TY - JOUR AU - Zijlstra, R. T. AB - Abstract Immature green canola seed (full-fat green canola seed [FFGC]) is rejected by canola crushing plants due to chlorophyll staining of oil destined for human consumption. With >35% oil, FFGC can contribute energy to pig diets. The nutritive value of FFGC for growing–finishing pigs was determined in 2 studies. In Exp. 1, 6 ileal-cannulated barrows (46.5 kg BW) were fed 3 diets as a replicated 3 × 3 Latin square to determine standardized ileal digestible (SID) coefficients of AA and calculate DE and NE values for FFGC. A diet including 40% FFGC replaced wheat in a basal diet and a cornstarch-based N-free diet were fed to determine energy and nutrient digestibility by difference and to estimate basal endogenous AA losses to calculate SID of AA. In Exp. 2, 1,100 pigs (32.9 kg BW), housed in 50 pens of 22 barrows or gilts per pen, were fed 5 diets including 0, 5, 10, and 15% constant or declining amounts (15, 10, 5, 0, and 0%, respectively) of FFGC over 5 phases to determine effects of feeding FFGC on growth performance and carcass characteristics. Phase diets were formulated to provide 4.00, 3.60, 3.25, 2.90, and 2.65 g SID Lys/Mcal NE for d 0 to 21, d 22 to 42, d 43 to 62, d 63 to 74, and d 75 to 123 kg market weight. Carcass characteristics were measured using the Destron grading system. On DM basis, FFGC contained 43% ether extract, 25% CP, 22% NDF, 10 μmol/g glucosinolates, 1.35% Lys, 0.5% Met, 0.9% Thr, and 0.27% Trp. In FFGC, SID coefficients of Lys, Met, Thr, and Trp were 86.9, 87.3, 76.9, and 84.3%, respectively, and calculated DE and NE values were 4.92 and 3.50 Mcal/kg of DM, respectively. Overall, increasing dietary FFGC inclusion from 0 to 15% linearly decreased (P < 0.05) G:F, carcass weight, and dressing percentage (0.392 to 0.381 kg/kg, 96.7 to 95.7 kg, and 78.4 to 77.8%, respectively) and tended to decrease (P = 0.078) ADG. Pigs fed decreasing amounts of FFGC by growth phase compared with controls (0% FFGC) had lower (P = 0.011) overall G:F (0.392 vs. 0.372 kg/kg). Increasing dietary FFGC inclusion did not affect carcass backfat thickness and loin depth. The FFGC was a good source of dietary energy and AA. However, increasing dietary FFGC inclusion for pigs reduced G:F and dressing percentage likely because of the increased dietary fiber content, resulting from increasing FFGC and barley and reducing wheat, soybean meal, and tallow in diets. Inclusion of FFGC in swine diets should, therefore, be based on targeted G:F and relative cost to other feedstuffs. INTRODUCTION The price of corn and wheat grain, the most common dietary energy sources for pigs, has risen mainly because of their increased demand for ethanol production. The price of soybean meal, the common protein source in livestock feeds, has also risen partly because of increased area planted to corn. Therefore, feedstuffs that can be fed as alternatives to these conventional energy and protein sources for swine require evaluation (Zijlstra and Beltranena, 2013). Worldwide demand for food oil has led to record canola production (14.6 million t for the 2011 to 2012 crop year) in Canada (AAFC, 2013). The increased canola production also increases availability of seed that does not meet food oil quality standards. Green canola seed does not properly mature before harvest because of late seeding or early frost (Chung et al., 2006). Canola crushing plants reject green canola seed because of chlorophyll staining of oil, which is unappealing to consumers (Daun, 2003) and hence becomes available for animal feeding as full-fat green canola seed (FFGC). With more than 35% ether extract and 20% CP (Daun, 1985), FFGC can be a good source of dietary energy and AA and partially replace conventional sources of energy and AA in swine diets. However, information is lacking on the nutritive value of FFGC fed to pigs. Canola seed is relatively high in fiber and glucosinolates, which may reduce nutrient utilization and feed intake. Oil in FFGC is mostly unsaturated (NRC, 2012), which can reduce pork quality. To optimize FFGC inclusion in pig diets, characterizing the nutritive value of FFGC and its effects on growth performance and carcass traits of pigs is needed. The objectives of this study were to calculate the NE value and determine the standardized ileal digestible (SID) coefficients of AA in FFGC fed to pigs (Exp. 1) and to determine the effects of including 0, 5, 10, or 15% FFGC or decreasing amounts by growth phase in diets for growing–finishing pigs on growth performance and carcass traits (Exp. 2). MATERIALS AND METHODS Animal procedures were reviewed by the University of Alberta Animal Care and Use Committee for Livestock. Pigs were cared for in accordance with the guidelines described by the Canadian Council on Animal Care (CCAC, 2009). Two studies were conducted: Exp. 1, a digestibility study at the Swine Research and Technology Centre, University of Alberta (Edmonton, AB, Canada); and Exp. 2, a growth performance and carcass traits study at a contract finisher test unit (Lougheed, AB, Canada). The FFGC for Exp. 2 was obtained from 1 local crop producer in 2 truck loads (second load was also used for Exp. 1) and was graded by the Canadian Grain Commission (Winnipeg, MB, Canada). Experiment 1 Six crossbred barrows (46.5 ± 0.8 kg; Duroc × Large White/Landrace F1; Genex