown augite and Fe-rich olivine (Fig. 4c), at the transition of the Pgt–Aug syenite with the Fay–Aug monzonite, resulted from addition of Mg into the system and suggest that the two units mingled and that they are roughly coeval. Fig. 15. Open in new tabDownload slide (a) Simplified cross-section throughout the Raftsund intrusion illustrating the relationships between the units. The vertical scale is highly exaggerated. The geology below the surface is unconstrained. (b) Model for the formation of the Fe–Ti–P-rich rocks found in the Pgt–Aug syenite. (c) Model for the formation of the Fay–Aug monzonite. Fig. 15. Open in new tabDownload slide (a) Simplified cross-section throughout the Raftsund intrusion illustrating the relationships between the units. The vertical scale is highly exaggerated. The geology below the surface is unconstrained. (b) Model for the formation of the Fe–Ti–P-rich rocks found in the Pgt–Aug syenite. (c) Model for the formation of the Fay–Aug monzonite. A monzodioritic melt was emplaced where the Pgt–Aug syenite lies today. Partly resorbed ternary feldspar in some of the Fe–Ti–P-rich rocks suggests that liquid immiscibility took place after crystallization of large ternary feldspar (Fig. 15b). The droplets of Fe-rich melt were either initially large or coalesced to form large Fe-rich pods. Evidence of segregation between the two conjugate melts in the largest Fe–Ti–P-rich rock lenses exists in the microtextures, in which evidence of disequilibrium between the two systems is preserved (Figs 6 and 7b). The presence of an Fe-rich melt is consistent with the large abundance of apatite in all Fe-rich minerals, a feature also described by Honour et al. (2019). The lack of apatite in ternary feldspar confirms that the latter did not crystallize from the Fe-rich melt. Local quartz-bearing monzonite dispersed in the unit indicates that a more evolved melt was present, as mentioned by Griffin et al. (1974). The Fay–Aug monzonite, likewise, results from liquid immiscibility. In this unit, however, Fe-rich mineral clusters do not reach more than 1–2 cm in diameter (Fig. 4). The odd mineralogy and geochemistry of the clusters with abundant zircon and allanite suggests that the Fe-rich mineral clusters crystallized from a melt abnormally enriched in Zr and REE. Therefore, we propose that each Fe-rich mineral string or cluster represents a small Fe-rich melt droplet (Fig. 15c). In this unit, the droplets did not grow or coalesce at the level of exposure; however, part of the Si-rich melt left the system, and this explains the most Fe-rich Si-poor samples and the observation of local quartz-bearing monzonite at the summit of the Årsteinen island (Fig. 15a). The mineralogy of the Fe-rich droplets indicates that the Fe-rich melt in the Fay–Aug monzonite was much more depleted in phosphorus and enriched in HFSE such as Zr than the one in the Pgt–Aug-bearing unit, confirming that the two units evolved from two separate magmas. The difference of the size of Fe-rich droplets and their comparative ability to coalesce in the two units of the Type II monzonite could be related to the difference of crystallinity of the magma when immiscibility occurred. In the case of the Pgt–Aug syenite, we have established that some ternary feldspar crystallized before being surrounded by Fe-rich melt, therefore immiscibility must have occurred while the system was already a mush, creating traps in which the Fe-rich melt ponded and formed net-veined textures, similar to those described by Chung & Mungall (2009). In the Fay–Aug monzonite, however, immiscibility must have occurred rapidly after the emplacement of a poorly crystalline magma, forming large amounts of small Fe-rich droplets throughout the whole unit, which were able to migrate downward but not coarsen very efficiently. The timing of immiscibility in the system is therefore likely to determine the ability of the Fe-rich melt to pond and form large economic deposits. CONCLUSION Evidence of silicate liquid immiscibility is preserved in the Type II monzonitic unit of the Raftsund intrusion, which consists of two separate units. Centimetre- to hundred meter-scale dispersed Fe–Ti–P-rich rocks, hosted by the Pgt–Aug syenite and composed of Fe-rich silicates, apatite and Fe–Ti oxides, result from the crystallization of Fe-rich melt produced by liquid immiscibility, whereas the crystallization of conjugate Si-rich melt formed the Pgt–Aug syenite. In the Fay–Aug monzonite, however, immiscibility is preserved at centimeter-scale and small single Fe-rich mineral clusters represent previous Fe-rich melt droplets. It is thus not always possible to distinguish between crystals from the two conjugate melts, which makes the results difficult to interpret. Despite difficulties in identifying liquid immiscibility in intrusive rocks, we propose a series of criteria based on field observations and microtextural and geochemical evidence that can be used to identify the process. Fe–Ti–P-rocks resulting from the crystallization of the Fe-rich melt occur, in the field, as irregular dark magnetite-rich pockets of various size and shapes in the host feldspathic intrusive rock. Where the Fe-rich melt was not able to coalesce, Fe-rich mineral clusters might not reach more than 1 or 2 mm, making field observation more challenging. Liquid immiscibility results in microtextures inconsistent with simple mineral accumulation. Iron-rich minerals form clusters containing abnormally abundant accessory minerals, such as apatite, zircon and allanite. Symplectites between the Fe–Ti–P-rich rocks and the syenite host, associated with the presence of thin plagioclase films at the contact between large resorbed ternary feldspars and Fe–Ti–P-rich rocks, attest to local disequilibrium between the two conjugate melts and the presence of two different melts, respectively. Liquid immiscibility also affects the whole-rock and mineral chemistry. Fe–Ti–P-rich rocks and Fe-rich mineral clusters have higher abundances of HFSE and REE compared with the syenite or monzonite crystallizing from the conjugate Si-rich melt. The chemistry of minerals that crystallized from the Fe-rich melt supports that the Fe-rich melt was enriched in many trace elements. The jury is still out on the origin of nelsonites, but considering that immiscible Fe-rich melts concentrate elements of economic interest in Fe–Ti–P ± HFSE-rich rocks suggests that liquid immiscibility probably plays an important ore-forming role in some of these rocks, perhaps including nelsonites. Little is known about the rheological properties of the immiscible Fe-rich melts, and trace element partition between the two conjugate melts remains to be better constrained for monzodioritic systems, inferred to be the parental melt composition of the Pgt–Augite syenite in the Raftsund intrusion. Such monzodioritic rocks are fairly common in intrusions, and anorthosite complexes around the world, and we speculate that liquid immiscibility could be much more widespread in these systems than currently accepted. ACKNOWLEDGEMENTS We would like to thank Jessica Langlade (IFREMER Brest) and Kristian Drivenes (NTNU, Trondheim) for performing and helping acquire the microprobe analyses, and Øyvind Skår and Torkil Røhr (both at NGU) for their assistance with LA-ICP-MS analyses. The authors would like to thank Suzanne McEnroe and Peter Robinson for useful discussions, and Calvin Barnes for helpful suggestions about the paper and correcting the language. We are grateful to Gregor Markl, Gregory W. Lester and an anonymous reviewer for their useful comments, which helped us clarify the paper, as well as to Gerhard Wörner for his contribution as editor. The authors are grateful for the assistance provided by the laboratory team from NGU. FUNDING Funding for this study was provided by the Geological Survey of Norway and the county of Nordland, Norway. REFERENCES Ashwal L. D. ( 1982 ). Mineralogy of mafic and Fe–Ti oxide-rich differenciates of the Marcy anorthosite massif, Adirondacks, NY . American Mineralogist 67 , 14 – 27 . Google Scholar OpenURL Placeholder Text WorldCat Bachmann O. , Bergantz G. W. ( 2003 ). Rejuvenation of the Fish Canyon magma body: A window into the evolution of large-volume silicic magma systems . Geology 31 , 789 – 792 . Google Scholar Crossref Search ADS WorldCat Barnes C. G. , Coint N., Yoshinobu A. ( 2016 ). Crystal accumulation in a tilted arc batholith . American Mineralogist 101 , 1719 – 1734 . Google Scholar Crossref Search ADS WorldCat Bergh S. , Eig K., Kløvjan O. S., Henningsen T., Olesen O., Hansen J.-A.. ( 2007 ). The Lofoten–Vesterålen continental margin: a multiphase Mesozoic–Palaeogene rifted shelf as shown by offshore–onshore brittle fault–fracture analysis . Norwegian Journal of Geology 87 , 29 – 58 . Google Scholar OpenURL Placeholder Text WorldCat Bogaerts M. , Schmidt M. W. ( 2006 ). Experiments on silicate melt immiscibility in the system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5 and implications for natural magmas . Contributions to Mineralogy and Petrology 152 , 257 – 274 . Google Scholar Crossref Search ADS WorldCat Bowen N. L. ( 1928 ). Evolution of the Igneous Rocks . Princeton, NJ : Princeton University Press . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Brady J. B. , Cherniak D. J. ( 2010 ). Diffusion in Minerals, an Overview of Published Experimental Diffusion Data. Diffusion in Minerals and Melts 72 , 899 – 920 . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Brown W. L. , Parsons I. ( 1994 ). Feldspar in Igneous Rocks. In: Parsons I. (ed.) Feldspars and their Reactions . Dordrecht: Springer Netherlands, 421 , 449 – 499 . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Charlier B. , Grove T. L. ( 2012 ). Experiments on liquid immiscibility along tholeiitic liquid lines of descent . Contributions to Mineralogy and Petrology 164 , 27 – 44 . Google Scholar Crossref Search ADS WorldCat Charlier B. , Sakoma E., Sauvé M., Stanaway K., Vander Auwera J., Duchesne J.-C. ( 2008 ). The Grader layered intrusion (Havre–Saint-Pierre Anorthosite, Quebec) and genesis of nelsonite and other Fe–Ti–P ores . Lithos 101 , 359 – 378 . Google Scholar Crossref Search ADS WorldCat Charlier B. , Namur O., Duchesne J.-C., Wiszniewska J., Parecki A., Vander Auwera J. ( 2009 ). Cumulate Origin and Polybaric Crystallization of Fe–Ti Oxide Ores in the Suwalki Anorthosite . Economic Geology 104 , 205 – 221 . Google Scholar Crossref Search ADS WorldCat Charlier B. , Namur O., Toplis M. J., Schiano P., Cluzel N., Higgins M. D., Vander Auwera J. ( 2011 ). Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap . Geology 39 , 907 – 910 . Google Scholar Crossref Search ADS WorldCat Charlier B. , Namur O., Grove T. L. ( 2013 ). Compositional and kinetic controls on liquid immiscibility in ferrobasalt–rhyolite volcanic and plutonic series . Geochimica et Cosmochimica Acta 113 , 79 – 93 . Google Scholar Crossref Search ADS WorldCat Charlier B. , Namur O., Bolle O., Latypov R., Duchesne J. C. ( 2015 ). Fe–Ti–V–P ore deposits associated with Proterozoic massif-type anorthosites and related rocks . Earth-Science Reviews 141 , 56 – 81 . Google Scholar Crossref Search ADS WorldCat Chen L. M. , Song X. Y., Hu R. Z., Yu S. Y., He H. L., Dai Z. H., She Y. W., Xie W. ( 2017 ). Controls on trace-element partitioning among co-crystallizing minerals: Evidence from the Panzhihua layered intrusion, SW China . American Mineralogist 102 , 1006 – 1020 . Google Scholar OpenURL Placeholder Text WorldCat Chen W. T. , Zhou M., Zhao T. ( 2013 ). Differentiation of nelsonitic magmas in the formation of the approximately 1·74 Ga Damiao Fe–Ti–P ore deposit, north China . Contributions to Mineralogy and Petrology 165 , 1341 – 1362 . Google Scholar Crossref Search ADS WorldCat Cherniak D. J. , Dimanov A. ( 2010 ). Diffusion in Pyroxene, Mica and Amphibole . In: Zahng, Y. & Cherniak, D. J. (eds.) Diffusion in Minerals and Melts: De Gruyter 72 , 641 – 690 . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Chung H.-Y. , Mungall J. E. ( 2009 ). Physical constraints on the migration of immiscible fluids through partially molten silicates, with special reference to magmatic sulfide ores . Earth and Planetary Science Letters 286 , 14 – 22 . Google Scholar Crossref Search ADS WorldCat Coint N. , Barnes C., Yoshinobu A., Barnes M., Buck S. ( 2013 a). Use of trace element abundances in augite and hornblende to determine the size, connectivity, timing, and evolution of magma batches in a tilted batholith . Geosphere 9 , 1747 – 1765 . Google Scholar Crossref Search ADS WorldCat Coint N. , Barnes C., Yoshinobu A., Chamberlain K., Barnes M. ( 2013 b). Batch-wise assembly and zoning of a tilted calc-alkaline batholith: Field relations, timing, and compositional variation . Geosphere 9 , 1729 – 1746 . Google Scholar Crossref Search ADS WorldCat Coleman D. S. , Gray W., Glazner A. F. ( 2004 ). Rethinking the emplacement and evolution of zoned plutons: Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite . Geology 32 , 433 – 436 . Google Scholar Crossref Search ADS WorldCat Corfu F. ( 2004 a). U–Pb age, setting and tectonic significance of the anorthosite–mangerite–charnockite–granite suite, Lofoten–Vesteralen, Norway . Journal of Petrology 45 , 1799 – 1819 . Google Scholar Crossref Search ADS WorldCat Corfu F. ( 2004 b). U–Pb geochronology of the Leknes Group: an exotic Early Caledonian metasedimentary assemblage stranded on Lofoten basement, northern Norway . Journal of the Geological Society, London 161 , 619 – 627 . Google Scholar Crossref Search ADS WorldCat Corfu F. ( 2007 ). Multistage metamorphic evolution and nature of the amphibolite–granulite facies transition in Lofoten–Vesteralen, Norway, revealed by U–Pb in accessory minerals . Chemical Geology 241 , 108 – 128 . Google Scholar Crossref Search ADS WorldCat Davids C. , Wemmer K., Zwingmann H., Kohlmann F., Jacobs J., Bergh S. G. ( 2013 ). K–Ar illite and apatite fission track constraints on brittle faulting and the evolution of the northern Norwegian passive margin . Tectonophysics 608 , 196 – 211 . Google Scholar Crossref Search ADS WorldCat De A. ( 1974 ). Silicate Liquid Immiscibility in the Deccan Traps and Its Petrogenetic Significance . Geological Society of America Bulletin 85 , 471 – 474 . Google Scholar Crossref Search ADS WorldCat Deering C. D. , Bachmann O. ( 2010 ). Trace element indicators of crystal accumulation in silicic igneous rocks . Earth and Planetary Science Letters 297 , 324 – 331 . Google Scholar Crossref Search ADS WorldCat Demaiffe D. , Hertogen J. ( 1981 ). Rare earth element geochemistry and strontium isotopic composition of a massif-type anorthositic–charnockitic body: the Hidra Massif (Rogaland, SW Norway . ). Geochimica et Cosmochimica Acta 45 , 1545 – 1561 . Google Scholar Crossref Search ADS WorldCat DePaolo D. J. ( 1981 ). Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization . Earth and Planetary Science Letters 53 , 189 – 202 . Google Scholar Crossref Search ADS WorldCat Duchesne J.-C. , Demaiffe D. ( 1978 ). Trace elements and anorthosite genesis . Earth and Planetary Science Letters 38 , 249 – 272 . Google Scholar Crossref Search ADS WorldCat Duchesne J.-C. , Liégeois J.-P. ( 2015 ). The origin of nelsonite and high-Zr ferrodiorite associated with Proterozoic anorthosite . Ore Geology Reviews 71 , 40 – 56 . Google Scholar Crossref Search ADS WorldCat Duchesne J.-C. , Wilmart E. ( 1997 ). Igneous Charnockites and Related Rocks from the Bjerkreim–Sokndal Layered Intrusion (Southwest Norway): a Jotunite (Hypersthene Monzodiorite)-Derived A-type Granitoid Suite . Journal of Petrology 38 , 337 – 369 . Google Scholar Crossref Search ADS WorldCat Duchesne J. C. , Roelandts I., Demaiffe D., Hertogen J., Gijbels R., De Winter J. ( 1974 ). Rare-earth data on monzonoritic rocks related to anorthosites and their bearing on the nature of the parental magma of the anorthositic series . Earth and Planetary Science Letters 24 , 325 – 335 . Google Scholar Crossref Search ADS WorldCat Duchesne J. C. , Roelandts I., Demaiffe D., Weis D. ( 1985 ). Petrogenesis of monzonoritic dykes in the Egersund–Ogna anorthosite (Rogaland, S.W. Norway): trace elements and isotopic (Sr, Pb) constraints . Contributions to Mineralogy