Hybrid, Hypor, Regina, SK, Canada) were surgically fitted with a T-cannula at the distal ileum (Sauer and Ozimek, 1986). Pigs were housed individually in metabolism pens (1.2 by 1.2 m) that allowed freedom of movement in a temperature-controlled room (22 ± 2°C). Pens had plastic-coated expanded metal floor, polyvinyl chloride walls (0.9 m high) fitted with plexiglass windows (0.3 by 0.3 m), a single-space dry feeder, and a cup drinker. Diets included a cereal grain basal with wheat as the sole source of energy and protein, a FFGC diet, in which FFGC replaced 40% of the wheat, and a cornstarch N-free diet (Table 1). The wheat grain was ground through a 2.8-mm screen in a hammer mill (Jacobson Hammer Mill; Carter Day International, Minneapolis, MN). The FFGC was first blended with wheat grain and then co-ground. Diets were provided as mash. The basal diet was used to calculate the nutrient digestibility of FFGC by the difference method (Adeola, 2001), whereas the N-free diet was used to estimate basal endogenous AA losses to calculate SID of AA (Stein et al., 2007). Diets contained Cr2O3 (0.4%) as an indigestible marker. The study was conducted as a replicated 3 × 3 Latin square to attain 6 observations per diet. Each period consisted of 9 d: a 5-d diet adaptation followed by 2 d of fecal collection and then 2 d of ileal digesta collection. Pigs were fed the diets 3 times at maintenance energy requirement (3 × 110 kcal of DE/kg of BW0.75; NRC, 1998) based on BW at the beginning of each period. Daily feed allowance was offered in 2 equal portions at 0800 and 1500 h. Feces were collected continuously in plastic bags fitted around the anus that were replaced a minimum of 2 times per day (van Kleef et al., 1994). Ileal digesta was collected continuously for 10 h from 0800 to 1800 h as described by Seneviratne et al. (2010). Collected feces and digesta were pooled by each pig and period and stored frozen at –20°C. Table 1. Ingredient composition and analyzed nutrient content of diets fed in Exp. 1 Item  Wheat  Wheat and full-fat canola  N free  Ingredient, % as-fed      Wheat  96.3  56.3  –      Cornstarch  –  –  85.5      Full-fat green canola seed  –  40.0  –      Dextrose  –  –  5.0      Cellulose  –  –  3.0      Canola oil  –  –  2.0      Limestone  1.1  1.1  1.0      Mono-dicalcium phosphate  0.8  0.8  1.2      Salt  0.4  0.4  0.4      Vitamin premix1  0.5  0.5  0.5      Mineral premix2  0.5  0.5  0.5      KCO3 (56% K)  –  –  0.4      MgO (58% Mg)  –  –  0.1      Cr2O3  0.4  0.4  0.4  Analyzed nutrients, % DM basis      DM  88.2  91.2  88.8      CP  14.3  18.4  0.92      Ether extract  2.17  19.5  1.43      Crude fiber  2.01  2.84  1.85      Ash  5.29  6.15  3.18  Indispensable AA      Arg  0.61  0.93  0.02      His  0.30  0.43  0.01      Ile  0.48  0.67  0.03      Leu  0.90  1.23  0.05      Lys  0.40  0.79  0.03      Met  0.23  0.33  0.00      Phe  0.63  0.76  0.03      Thr  0.38  0.59  0.02      Trp  0.18  0.19  0.01      Val  0.58  0.84  0.03  Dispensable AA      Ala  0.46  0.71  0.03      Asp  0.66  1.00  0.04      Cys  0.29  0.41  0.00      Glu  3.92  3.94  0.07      Gly  0.53  0.76  0.02      Pro  1.33  1.39  0.05      Ser  0.53  0.65  0.02      Tyr  0.35  0.48  0.02  Item  Wheat  Wheat and full-fat canola  N free  Ingredient, % as-fed      Wheat  96.3  56.3  –      Cornstarch  –  –  85.5      Full-fat green canola seed  –  40.0  –      Dextrose  –  –  5.0      Cellulose  –  –  3.0      Canola oil  –  –  2.0      Limestone  1.1  1.1  1.0      Mono-dicalcium phosphate  0.8  0.8  1.2      Salt  0.4  0.4  0.4      Vitamin premix1  0.5  0.5  0.5      Mineral premix2  0.5  0.5  0.5      KCO3 (56% K)  –  –  0.4      MgO (58% Mg)  –  –  0.1      Cr2O3  0.4  0.4  0.4  Analyzed nutrients, % DM basis      DM  88.2  91.2  88.8      CP  14.3  18.4  0.92      Ether extract  2.17  19.5  1.43      Crude fiber  2.01  2.84  1.85      Ash  5.29  6.15  3.18  Indispensable AA      Arg  0.61  0.93  0.02      His  0.30  0.43  0.01      Ile  0.48  0.67  0.03      Leu  0.90  1.23  0.05      Lys  0.40  0.79  0.03      Met  0.23  0.33  0.00      Phe  0.63  0.76  0.03      Thr  0.38  0.59  0.02      Trp  0.18  0.19  0.01      Val  0.58  0.84  0.03  Dispensable AA      Ala  0.46  0.71  0.03      Asp  0.66  1.00  0.04      Cys  0.29  0.41  0.00      Glu  3.92  3.94  0.07      Gly  0.53  0.76  0.02      Pro  1.33  1.39  0.05      Ser  0.53  0.65  0.02      Tyr  0.35  0.48  0.02  1Provided the following per kilogram of diet: vitamin A, 8,250 IU; vitamin D3, 825 IU; vitamin E, 40 IU; niacin, 35 mg; D-pantothenic acid, 15 mg; riboflavin, 5 mg; menadione, 4 mg; folic acid, 2 mg; thiamine, 1 mg; D-biotin, 0.2 mg; and vitamin B12, 0.025 mg. 2Provided the following per kilogram of diet: Zn, 100 mg as ZnSO4; Fe, 80 mg as FeSO4; Cu, 50 mg as CuSO4; Mn, 25 mg as MnSO4; I, 0.5 mg as Ca(IO3)2; and Se, 0.1 mg as Na2SeO3. View Large Table 1. Ingredient composition and analyzed nutrient content of diets fed in Exp. 1 Item  Wheat  Wheat and full-fat canola  N free  Ingredient, % as-fed      Wheat  96.3  56.3  –      Cornstarch  –  –  85.5      Full-fat green canola seed  –  40.0  –      Dextrose  –  –  5.0      Cellulose  –  –  3.0      Canola oil  –  –  2.0      Limestone  1.1  1.1  1.0      Mono-dicalcium phosphate  0.8  0.8  1.2      Salt  0.4  0.4  0.4      Vitamin premix1  0.5  0.5  0.5      Mineral premix2  0.5  0.5  0.5      KCO3 (56% K)  –  –  0.4      MgO (58% Mg)  –  –  0.1      Cr2O3  0.4  0.4  0.4  Analyzed nutrients, % DM basis      DM  88.2  91.2  88.8      CP  14.3  18.4  0.92      Ether extract  2.17  19.5  1.43      Crude fiber  2.01  2.84  1.85      Ash  5.29  6.15  3.18  Indispensable AA      Arg  0.61  0.93  0.02      His  0.30  0.43  0.01      Ile  0.48  0.67  0.03      Leu  0.90  1.23  0.05      Lys  0.40  0.79  0.03      Met  0.23  0.33  0.00      Phe  0.63  0.76  0.03      Thr  0.38  0.59  0.02      Trp  0.18  0.19  0.01      Val  0.58  0.84  0.03  Dispensable AA      Ala  0.46  0.71  0.03      Asp  0.66  1.00  0.04      Cys  0.29  0.41  0.00      Glu  3.92  3.94  0.07      Gly  0.53  0.76  0.02      Pro  1.33  1.39  0.05      Ser  0.53  0.65  0.02      Tyr  0.35  0.48  0.02  Item  Wheat  Wheat and full-fat canola  N free  Ingredient, % as-fed      Wheat  96.3  56.3  –      Cornstarch  –  –  85.5      Full-fat green canola seed  –  40.0  –      Dextrose  –  –  5.0      Cellulose  –  –  3.0      Canola oil  –  –  2.0      Limestone  1.1  1.1  1.0      Mono-dicalcium phosphate  0.8  0.8  1.2      Salt  0.4  0.4  0.4      Vitamin premix1  0.5  0.5  0.5      Mineral premix2  0.5  0.5  0.5      KCO3 (56% K)  –  –  0.4      MgO (58% Mg)  –  –  0.1      Cr2O3  0.4  0.4  0.4  Analyzed nutrients, % DM basis      DM  88.2  91.2  88.8      CP  14.3  18.4  0.92      Ether extract  2.17  19.5  1.43      Crude fiber  2.01  2.84  1.85      Ash  5.29  6.15  3.18  Indispensable AA      Arg  0.61  0.93  0.02      His  0.30  0.43  0.01      Ile  0.48  0.67  0.03      Leu  0.90  1.23  0.05      Lys  0.40  0.79  0.03      Met  0.23  0.33  0.00      Phe  0.63  0.76  0.03      Thr  0.38  0.59  0.02      Trp  0.18  0.19  0.01      Val  0.58  0.84  0.03  Dispensable AA      Ala  0.46  0.71  0.03      Asp  0.66  1.00  0.04      Cys  0.29  0.41  0.00      Glu  3.92  3.94  0.07      Gly  0.53  0.76  0.02      Pro  1.33  1.39  0.05      Ser  0.53  0.65  0.02      Tyr  0.35  0.48  0.02  1Provided the following per kilogram of diet: vitamin A, 8,250 IU; vitamin D3, 825 IU; vitamin E, 40 IU; niacin, 35 mg; D-pantothenic acid, 15 mg; riboflavin, 5 mg; menadione, 4 mg; folic acid, 2 mg; thiamine, 1 mg; D-biotin, 0.2 mg; and vitamin B12, 0.025 mg. 2Provided the following per kilogram of diet: Zn, 100 mg as ZnSO4; Fe, 80 mg as FeSO4; Cu, 50 mg as CuSO4; Mn, 25 mg as MnSO4; I, 0.5 mg as Ca(IO3)2; and Se, 0.1 mg as Na2SeO3. View Large Experiment 2 In a commercial-scale trial, 1,100 crossbred pigs (550 barrows and 550 gilts; Duroc [Designed Genetics Inc., Lockport, MB, Canada] × Large White/Landrace [Line 277; Fast Genetics, Saskatoon, SK, Canada]) with 32.9 ± 1.1 kg BW were selected. At filling the unit, pigs were divided into 50 pens of either 22 barrows or gilts blocked by BW. Pens of pigs were then randomly allocated to 1 of 5 dietary regimes within sex and block, for a total of 5 pens per dietary regimen per sex. Pens (6.1 by 2.4 m) had fully slatted concrete floor, concrete side panels with open slots, and solid polyvinyl chloride front gates. Pens were equipped with a wet–dry feeder that provided 2 opposite feeding troughs (model F1-115; Crystal Spring Hog Equipment, St. Agathe, MB, Canada) mounted halfway along the dividing wall between pens. Water was also available from a bowl drinker located near a corner at the back wall. The room was ventilated using negative pressure and maintained within the thermoneutral zone for the pigs. Light was provided for 12 h (0700 to 1900 h) daily. Pigs had continuous access to water and the mash diets. Five test dietary regimens were offered: 4 were constant dietary inclusions of 0, 5, 10, and 15% FFGC and the fifth decreased the inclusion of FFGC by growth phase (Tables 2 and 3; phase 1, d 0 to 21; phase 2, d 22 to 42; phase 3, d 43 to 62; phase 4, d 63 to 74; and phase 5, d 75 to market weight). For feed formulation, the NE values for feedstuffs were obtained from Sauvant et al. (2004) and the SID AA values from NRC (1998). For FFGC, energy and nutrient values were calculated from analyzed chemical composition using a software (EvaPig; French National Institute for Agricultural Research, Paris, France). To maintain diet NE value and SID AA content within phase, increasing inclusion of FFGS was accommodated by reducing tallow and soybean meal and then exchanging wheat for barley, with a final correction using synthetic AA. Pigs were weighed by pen on d 0, 21, 42, 62, and 83 and not on d 74; therefore, phases 4 and 5 were combined for analyses. Feed was delivered, weighed by difference, and tracked for each pen using a robotic system (FeedLogic Co., Willmar, MN). Feed remaining in the feeder hopper at the end of each period was estimated by measuring the distance from the leveled feed to the top of the hopper and multiplying by diet density, which resulted in a maximum weight error of 0.1% (Seneviratne et al., 2010). Collected data were used to calculate pen ADG, ADFI, and G:F. Table 2. Ingredient composition and calculated energy and nutrient content (as-fed) of phase 1 and 2 diets fed in Exp. 21   Full-fat green canola seed, %    Phase 1 (d 0 to 21)  Phase 2 (d 22 to 42)  Item  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  48.27  41.36  20.01  2.00  55.96  53.83  51.78  8.00      Barley  –  5.00  24.17  40.42  –  –  –  39.85      Wheat DDGS2  25.00  25.00  25.00  25.00  20.00  20.00  20.00  20.00      Field pea  16.00  16.00  16.00  15.33  15.00  15.00  15.00  15.