and Petrology 90 , 214 – 225 . Google Scholar Crossref Search ADS WorldCat Duchesne J. C. , Denoiseux B., Hertogen J. ( 1987 ). The norite–mangerite relationships in the Bjerkreim–Sokndal layered lopolith (southwest Norway) . Lithos 20 , 1 – 17 . Google Scholar Crossref Search ADS WorldCat Duchesne J. C. , Wilmart E., Demaiffe D., Hertogen J. ( 1989 ). Monzonorites from Rogaland (Southwest Norway)—a Series of Rocks Coeval but Not Comagmatic with Massif-Type Anorthosites . Precambrian Research 45 , 111 – 128 . Google Scholar Crossref Search ADS WorldCat Dymek R. F. , Owens B. E. ( 2001 ). Petrogenesis of Apatite-Rich Rocks (Nelsonites and Oxide–Apatite Gabbronorites) Associated with Massif Anorthosites . Economic Geology 96 , 797 – 815 . Google Scholar OpenURL Placeholder Text WorldCat Eales H. V. , Cawthorn R. G. ( 1996 ). The Bushveld Complex. In: Cawthorn R. G. (ed.) Developments in Petrology . Amsterdam : Elsevier , 15, 181 – 229 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Emslie R. F. ( 1978 ). Anorthosite massifs, rapakivi granites, and late Proterozoic rifting of North America . Precambrian Research 7 , 61 – 98 . Google Scholar Crossref Search ADS WorldCat Emslie R. F. ( 1985 ). Proterozoic Anorthosite Massifs. In: Tobi A. C., Touret J.L.R. (eds) The Deep Proterozoic Crust in the North Atlantic Provinces. NATO ASI Series, Series C: Mathematical and Physical Sciences , 158, 39 – 60 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Emslie R. F. , Hamilton M. A., Thériault R. J. ( 1994 ). Petrogenesis of a Mid-Proterozoic Anorthosite–Mangerite–Charnockite–Granite (AMCG) Complex: Isotopic and Chemical Evidence from the Nain Plutonic Suite . Journal of Geology 102 , 539 – 558 . Google Scholar Crossref Search ADS WorldCat Finlow-Bates T. , Stumpfl E. F. ( 1981 ). The behaviour of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine–exhalative ore deposits . Mineralium Deposita 16 , 319 – 328 . Google Scholar Crossref Search ADS WorldCat Fischer L. A. , Wang M., Charlier B., Namur O., Roberts R. J., Veksler I. V., Cawthorn R. G., Holtz F. ( 2016 ). Immiscible iron- and silica-rich liquids in the Upper Zone of the Bushveld Complex . Earth and Planetary Science Letters 443 , 108 – 117 . Google Scholar Crossref Search ADS WorldCat Floyd P. A. , Winchester J. A. ( 1975 ). Magma type and tectonic setting discrimination using immobile elements . Earth and Planetary Science Letters 27 , 211 – 218 . Google Scholar Crossref Search ADS WorldCat Fournier H. W. , Lee J. K. W., Camacho A., Creaser R. A. ( 2014 ). Retrogression of eclogite-facies shear zones by short-lived fluid infiltration during the Caledonian orogeny, Lofoten islands, Norway . In: Corfu, F., Gasser, T. & Chew D. M. (eds) New Perspectives on the Caledonides of Scandinavia and Related Areas: Geological Society , London , Special Publications 390 , 443 – 466 . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Froitzheim N. , Miladinova I., Janák M., Kullerud K., Krogh Ravna E., Majka J., Fonseca R. O. C., Münker C., Nagel T. J. ( 2016 ). Devonian subduction and syncollisional exhumation of continental crust in Lofoten . Geology 44 , 223 – 226 . Google Scholar Crossref Search ADS WorldCat Frost, R. B. & Lindsley, D. H. (1992). Equilibria among Fe-Ti Oxides, Pyroxenes, Olivine, and Quartz .2. Application. American Mineralogist 77 , 1004–1020. Frost C. D. , Frost B. R., Chamberlain K. R., Edwards B. R. ( 1999 ). Petrogenesis of the 1·43 Ga Sherman Batholith, SE Wyoming, USA; a reduced, rapakivi-type anorogenic granite . Journal of Petrology 40 , 1771 – 1802 . Google Scholar Crossref Search ADS WorldCat Frost R. B. , Frost C. D. ( 2008 ). On charnockite . Gondwana Research 13 , 30 – 44 . Google Scholar Crossref Search ADS WorldCat Frost R. B. , Barnes C. G., Collins W. J., Arculus R. J., Ellis D. J., Frost C. D. ( 2001 ). A geochemical classification for granitic rocks . Journal of Petrology 42 , 2033 – 2048 . Google Scholar Crossref Search ADS WorldCat Fuhrman M. L. , Lindsley D. H. ( 1988 ). Ternary-feldspar modeling and thermometry . American Mineralogist 73 , 201 – 215 . Google Scholar OpenURL Placeholder Text WorldCat Griffin W. L. , Heier K. S. ( 1973 ). Petrological implications of some corona structures . Lithos 6 , 315 – 335 . Google Scholar Crossref Search ADS WorldCat Griffin W. L. , Heier K. S., Taylor P. N., Weigand P. W. ( 1974 ). General Geology, Age and Chemistry of the Raftsund Mangerite Intrusion, Lofoten–Vestrålen . Norges Geologiske Undersøkelse 312 , 1 – 30 . Google Scholar OpenURL Placeholder Text WorldCat Griffin W. L. , Taylor P. N., Hakkinen J. W., Heier K. S., Iden I. K., Krogh E. J., Malm O., Olsen K. I., Ormaasen D. E., Tveten E. ( 1978 ). Archean and Proterozoic crustal evolution in Lofoten–Vestrålen . Journal of the Geological Society, London 135 , 629 – 647 . Google Scholar Crossref Search ADS WorldCat Grove T. L. , Juster T. C. ( 1989 ). Experimental investigations of low-Ca pyroxene stability and olivine–pyroxene–liquid equilibria at 1-atm in natural basaltic and andesitic liquids . Contributions to Mineralogy and Petrology 103 , 287 – 305 . Google Scholar Crossref Search ADS WorldCat He H. L. , Yu S.-Y., Song X.-Y., Du Z.-S., Dai Z.-H., Zhou T., Xie W. ( 2016 ). Origin of nelsonite and Fe–Ti oxides ore of the Damiao anorthosite complex, NE China: Evidence from trace element geochemistry of apatite, plagioclase, magnetite and ilmenite . Ore Geology Reviews 79 , 367 – 381 . Google Scholar Crossref Search ADS WorldCat Holness M. B. , Stripp G., Humphreys M. C. S., Veksler I. V., Nielsen T. F. D., Tegner C. ( 2011 ). Silicate Liquid Immiscibility within the Crystal Mush: Late-stage Magmatic Microstructures in the Skaergaard Intrusion . Journal of Petrology 52 , 175 – 222 . Google Scholar Crossref Search ADS WorldCat Honour V. C. , Holness M. B., Partridge J. L., Charlier B. ( 2019 ). Microstructural evolution of silicate immiscible liquids in ferrobasalts . Contributions to Mineralogy and Petrology 174 , Google Scholar OpenURL Placeholder Text WorldCat Hou T. , Veksler I. V. ( 2015 ). Experimental confirmation of high-temperature silicate liquid immiscibility in multicomponent ferrobasaltic systems . American Mineralogist 100 , 1304 – 1307 . Google Scholar Crossref Search ADS WorldCat Hou T. , Charlier B., Holtz F., Veksler I., Zhang Z. C., Thomas R., Namur O. ( 2018 ). Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide–apatite ore deposits . Nature Communications 9 . Google Scholar OpenURL Placeholder Text WorldCat Humphreys M. C. S. ( 2011 ). Silicate Liquid Immiscibility within the Crystal Mush: Evidence from Ti in Plagioclase from the Skaergaard Intrusion . Journal of Petrology 52 , 147 – 174 . Google Scholar Crossref Search ADS WorldCat Ihlen P. M. , Schiellerup H., Gautneb H., Skår Ø. Ø. ( 2014 ). Characterization of apatite resources in Norway and their REE potential—A review . Ore Geology Reviews 58 , 126 – 147 . Google Scholar Crossref Search ADS WorldCat Jakobsen J. K. , Veksler I. V., Tegner C., Brooks C. K. ( 2005 ). Immiscible iron- and silica-rich melts in basalt petrogenesis documented in the Skaergaard intrusion . Geology 33 , 885 – 888 . Google Scholar Crossref Search ADS WorldCat Jakobsen J. K. , Veksler I. V., Tegner C., Brooks C. K. ( 2011 ). Crystallization of the Skaergaard Intrusion from an Emulsion of Immiscible Iron- and Silica-rich Liquids: Evidence from Melt Inclusions in Plagioclase . Journal of Petrology 52 , 345 – 373 . Google Scholar Crossref Search ADS WorldCat Jang Y. D. , Naslund H. R. ( 2003 ). Major and trace element variation in ilmenite in the Skaergaard Intrusion: petrologic implications . Chemical Geology 193 , 109 – 125 . Google Scholar Crossref Search ADS WorldCat Jochum K. P. , Nohl U., Herwig K., Lammel E., Stoll B., Hofmann A. W. ( 2005 a). GeoReM: A New Geochemical Database for Reference Materials and Isotopic Standards . Geostandards and Geoanalytical Research 29 , 333 – 338 . Google Scholar Crossref Search ADS WorldCat Jochum K. P. , Willbold M., Raczek I., Stoll B., Herwig K. ( 2005 b). Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS . Geostandards and Geoanalytical Research 29 , 285 – 302 . Google Scholar Crossref Search ADS WorldCat Kushiro I. ( 1975 ). On the nature of silicate melt and its significance in magma genesis; regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals . American Journal of Science 275 , 411 – 431 . Google Scholar Crossref Search ADS WorldCat Lester G. W. , Clark A. H., Kyser T. K., Naslund H. R. ( 2013 a). Experiments on liquid immiscibility in silicate melts with H2O, P, S, F and Cl: implications for natural magmas . Contributions to Mineralogy and Petrology 166 , 329 – 349 . Google Scholar Crossref Search ADS WorldCat Lester G. W. , Kyser T. K., Clark A. H., Layton-Matthews D. ( 2013 b). Trace element partitioning between immiscible silicate melts with H2O, P, S, F, and Cl . Chemical Geology 357 , 178 – 185 . Google Scholar Crossref Search ADS WorldCat Li H. , Li L., Zhang Z., Santosh M., Liu M., Cui Y., Yang X., Chen J., Yao T. ( 2014 ). Alteration of the Damiao anorthosite complex in the northern North China Craton: implications for high-grade iron mineralization . Ore Geology Reviews 57 , 574 – 588 . Google Scholar Crossref Search ADS WorldCat Lindsley, D. H. & Frost, B. R. (1992). Equilibria among Fe-Ti Oxides, Pyroxenes, Olivine, and Quartz .1. Theory. American Mineralogist 77 , 987–1003. Lindsley D. H. , Epler N. ( 2017 ). Do Fe–Ti-oxide magmas exist? Probably not! American Mineralogist 102 , 2157 – 2169 . Google Scholar Crossref Search ADS WorldCat Malm O. , Ormaasen D. E. ( 1978 ). Mangerite–charnockite Intrusives on the Lofoten–Vesterålen area, North Norway: Petrography, Chemistry, Petrology . Norges Geologiske Undersøkelse 338 , 83 – 114 . Google Scholar OpenURL Placeholder Text WorldCat Malm O. A. ( 1976 ). Generell geologi, petrographi, geokjemi og petrologi av mangerittiske bergarter og orthogneiser i Hamarøy-området , Nordland . University of Oslo , 240 pp. Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Markl G. ( 2001 a). REE constraints on fractionation processes of massive-type anorthosites on the Lofoten Islands . Mineralogy and Petrology 72 , 325 – 351 . Google Scholar Crossref Search ADS WorldCat Markl G. ( 2001 b). A new type of silicate liquid immiscibility in peralkaline nepheline syenites (lujavrites) of the Ilimaussaq complex, South Greenland . Contributions to Mineralogy and Petrology 141 , 458 – 472 . Google Scholar Crossref Search ADS WorldCat Markl G. , Bucher K. ( 1997 ). Proterozoic eclogites from the Lofoten islands, northern Norway . Lithos 42 , 15 – 35 . Google Scholar Crossref Search ADS WorldCat Markl G. , Frost B. R. ( 1999 ). The origin of anorthosites and related rocks from the Lofoten Islands, northern Norway: II. Calculation of parental liquid compositions