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00      Soybean meal  5.06  3.28  1.50  –  3.59  2.05  0.50  –      Tallow  3.23  1.96  1.00  –  3.08  1.75  0.40  –      Limestone  1.38  1.35  1.29  1.23  1.32  1.33  1.30  1.20      l-Lys HCl  0.45  0.45  0.45  0.45  0.42  0.41  0.40  0.36      Salt  0.37  0.37  0.36  0.35  0.42  0.42  0.42  0.40      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10      l-Thr  0.07  0.07  0.06  0.06  0.06  0.06  0.05  0.04      dl-Met  0.02  0.01  0.01  0.01  –  –  –  –      Cu2SO4·5H2O  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated energy and nutrients      CP, %  20.2  20.1  19.8  19.7  19.0  19.2  19.3  19.0      Crude fiber, %  3.98  4.70  5.90  6.99  3.74  4.28  4.83  6.76      NDF, %  18.9  20.9  23.8  26.4  15.7  17.4  19.1  23.1      ADF, %  4.90  5.71  7.06  8.29  3.65  4.28  4.91  7.11      Ether extract, %  5.59  6.54  7.83  9.07  5.28  6.16  7.02  8.89      Starch, %  36.9  35.3  32.4  29.7  34.3  33.0  31.7  26.1      ME, Mcal/kg  3.28  3.28  3.27  3.27  3.26  3.26  3.26  3.26      NE, Mcal/kg  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.99  3.99  3.99  3.99  3.61  3.61  3.61  3.61      SID Lys, %  0.97  0.97  0.97  0.97  0.88  0.88  0.88  0.88      Ca, %  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      P, %  0.59  0.60  0.61  0.63  0.54  0.53  0.53  0.56      Available P, %  0.33  0.33  0.33  0.33  0.30  0.28  0.28  0.28    Full-fat green canola seed, %    Phase 1 (d 0 to 21)  Phase 2 (d 22 to 42)  Item  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  48.27  41.36  20.01  2.00  55.96  53.83  51.78  8.00      Barley  –  5.00  24.17  40.42  –  –  –  39.85      Wheat DDGS2  25.00  25.00  25.00  25.00  20.00  20.00  20.00  20.00      Field pea  16.00  16.00  16.00  15.33  15.00  15.00  15.00  15.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00      Soybean meal  5.06  3.28  1.50  –  3.59  2.05  0.50  –      Tallow  3.23  1.96  1.00  –  3.08  1.75  0.40  –      Limestone  1.38  1.35  1.29  1.23  1.32  1.33  1.30  1.20      l-Lys HCl  0.45  0.45  0.45  0.45  0.42  0.41  0.40  0.36      Salt  0.37  0.37  0.36  0.35  0.42  0.42  0.42  0.40      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10      l-Thr  0.07  0.07  0.06  0.06  0.06  0.06  0.05  0.04      dl-Met  0.02  0.01  0.01  0.01  –  –  –  –      Cu2SO4·5H2O  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated energy and nutrients      CP, %  20.2  20.1  19.8  19.7  19.0  19.2  19.3  19.0      Crude fiber, %  3.98  4.70  5.90  6.99  3.74  4.28  4.83  6.76      NDF, %  18.9  20.9  23.8  26.4  15.7  17.4  19.1  23.1      ADF, %  4.90  5.71  7.06  8.29  3.65  4.28  4.91  7.11      Ether extract, %  5.59  6.54  7.83  9.07  5.28  6.16  7.02  8.89      Starch, %  36.9  35.3  32.4  29.7  34.3  33.0  31.7  26.1      ME, Mcal/kg  3.28  3.28  3.27  3.27  3.26  3.26  3.26  3.26      NE, Mcal/kg  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.99  3.99  3.99  3.99  3.61  3.61  3.61  3.61      SID Lys, %  0.97  0.97  0.97  0.97  0.88  0.88  0.88  0.88      Ca, %  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      P, %  0.59  0.60  0.61  0.63  0.54  0.53  0.53  0.56      Available P, %  0.33  0.33  0.33  0.33  0.30  0.28  0.28  0.28  1The NE values for feedstuffs were obtained from Sauvant et al. (2004) and the SID AA values from NRC (1998). For full-fat green canola seed (FFGC), energy and nutrient values were calculated from analyzed chemical composition using a software (EvaPig; French National Institute for Agricultural Research, Paris, France). 2DDGS = dried distillers grains with solubles. 3Provided the following per kilogram of diet: Zn, 125 mg as ZnO; Fe, 100 mg as FeSO4; Cu, 14 mg as CuSO4; Mn, 25 mg as MnO; I, 0.3 mg as Ca(IO3)2; Se, 0.3 mg as Na2SeO3; vitamin A, 6,000 IU; vitamin D, 1,000 IU; vitamin E, 25 IU; niacin, 20 mg; D-pantothenic acid, 12 mg; riboflavin, 4 mg; menadione, 2 mg; folic acid, 0.5 mg; thiamine, 1 mg; D-biotin, 0.1 mg; and vitamin B12, 0.02 mg. 4Provided 750 phytase units per kilogram of diet (Phyzyme; Danisco Animal Nutrition, Marlborough, UK). 5SID = standardized ileal digestible. View Large Table 2. Ingredient composition and calculated energy and nutrient content (as-fed) of phase 1 and 2 diets fed in Exp. 21   Full-fat green canola seed, %    Phase 1 (d 0 to 21)  Phase 2 (d 22 to 42)  Item  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  48.27  41.36  20.01  2.00  55.96  53.83  51.78  8.00      Barley  –  5.00  24.17  40.42  –  –  –  39.85      Wheat DDGS2  25.00  25.00  25.00  25.00  20.00  20.00  20.00  20.00      Field pea  16.00  16.00  16.00  15.33  15.00  15.00  15.00  15.