for anorthosites . Journal of Petrology 40 , 61 – 77 . Google Scholar Crossref Search ADS WorldCat Markl G. , Höhndorf A. ( 2003 ). Isotopic constraints on the origin of AMCG-suite rocks on the Lofoten Islands, N Norway . Mineralogy and Petrology 78 , 149 – 171 . Google Scholar Crossref Search ADS WorldCat Markl G. , Foster C. T., Bucher K. ( 1998 a). Diffusion-controlled olivine corona textures in granitic rocks from Lofoten, Norway: calculation of Onsager diffusion coefficients, thermodynamic modelling and petrological implications . Journal of Metamorphic Geology 16 , 607 – 623 . Google Scholar Crossref Search ADS WorldCat Markl G. , Frost B. R., Bucher K. ( 1998 b). The origin of anorthosites and related rocks from the Lofoten Islands, Northern Norway: I. Field relations and estimation of intrinsic variables . Journal of Petrology 39 , 1425 – 1452 . Google Scholar Crossref Search ADS WorldCat Middlemost E. A. K. ( 1994 ). Naming materials in the magma/igneous rock system . Earth-Science Reviews 37 , 215 – 224 . Google Scholar Crossref Search ADS WorldCat Mitchell J. N. , Scoates J. S., Frost C. D., Kolker A. ( 1996 ). The Geochemical Evolution of Anorthosite Residual Magmas in the Laramie Anorthosite Complex, Wyoming . Journal of Petrology 37 , 637 – 660 . Google Scholar Crossref Search ADS WorldCat Morimoto N. , Fabries J., Ferguson A. K., Ginzburg I. V., Ross M., Seifert F. A., Zussman J., Aoki K., Gottardi G. ( 1988 ). Nomenclature of Pyroxenes . American Mineralogist 73 , 1123 – 1133 . Google Scholar OpenURL Placeholder Text WorldCat Morse S. A. ( 1982 ). A partisan review of Proterozoic anorthosites . American Mineralogist 65 , 1087 – 1100 . Google Scholar OpenURL Placeholder Text WorldCat Namur O. , Charlier B. ( 2012 ). Efficiency of compaction and compositional convection during mafic crystal mush solidification: the Sept Iles layered intrusion . Contributions to Mineralogy and Petrology 163 , 1049 – 1068 . Google Scholar Crossref Search ADS WorldCat Namur O. , Charlier B., Toplis M. J., Higgins M. D., Hounsell V., Liégeois J. P., Vander Auwera J. ( 2011 ). Differentiation of Tholeiitic Basalt to A-Type Granite in the Sept Iles Layered Intrusion . Journal of Petrology 52 , 487 – 539 . Google Scholar Crossref Search ADS WorldCat Namur O. , Charlier B., Holness M. B. ( 2012 ). Dual origin of Fe–Ti–P gabbros by immiscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion . Lithos 154 , 100 – 114 . Google Scholar Crossref Search ADS WorldCat Namur O. , Abily B., Boudreau A. E., Blanchette F., Bush J. W. M., Ceuleneer G., Charlier B., Donaldson C. H., Duchesne J.-C., Higgins M. D., Morata D., Nielsen T. F. D., O’Driscoll B., Pang K. N., Peacock T., Spandler C. J., Toramaru A., Veksler I. ( 2015 a). Igneous Layering in Basaltic Magma Chambers. In: Charlier B., Namur O., Latypov R., Tegner C. (eds) Layered Intrusions . Berlin : Springer , pp. 75 – 152 . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Namur O. , Higgins M. D., Vander Auwera J. ( 2015 b). The Sept Iles Intrusive Suite, Quebec, Canada. In: Charlier B., Namur O., Latypov R., Tegner C. (ed.) Layered Intrusions . Berlin : Springer , pp. 465 – 516 . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Naslund H. R. , McBirney A. R. ( 1996 ). Mechanisms of Formation of Igneous Layering. In: Cawthorn R. G. (ed.) Developments in Petrology . Amsterdam : Elsevier , pp. 1 – 43 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Nielsen R. L. , Gallahan W. E., Newberger F. ( 1992 ). Experimentally determined mineral–melt partition coefficients for Sc, Y and REE for olivine, orthopyroxene, pigeonite, magnetite and ilmenite . Contributions to Mineralogy and Petrology 110 , 488 – 499 . Google Scholar Crossref Search ADS WorldCat Nielsen T. F. D. , Andersen J. C. Ø., Holness M. B., Keiding J. K., Rudashevsky N. S., Rudashevsky V. N., Salmonsen L. P., Tegner C., Veksler I. V. ( 2015 ). The Skaergaard PGE and gold deposit: the result of in situ fractionation, sulphide saturation, and magma chamber-scale precious metal redistribution by immiscible Fe-rich melt . Journal of Petrology 56 , 1643 – 1676 . Google Scholar Crossref Search ADS WorldCat Nielsen T. F. D. , Brooks C. K., Keiding J. K. ( 2019 ). Bulk Liquid for the Skaergaard Intrusion and its PGE–Au Mineralization: Composition, Correlation, Liquid Line of Descent, and Timing of Sulphide Saturation and Silicate–Silicate Immiscibility . Journal of Petrology doi:10.1093/petrology/egz055. Google Scholar OpenURL Placeholder Text WorldCat Ormaasen D. E. ( 1977 ). Petrology of the Hopen mangerite charnockite intrusion, Lofoten, north Norway . Lithos 10 , 291 – 310 . Google Scholar Crossref Search ADS WorldCat Osmundsen P. T. , Redfield T. F., Hendriks B. H. W., Bergh S., Hansen J.-A., Henderson I. H. C., Dehls J., Lauknes T. R., Larsen Y., Anda E., Davidsen B. ( 2010 ). Fault-controlled alpine topography in Norway . Journal of the Geological Society, London 167 , 83 – 98 . Google Scholar Crossref Search ADS WorldCat Owens B. E. , Rockow M. W., Dymek R. F. ( 1993 ). Jotunites from the Grenville Province, Quebec; petrological characteristics and implications for massif anorthosite petrogenesis . Lithos 30 , 57 – 80 . Google Scholar Crossref Search ADS WorldCat Peng P. , Wang X., Lai Y., Wang C., Windley B. F. ( 2015 ). Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: Implications for genesis of the bimodal Xiong’er volcanic province . Lithos 236–237 , 106 – 122 . Google Scholar Crossref Search ADS WorldCat Philpotts A. R. ( 1967 ). Origin of certain iron–titanium oxide and apatite rocks . Economic Geology 62 , 303 – 315 . Google Scholar Crossref Search ADS WorldCat Philpotts A. R. ( 1976 ). Silicate liquid immiscibility; its probable extent and petrogenetic significance . American Journal of Science 276 , 1147 – 1177 . Google Scholar Crossref Search ADS WorldCat Philpotts A. R. ( 1979 ). Silicate Liquid Immiscibility in Tholeiitic Basalts . Journal of Petrology 20 , 99 – 118 . Google Scholar Crossref Search ADS WorldCat Philpotts A. R. ( 1981 ). A model for the generation of massif-type anorthosites . Canadian Mineralogist 19 , 233 – 253 . Google Scholar OpenURL Placeholder Text WorldCat Philpotts A. R. ( 1982 ). Compositions of immiscible liquids in volcanic rocks . Contributions to Mineralogy and Petrology 80 , 201 – 218 . Google Scholar Crossref Search ADS WorldCat Pollard P. J. ( 2006 ). An intrusion-related origin for Cu–Au mineralization in iron oxide–copper–gold (IOCG) provinces . Mineralium Deposita 41 , 179 – 187 . Google Scholar Crossref Search ADS WorldCat Rhodes A. L. , Oreskes N. ( 1995 ). Magnetite Deposition at El Laco, Chile: implications for Fe-Oxide Formation in Magmatic–Hydrothermal Systems. In: Clark A. H. (ed.) In Giant Ore Deposits II: Controls on the Scale of Orogenic Magmatic–Hydrothermal Mineralization . Princeton, NJ, Princeton University Press, pp. 582 – 622 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Roedder E. ( 1979 ). Silicate Liquid Immiscibility in Magmas. In: Joder H. S. J. (ed.) Evolution of Igneous Rocks: Fiftieth Anniversary Perspectives: Princeton Legacy Library . Princeton, NJ, Princeton University Press, pp. 15 – 58 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Roedder E. , Weiblen P. W. ( 1970 ). Lunar petrology of silicate melt inclusions, Apollo 11 rocks . Geochimica et Cosmochimica Acta, Supplement 1 , 801 . Google Scholar OpenURL Placeholder Text WorldCat Samperton K. M. , Schoene B., Cottle J. M., Brenhin Keller C., Crowley J. L., Schmitz M. D. ( 2015 ). Magma emplacement, differentiation and cooling in the middle crust: Integrated zircon geochronological–geochemical constraints from the Bergell Intrusion, Central Alps . Chemical Geology 417 , 322 – 340 . Google Scholar Crossref Search ADS WorldCat Schoene B. , Schaltegger U., Brack P., Latkoczy C., Stracke A., Gunther D. ( 2012 ). Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith . Earth and Planetary Science Letters 355–356 , 162 – 173 . Google Scholar Crossref Search ADS WorldCat Scoates J. S. & Chamberlain K. R. ( 2003 ). Geochronologic, geochemical and isotopic constraints on the origin of monzonitic and related rocks in the Laramie anorthosite complex, Wyoming, USA . Precambrian Research 124 , 269 – 304 . Google Scholar Crossref Search ADS WorldCat Scoates J. S. , Frost C. D., Mitchell J. N., Lindsley D. H., Frost B. R. ( 1996 ). Residual-liquid origin for a monzonitic intrusion in a mid-Proterozoic anorthosite complex: The Sybille intrusion, Laramie anorthosite complex, Wyoming . Geological Society of America Bulletin 108 , 1357 – 1371 . Google Scholar Crossref Search ADS WorldCat Shi P. ( 1993 ). Low-Pressure Phase-Relationships in the System Na2O–Cao–FeO–MgO–Al2O3–SiO2 at 1100°C, with Implications for the Differentiation of Basaltic Magmas . Journal of Petrology 34 , 743 – 762 . Google Scholar Crossref Search ADS WorldCat Steltenpohl M. , Hames W., Andresen A., Markl G. ( 2003 ). New Caledonian eclogite province in Norway and potential Laurentian (Taconic) and Baltic links . Geology 31 , 985 – 988 . Google Scholar Crossref Search ADS WorldCat Steltenpohl M. G. , Kassos G., Andresen A. ( 2006 ). Retrograded eclogite-facies pseudotachylytes as deep-crustal paleoseismic faults within continental basement of Lofoten . Geosphere 2 , 61 – 72 . Google Scholar Crossref Search ADS WorldCat Streckeisen A. , Zanettin B., Le Bas M. J., Bonin B., Bateman P., Bellieni G., Dudek A., Efremova S., Keller J., Lameyre J., Sabine P. A., Schmid R., Sørensen H., Woolley A. R. ( 2002 ). Igneous Rocks: A Classification and Glossary of Terms . Cambridge : Cambridge University Press . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Sun S. S. , McDonough W. F. ( 1989 ). Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes. In: Saunders A. D., Norry M. J. (eds) Magmatism in the Ocean Basins. Geological Society, London, Special Publications 42 , 313 – 345 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Szymanowski D. , Ellis B., Wotzlaw J. F., Bachmann O. ( 2019 ). Maturation and rejuvenation of a silicic magma reservoir: High-resolution chronology of the Kneeling Nun Tuff . Earth and Planetary Science Letters 510 , 103 – 115 . Google Scholar Crossref Search ADS WorldCat Tollari N. , Barnes S. J., Cox R. A., Nabil H. ( 2008 ). Trace element concentrations in apatites from the Sept-Iles Intrusive Suite, Canada—Implications for the genesis of nelsonites . Chemical Geology 252 , 180 – 190 . Google Scholar Crossref Search ADS WorldCat Toplis M. J. , Libourel G., Carroll M. R. ( 1994 ). The role of phosphorus in crystallisation processes of basalt: An experimental study . Geochimica et Cosmochimica Acta 58 , 797 – 810 . Google Scholar Crossref Search ADS WorldCat Tveten E. ( 1978 ). Geologisk Kart over Norge, Bergrunnskart SVOLVÆr 1:250,000. Norges Geologiske Undersøkelse. Ubide T. , McKenna C. A., Chew D. M., Kamber B. S. ( 2015 ). High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories . Chemical Geology 409 , 157 – 168 . Google Scholar Crossref Search ADS WorldCat Van Achterbergh E. , Ryan C. G., Jackson S. E., Griffin W. L. ( 2001 ). Data Reduction Software for LA-ICPMS. In: Sylvester P. (ed.) Laser Ablation ICPMS in the Earth Sciences: Mineralogical Association of Canada, 29 , 239 – 243 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Vander Auwera J. , Longhi J., Duchesne J.-C. ( 1998 ). A Liquid Line of Descent of the Jotunite (Hypersthene Monzodiorite) Suite . Journal of Petrology 39 , 439 – 468 . Google Scholar Crossref Search ADS WorldCat VanTongeren J. A. , Mathez E. A. ( 2012 ). Large-scale liquid immiscibility at the top of the Bushveld Complex . Geology 40 , 491 – 494 . Google Scholar Crossref Search ADS WorldCat Veksler I. V. ( 2009 ). Extreme iron enrichment and liquid immiscibility in mafic intrusions: Experimental evidence revisited . Lithos 111 , 72 – 82 . Google Scholar Crossref Search ADS WorldCat Veksler I. V. , Charlier B., ( 2015 ). Silicate Liquid Immiscibility in Layered Intrusions. In: Charlier B., Namur O., Latypov R., Tegner C. (ed.) Layered Intrusions . Berlin : Springer , pp. 229 – 258 . Google Scholar Crossref Search ADS Google Preview WorldCat COPAC Veksler I. V. , Dorfman A. M., Danyushevsky L. V., Jakobsen J. K., Dingwell D. B. ( 2006 ). Immiscible silicate liquid partition coefficients: implications for crystal–melt element partitioning and basalt petrogenesis . Contributions to Mineralogy and Petrology 152 , 685 – 702 . Google Scholar Crossref Search ADS WorldCat Veksler I. V. , Dorfman A. M., Borisov A. A., Wirth R., Dingwell D. B. ( 2007 ). Liquid immiscibility and the evolution of basaltic magma . Journal of Petrology 48 , 2187 – 2210 . Google Scholar Crossref Search ADS WorldCat Veksler I. V. , Dorfman A. M., Rhede D., Wirth R., Borisov A. A., Dingwell D. B. ( 2008 ). Liquid unmixing kinetics and the extent of immiscibility in the system K2O–CaO–FeO–Al2O3–SiO2 . Chemical Geology 256 , 119 – 130 . Google Scholar Crossref Search ADS WorldCat Wade S. J. R. ( 1985 ). Radiogenic Isotope Studies of Crustal Forming Processes in the Lofoten–Vestrålen Province of North Norway . Department of Earth Sciences, University of Oxford , 601 pp. Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Wager L. R. , Brown G. M. ( 1968 ). Layered Igenous Rocks . Edinburgh : Oliver & Boyd . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Wang C. Y. , Zhou M.-F. ( 2013 ). New textural and mineralogical constraints on the origin of the Hongge Fe–Ti-V oxide deposit, SW China . Mineralium Deposita 48 , 787 – 798 . Google Scholar Crossref Search ADS WorldCat Wang K. , Yan Wang C., Zhong-Yuan R. ( 2018 ). Apatite-hosted melt inclusions from the Panzhihua gabbroic-layered intrusion associated with a giant Fe–Ti oxide deposit in SW China: insights for magma unmixing within a crystal mush . Contributions to Mineralogy and Petrology 173 , 59 . Google Scholar Crossref Search ADS WorldCat Wang M. , Veksler I., Zhang Z. C., Hou T., Keiding J. K. ( 2017 ). The origin of nelsonite constrained by melting experiment and melt inclusions in apatite: The Damiao anorthosite complex, North China Craton . Gondwana Research 42 , 163 – 176 . Google Scholar Crossref Search ADS WorldCat Watson E. B. ( 1976 ). Two-liquid partition coefficients: Experimental data and geochemical implications . Contributions to Mineralogy and Petrology 56 , 119 – 134 . Google Scholar Crossref Search ADS WorldCat Westhues A. , Hanchar J. M., LeMessurier M. J., Whitehouse M. J. ( 2017 ). Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide–apatite ore (northern Sweden) from zircon Hf and O isotopes . Geology 45 , 571 – 574 . Google Scholar Crossref Search ADS WorldCat Whitney D. L. , Evans B. W. ( 2010 ). Abbreviations for names of rock-forming minerals . American Mineralogist 95 , 185 – 187 . Google Scholar Crossref Search ADS WorldCat Wiebe R. A. ( 1990 ). Evidence for Unusually Feldspathic Liquids in the Nain Complex, Labrador . American Mineralogist 75 , 1 – 12 . Google Scholar OpenURL Placeholder Text WorldCat Wilmart E. , Demaiffe D., Duchesne J. C. ( 1989 ). Geochemical constraints on the genesis of the Tellnes ilmenite deposit, Southwest Norway . Economic Geology 84 , 1047 – 1056 . Google Scholar Crossref Search ADS WorldCat Zhao T. P. , Chen W. ( 2009 ). Geochemical and Nd-Hf isotopic constrains on the origin of the similar to 1·74 Ga Damiao anorthosite complex, North China Craton . Geochimica Et Cosmochimica Acta 73 , A1519.A1519. Google Scholar OpenURL Placeholder Text WorldCat Zhou M.-F. , Robinson P. T., Lesher C. M., Keays R. R., Zhang C.-J., Malpas J. ( 2005 ). Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe–Ti–V Oxide Deposits, Sichuan Province, SW China . Journal of Petrology 46 , 2253 – 2280 . Google Scholar Crossref Search ADS WorldCat © The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) TI - Evidence for Silicate–Liquid Immiscibility in Monzonites and Petrogenesis of Associated Fe–Ti–P-rich rocks: Example from the Raftsund Intrusion, Lofoten, Northern Norway JF - Journal of Petrology DO - 10.1093/petrology/egaa045 DA - 2020-10-18 UR - https://www.deepdyve.com/lp/oxford-university-press/evidence-for-silicate-liquid-immiscibility-in-monzonites-and-LLhsQnB7lV VL - 61 IS - 4 DP - DeepDyve ER -