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00      Soybean meal  5.06  3.28  1.50  –  3.59  2.05  0.50  –      Tallow  3.23  1.96  1.00  –  3.08  1.75  0.40  –      Limestone  1.38  1.35  1.29  1.23  1.32  1.33  1.30  1.20      l-Lys HCl  0.45  0.45  0.45  0.45  0.42  0.41  0.40  0.36      Salt  0.37  0.37  0.36  0.35  0.42  0.42  0.42  0.40      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10      l-Thr  0.07  0.07  0.06  0.06  0.06  0.06  0.05  0.04      dl-Met  0.02  0.01  0.01  0.01  –  –  –  –      Cu2SO4·5H2O  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated energy and nutrients      CP, %  20.2  20.1  19.8  19.7  19.0  19.2  19.3  19.0      Crude fiber, %  3.98  4.70  5.90  6.99  3.74  4.28  4.83  6.76      NDF, %  18.9  20.9  23.8  26.4  15.7  17.4  19.1  23.1      ADF, %  4.90  5.71  7.06  8.29  3.65  4.28  4.91  7.11      Ether extract, %  5.59  6.54  7.83  9.07  5.28  6.16  7.02  8.89      Starch, %  36.9  35.3  32.4  29.7  34.3  33.0  31.7  26.1      ME, Mcal/kg  3.28  3.28  3.27  3.27  3.26  3.26  3.26  3.26      NE, Mcal/kg  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.99  3.99  3.99  3.99  3.61  3.61  3.61  3.61      SID Lys, %  0.97  0.97  0.97  0.97  0.88  0.88  0.88  0.88      Ca, %  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      P, %  0.59  0.60  0.61  0.63  0.54  0.53  0.53  0.56      Available P, %  0.33  0.33  0.33  0.33  0.30  0.28  0.28  0.28    Full-fat green canola seed, %    Phase 1 (d 0 to 21)  Phase 2 (d 22 to 42)  Item  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  48.27  41.36  20.01  2.00  55.96  53.83  51.78  8.00      Barley  –  5.00  24.17  40.42  –  –  –  39.85      Wheat DDGS2  25.00  25.00  25.00  25.00  20.00  20.00  20.00  20.00      Field pea  16.00  16.00  16.00  15.33  15.00  15.00  15.00  15.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00      Soybean meal  5.06  3.28  1.50  –  3.59  2.05  0.50  –      Tallow  3.23  1.96  1.00  –  3.08  1.75  0.40  –      Limestone  1.38  1.35  1.29  1.23  1.32  1.33  1.30  1.20      l-Lys HCl  0.45  0.45  0.45  0.45  0.42  0.41  0.40  0.36      Salt  0.37  0.37  0.36  0.35  0.42  0.42  0.42  0.40      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.10  0.10  0.10  0.10      l-Thr  0.07  0.07  0.06  0.06  0.06  0.06  0.05  0.04      dl-Met  0.02  0.01  0.01  0.01  –  –  –  –      Cu2SO4·5H2O  0.04  0.04  0.04  0.04  0.04  0.04  0.04  0.04      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated energy and nutrients      CP, %  20.2  20.1  19.8  19.7  19.0  19.2  19.3  19.0      Crude fiber, %  3.98  4.70  5.90  6.99  3.74  4.28  4.83  6.76      NDF, %  18.9  20.9  23.8  26.4  15.7  17.4  19.1  23.1      ADF, %  4.90  5.71  7.06  8.29  3.65  4.28  4.91  7.11      Ether extract, %  5.59  6.54  7.83  9.07  5.28  6.16  7.02  8.89      Starch, %  36.9  35.3  32.4  29.7  34.3  33.0  31.7  26.1      ME, Mcal/kg  3.28  3.28  3.27  3.27  3.26  3.26  3.26  3.26      NE, Mcal/kg  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.99  3.99  3.99  3.99  3.61  3.61  3.61  3.61      SID Lys, %  0.97  0.97  0.97  0.97  0.88  0.88  0.88  0.88      Ca, %  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      P, %  0.59  0.60  0.61  0.63  0.54  0.53  0.53  0.56      Available P, %  0.33  0.33  0.33  0.33  0.30  0.28  0.28  0.28  1The NE values for feedstuffs were obtained from Sauvant et al. (2004) and the SID AA values from NRC (1998). For full-fat green canola seed (FFGC), energy and nutrient values were calculated from analyzed chemical composition using a software (EvaPig; French National Institute for Agricultural Research, Paris, France). 2DDGS = dried distillers grains with solubles. 3Provided the following per kilogram of diet: Zn, 125 mg as ZnO; Fe, 100 mg as FeSO4; Cu, 14 mg as CuSO4; Mn, 25 mg as MnO; I, 0.3 mg as Ca(IO3)2; Se, 0.3 mg as Na2SeO3; vitamin A, 6,000 IU; vitamin D, 1,000 IU; vitamin E, 25 IU; niacin, 20 mg; D-pantothenic acid, 12 mg; riboflavin, 4 mg; menadione, 2 mg; folic acid, 0.5 mg; thiamine, 1 mg; D-biotin, 0.1 mg; and vitamin B12, 0.02 mg. 4Provided 750 phytase units per kilogram of diet (Phyzyme; Danisco Animal Nutrition, Marlborough, UK). 5SID = standardized ileal digestible. View Large Table 3. Ingredient composition and calculated energy and nutrient content (as-fed) of phase 3, 4, and 5 diets fed in Exp. 21   Full-fat green canola seed, %    Phase 3 (d 43 to 62)  Phase 4 (d 63 to 74)  Phase 5 (d 75 to market weight)  Item  0  5  10  15  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  54.95  51.27  32.29  2.00  76.45  67.09  38.65  3.01  79.62  75.82  40.28  4.84      Barley  –  –  15.00  41.04  –  5.47  29.32  60.00  –  –  30.81  61.27      Wheat DDGS2  25.00  25.00  25.00  25.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00      Lentil  15.00  15.00  15.00  15.00  10.00  10.00  10.00  10.00  7.00  7.00  7.00  7.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00  –  5.15  10.00  15.00      Tallow  2.71  1.51  0.63  –  1.29  0.30  –  –  1.23  –  –  –      Limestone  1.34  1.30  1.24  1.17  1.28  1.23  1.14  1.12  1.23  1.20  1.10  1.09      l-Lys HCl  0.41  0.36  0.30  0.25  0.36  0.31  0.26  0.22  0.33  0.27  0.23  0.19      Salt  0.43  0.43  0.43  0.44  0.50  0.50  0.52  0.55  0.50  0.50  0.52  0.55      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.07  0.07  0.07  0.07  0.05  0.05  0.05  0.05      l-Thr  0.05  0.02  –  –  0.05  0.03  0.03  0.02  0.03  –  –  –      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated nutrients      CP, %  18.1  18.7  19.0  19.2  16.8  17.1  16.8  16.2  16.4  17.0  16.4  15.8      NDF, %  15.8  17.3  19.8  23.0  14.4  16.3  19.3  22.6  14.5  16.1  19.5  22.8      ADF, %  4.05  4.74  6.01  7.70  3.79  4.69  6.28  8.13  3.73  4.44  6.28  8.12      Crude fiber, %  3.96  4.51  5.58  7.03  3.17  3.86  4.98  6.26  3.07  3.64  4.91  6.19      Ether extract, %  5.75  6.75  8.10  9.71  3.51  4.73  6.69  8.98  3.45  4.48  6.70  8.98      Starch, %  33.5  31.3  27.6  22.9  46.4  43.6  38.9  33.3  48.3  46.0  40.6  35.1      ME, Mcal/kg  3.27  3.28  3.29  3.30  3.20  3.21  3.21  3.21  3.20  3.21  3.21  3.21      NE, Mcal/kg  2.46  2.46  2.46  2.46  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.25  3.25  3.25  3.25  2.88  2.88  2.88  2.88  2.65  2.65  2.65  2.65      SID Lys, %  0.80  0.80  0.80  0.80  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      Ca, %  0.60  0.60  0.60  0.60  0.57  0.57  0.57  0.60  0.55  0.55  0.55  0.59      P, %  0.49  0.50  0.51  0.54  0.45  0.46  0.48  0.50  0.45  0.45  0.48  0.50      Available P, %  0.26  0.26  0.26  0.26  0.24  0.24  0.24  0.24  0.24  0.24  0.24  0.24    Full-fat green canola seed, %    Phase 3 (d 43 to 62)  Phase 4 (d 63 to 74)  Phase 5 (d 75 to market weight)  Item  0  5  10  15  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  54.95  51.27  32.29  2.00  76.45  67.09  38.65  3.01  79.62  75.82  40.28  4.84      Barley  –  –  15.00  41.04  –  5.47  29.32  60.00  –  –  30.81  61.27      Wheat DDGS2  25.00  25.00  25.00  25.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00      Lentil  15.00  15.00  15.00  15.00  10.00  10.00  10.00  10.00  7.00  7.00  7.00  7.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00  –  5.15  10.00  15.00      Tallow  2.71  1.51  0.63  –  1.29  0.30  –  –  1.23  –  –  –      Limestone  1.34  1.30  1.24  1.17  1.28  1.23  1.14  1.12  1.23  1.20  1.10  1.09      l-Lys HCl  0.41  0.36  0.30  0.25  0.36  0.31  0.26  0.22  0.33  0.27  0.23  0.19      Salt  0.43  0.43  0.43  0.44  0.50  0.50  0.52  0.55  0.50  0.50  0.52  0.55      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.07  0.07  0.07  0.07  0.05  0.05  0.05  0.05      l-Thr  0.05  0.02  –  –  0.05  0.03  0.03  0.02  0.03  –  –  –      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated nutrients      CP, %  18.1  18.7  19.0  19.2  16.8  17.1  16.8  16.2  16.4  17.0  16.4  15.8      NDF, %  15.8  17.3  19.8  23.0  14.4  16.3  19.3  22.6  14.5  16.1  19.5  22.8      ADF, %  4.05  4.74  6.01  7.70  3.79  4.69  6.28  8.13  3.73  4.44  6.28  8.12      Crude fiber, %  3.96  4.51  5.58  7.03  3.17  3.86  4.98  6.26  3.07  3.64  4.91  6.19      Ether extract, %  5.75  6.75  8.10  9.71  3.51  4.73  6.69  8.98  3.45  4.48  6.70  8.98      Starch, %  33.5  31.3  27.6  22.9  46.4  43.6  38.9  33.3  48.3  46.0  40.6  35.1      ME, Mcal/kg  3.27  3.28  3.29  3.30  3.20  3.21  3.21  3.21  3.20  3.21  3.21  3.21      NE, Mcal/kg  2.46  2.46  2.46  2.46  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.25  3.25  3.25  3.25  2.88  2.88  2.88  2.88  2.65  2.65  2.65  2.65      SID Lys, %  0.80  0.80  0.80  0.80  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      Ca, %  0.60  0.60  0.60  0.60  0.57  0.57  0.57  0.60  0.55  0.55  0.55  0.59      P, %  0.49  0.50  0.51  0.54  0.45  0.46  0.48  0.50  0.45  0.45  0.48  0.50      Available P, %  0.26  0.26  0.26  0.26  0.24  0.24  0.24  0.24  0.24  0.24  0.24  0.24  1The NE values for feedstuffs were obtained from Sauvant et al. (2004) and the SID AA values from NRC (1998). For full-fat green canola seed (FFGC), energy and nutrient values were calculated from analyzed chemical composition using a software (EvaPig; French National Institute for Agricultural Research, Paris, France). 2DDGS = dried distillers grains with solubles. 3Provided the following per kilogram of diet: Zn, 125 mg as ZnO; Fe, 100 mg as FeSO4; Cu, 14 mg as CuSO4; Mn, 25 mg as MnO; I, 0.3 mg as Ca(IO3)2; Se, 0.3 mg as Na2SeO3; vitamin A, 6,000 IU; vitamin D, 1,000 IU; vitamin E, 25 IU; niacin, 20 mg; D-pantothenic acid, 12 mg; riboflavin, 4 mg; menadione, 2 mg; folic acid, 0.5 mg; thiamine, 1 mg; D-biotin, 0.1 mg; and vitamin B12, 0.02 mg. 4Provided 750 phytase units per kilogram of diet (Phyzyme; Danisco Animal Nutrition, Marlborough, UK). 5SID = standardized ileal digestible. View Large Table 3. Ingredient composition and calculated energy and nutrient content (as-fed) of phase 3, 4, and 5 diets fed in Exp. 21   Full-fat green canola seed, %    Phase 3 (d 43 to 62)  Phase 4 (d 63 to 74)  Phase 5 (d 75 to market weight)  Item  0  5  10  15  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  54.95  51.27  32.29  2.00  76.45  67.09  38.65  3.01  79.62  75.82  40.28  4.84      Barley  –  –  15.00  41.04  –  5.47  29.32  60.00  –  –  30.81  61.27      Wheat DDGS2  25.00  25.00  25.00  25.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00      Lentil  15.00  15.00  15.00  15.00  10.00  10.00  10.00  10.00  7.00  7.00  7.00  7.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00  –  5.15  10.00  15.00      Tallow  2.71  1.51  0.63  –  1.29  0.30  –  –  1.23  –  –  –      Limestone  1.34  1.30  1.24  1.17  1.28  1.23  1.14  1.12  1.23  1.20  1.10  1.09      l-Lys HCl  0.41  0.36  0.30  0.25  0.36  0.31  0.26  0.22  0.33  0.27  0.23  0.19      Salt  0.43  0.43  0.43  0.44  0.50  0.50  0.52  0.55  0.50  0.50  0.52  0.55      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.07  0.07  0.07  0.07  0.05  0.05  0.05  0.05      l-Thr  0.05  0.02  –  –  0.05  0.03  0.03  0.02  0.03  –  –  –      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated nutrients      CP, %  18.1  18.7  19.0  19.2  16.8  17.1  16.8  16.2  16.4  17.0  16.4  15.8      NDF, %  15.8  17.3  19.8  23.0  14.4  16.3  19.3  22.6  14.5  16.1  19.5  22.8      ADF, %  4.05  4.74  6.01  7.70  3.79  4.69  6.28  8.13  3.73  4.44  6.28  8.12      Crude fiber, %  3.96  4.51  5.58  7.03  3.17  3.86  4.98  6.26  3.07  3.64  4.91  6.19      Ether extract, %  5.75  6.75  8.10  9.71  3.51  4.73  6.69  8.98  3.45  4.48  6.70  8.98      Starch, %  33.5  31.3  27.6  22.9  46.4  43.6  38.9  33.3  48.3  46.0  40.6  35.1      ME, Mcal/kg  3.27  3.28  3.29  3.30  3.20  3.21  3.21  3.21  3.20  3.21  3.21  3.21      NE, Mcal/kg  2.46  2.46  2.46  2.46  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.25  3.25  3.25  3.25  2.88  2.88  2.88  2.88  2.65  2.65  2.65  2.65      SID Lys, %  0.80  0.80  0.80  0.80  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      Ca, %  0.60  0.60  0.60  0.60  0.57  0.57  0.57  0.60  0.55  0.55  0.55  0.59      P, %  0.49  0.50  0.51  0.54  0.45  0.46  0.48  0.50  0.45  0.45  0.48  0.50      Available P, %  0.26  0.26  0.26  0.26  0.24  0.24  0.24  0.24  0.24  0.24  0.24  0.24    Full-fat green canola seed, %    Phase 3 (d 43 to 62)  Phase 4 (d 63 to 74)  Phase 5 (d 75 to market weight)  Item  0  5  10  15  0  5  10  15  0  5  10  15  Ingredient, % as-fed      Wheat  54.95  51.27  32.29  2.00  76.45  67.09  38.65  3.01  79.62  75.82  40.28  4.84      Barley  –  –  15.00  41.04  –  5.47  29.32  60.00  –  –  30.81  61.27      Wheat DDGS2  25.00  25.00  25.00  25.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00  10.00      Lentil  15.00  15.00  15.00  15.00  10.00  10.00  10.00  10.00  7.00  7.00  7.00  7.00      Full-fat green canola seed  –  5.00  10.00  15.00  –  5.00  10.00  15.00  –  5.15  10.00  15.00      Tallow  2.71  1.51  0.63  –  1.29  0.30  –  –  1.23  –  –  –      Limestone  1.34  1.30  1.24  1.17  1.28  1.23  1.14  1.12  1.23  1.20  1.10  1.09      l-Lys HCl  0.41  0.36  0.30  0.25  0.36  0.31  0.26  0.22  0.33  0.27  0.23  0.19      Salt  0.43  0.43  0.43  0.44  0.50  0.50  0.52  0.55  0.50  0.50  0.52  0.55      Vitamin–mineral premix3  0.10  0.10  0.10  0.10  0.07  0.07  0.07  0.07  0.05  0.05  0.05  0.05      l-Thr  0.05  0.02  –  –  0.05  0.03  0.03  0.02  0.03  –  –  –      Phytase4  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  Calculated nutrients      CP, %  18.1  18.7  19.0  19.2  16.8  17.1  16.8  16.2  16.4  17.0  16.4  15.8      NDF, %  15.8  17.3  19.8  23.0  14.4  16.3  19.3  22.6  14.5  16.1  19.5  22.8      ADF, %  4.05  4.74  6.01  7.70  3.79  4.69  6.28  8.13  3.73  4.44  6.28  8.12      Crude fiber, %  3.96  4.51  5.58  7.03  3.17  3.86  4.98  6.26  3.07  3.64  4.91  6.19      Ether extract, %  5.75  6.75  8.10  9.71  3.51  4.73  6.69  8.98  3.45  4.48  6.70  8.98      Starch, %  33.5  31.3  27.6  22.9  46.4  43.6  38.9  33.3  48.3  46.0  40.6  35.1      ME, Mcal/kg  3.27  3.28  3.29  3.30  3.20  3.21  3.21  3.21  3.20  3.21  3.21  3.21      NE, Mcal/kg  2.46  2.46  2.46  2.46  2.43  2.43  2.43  2.43  2.44  2.44  2.44  2.44      SID5 Lys:NE, g/Mcal  3.25  3.25  3.25  3.25  2.88  2.88  2.88  2.88  2.65  2.65  2.65  2.65      SID Lys, %  0.80  0.80  0.80  0.80  0.70  0.70  0.70  0.70  0.65  0.65  0.65  0.65      Ca, %  0.60  0.60  0.60  0.60  0.57  0.57  0.57  0.60  0.55  0.55  0.55  0.59      P, %  0.49  0.50  0.51  0.54  0.45  0.46  0.48  0.50  0.45  0.45  0.48  0.50      Available P, %  0.26  0.26  0.26  0.26  0.24  0.24  0.24  0.24  0.24  0.24  0.24  0.24  1The NE values for feedstuffs were obtained from Sauvant et al. (2004) and the SID AA values from NRC (1998). For full-fat green canola seed (FFGC), energy and nutrient values were calculated from analyzed chemical composition using a software (EvaPig; French National Institute for Agricultural Research, Paris, France). 2DDGS = dried distillers grains with solubles. 3Provided the following per kilogram of diet: Zn, 125 mg as ZnO; Fe, 100 mg as FeSO4; Cu, 14 mg as CuSO4; Mn, 25 mg as MnO; I, 0.3 mg as Ca(IO3)2; Se, 0.3 mg as Na2SeO3; vitamin A, 6,000 IU; vitamin D, 1,000 IU; vitamin E, 25 IU; niacin, 20 mg; D-pantothenic acid, 12 mg; riboflavin, 4 mg; menadione, 2 mg; folic acid, 0.5 mg; thiamine, 1 mg; D-biotin, 0.1 mg; and vitamin B12, 0.02 mg. 4Provided 750 phytase units per kilogram of diet (Phyzyme; Danisco Animal Nutrition, Marlborough, UK). 5SID = standardized ileal digestible. View Large Pigs were fed the phase 5 diets until reaching the predetermined market weight (123 kg); hence, the end of the study per pig was based on constant BW. Individual pigs were marked with a shoulder tattoo identifying pen, weighed by pen, and shipped for slaughter to a commercial facility (Britco Pork Inc., Langley, BC, Canada). Pigs were stunned and exsanguinated, and the warm carcasses, including head, feet, kidneys, and omental fat, were weighed and graded by measuring backfat and loin depth using a light reflectance probe (PG-100; Destron Technologies, Markham, ON, Canada) inserted between the third and fourth last ribs, 7 cm off the midline. Sample Preparation and Chemical Analyses For Exp. 1, digesta and feces for each pig and period were thawed, homogenized, subsampled, and freeze-dried. Diet, FFGC, and lyophilized digesta and feces were ground in a centrifugal mill (Retsch model ZMII; Brinkman Instruments, Rexdale, ON, Canada) through a 1-mm screen. The FFGC was analyzed for CP (method 984.13A-D), chemically available Lys (method 975.44), ether extract (method 920.39A), ADF (method 973.18), crude fiber (method 978.10), ash (method 942.05), Ca (method 968.08), and P (method 946.06) by the AOAC (2006) and NDF (Holst, 1973) at the University of Missouri (Columbia, MO). The glucosinolate profile of FFGC was determined by gas chromatography using the method of the Canadian Grain Commission developed by Heaney and Fenwick (1980) and modified by Daun and McGregor (1981; POS Pilot Plant Corp, Saskatoon, SK, Canada). The proportion of immature green canola seed was determined subjectively (canola/rapeseed color guide; CGC, 2011). Diets, FFGC, digesta, and feces were analyzed for moisture (method 930.15; AOAC, 1990) and diets, FFGC, and digesta were analyzed for CP (method 984.13A-D; AOAC, 2006), AA (method 982.30E; AOAC, 2006), and available Lys (method 975.44; AOAC, 2006) at the University of Missouri. Chromic oxide in diets, digesta, and feces was determined by spectrophotometry (model 80-2097-62, KBUltraspec III; Pharmacia, Cambridge, UK) at 440 nm after ashing at 450°C overnight (Fenton and Fenton, 1979). Gross energy of diets, FFGC, digesta, and feces was analyzed using an adiabatic bomb calorimeter (model 5003; IKAWerke GmbH & Co. KG, Staufen, Germany); benzoic acid was used as standard. Calculations Apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) coefficients of diets were calculated using the indicator method (Eq. [2]; Stein et al., 2007). Data from each pig fed the N-free diet were used to calculate its own basal endogenous AA loss (Eq. [3]; Stein et al., 2007). The SID for AA in diets was then calculated from AID corrected for basal endogenous AA loss (Eq. [7]; Stein et al., 2007). The AID of energy and SID of AA for FFGC were calculated by difference method (Adeola, 2001) using the wheat grain basal diet. The DE value of FFGC was calculated by multiplying GE by its ATTD. The NE value (kcal/kg of DM) of wheat and FFGC was calculated from the determined DE value (kcal/kg of DM) and analyzed macronutrient content (g/kg of DM) using Eq. [5] that was developed by Noblet et al. (1994) and has been adopted by NRC (2012):  The lean yield of the carcass was calculated as described by Seneviratne et al. (2010). Carcass dressing percentage was calculated from carcass weight and farm shipping weight. Statistical Analyses In Exp. 1, means and SEM were calculated using the MEANS procedure (SAS Inst. Inc., Cary, NC). In Exp. 2, data were analyzed using the MIXED procedure of SAS. The pen was considered as the experimental unit. The model included FFCS, sex, FFCS × sex interaction, and block, which was the random term. Period was the repeated term in models involving time. Linear and quadratic trends were tested by 2 contrasts for the 4 diet regimens including 0, 5, 10, and 15% FFGC. The decreasing amounts of FFGC inclusion over the 5 growth periods was compared to control (0% FFGC) using a preplanned contrast. To test hypotheses, P < 0.05 was considered significant. If pertinent, trends (0.05 ≤ P < 0.10) are reported. RESULTS Chemical Characteristics and Nutrient Digestibility The FFGC were 60% distinctly green. In FFGC, Leu, Arg, and Lys were the most abundant indispensable AA whereas Trp, Met, and His were the least abundant (Table 4). The Lys in FFGC was 94% chemically available. The FFGC contained 9.97 μmol total glucosinolates/g (DM basis). In wheat, Leu, Phe, and Arg were the most abundant indispensable AA whereas Trp, Met, and His were the least abundant. The Lys was 95% chemically available in wheat. In FFGC, His, Arg, and Met were the most digestible indispensable AA whereas Thr, Val, and Ile were the least digestible (Table 5). In wheat, Trp, Met, and Phe were the most digestible indispensable AA whereas Thr and Val were the least digestible. Table 4. Analyzed energy and nutrient content (DM basis) of wheat grain and full-fat green canola seed (FFGC) fed in Exp. 1 and 2   % of DM  % of CP  Item  Wheat  FFGC  Wheat  FFGC  DM, %  87.5  94.8  –  –  GE, Mcal/kg  4.41  6.58  –  –  CP, %  13.5  24.9  –  –  Ether extract, %  2.64  43.1  –  –  NDF, %  13.1  22.0  –  –  ADF, %  2.68  10.6  –  –  Crude fiber, %  2.45  4.72  –  –  Ash, %  1.96  5.96  –  –  Ca, %  0.03  0.86  –  –  P, %  0.39  0.64  –  –  Starch, %  60.8  0.42  –  –  Indispensable AA, %      Arg  0.61  1.37  4.52  5.50      His  0.30  0.61  2.22  2.45      Ile  0.46  0.92  3.41  3.69      Leu  0.89  1.72  6.59  6.91      Lys  0.40  1.34  2.96  5.38      Met  0.25  0.49  1.85  1.97      Phe  0.63  0.99  4.67  3.98      Thr  0.39  0.91  2.89  3.65      Trp  0.19  0.27  1.41  1.08      Val  0.56  1.19  4.15  4.78  Dispensable AA, %      Ala  0.47  1.04  3.48  4.18      Asp  0.66  1.46  4.89  5.86      Cys  0.30  0.57  2.22  2.29      Glu  3.90  4.00  28.89  16.06      Gly  0.53  1.06  3.93  4.26      Pro  1.29  1.54  9.56  6.18      Ser  0.56  0.90  4.15  3.61      Tyr  0.33  0.68  2.44  2.73  Available Lys1  0.38  1.26  2.81  5.06  Total glucosinolates,2 μmol/g  –  9.97  –  –    % of DM  % of CP  Item  Wheat  FFGC  Wheat  FFGC  DM, %  87.5  94.8  –  –  GE, Mcal/kg  4.41  6.58  –  –  CP, %  13.5  24.9  –  –  Ether extract, %  2.64  43.1  –  –  NDF, %  13.1  22.0  –  –  ADF, %  2.68  10.6  –  –  Crude fiber, %  2.45  4.72  –  –  Ash, %  1.96  5.96  –  –  Ca, %  0.03  0.86  –  –  P, %  0.39  0.64  –  –  Starch, %  60.8  0.42  –  –  Indispensable AA, %      Arg  0.61  1.37  4.52  5.50      His  0.30  0.61  2.22  2.45      Ile  0.46  0.92  3.41  3.69      Leu  0.89  1.72  6.59  6.91      Lys  0.40  1.34  2.96  5.38      Met  0.25  0.49  1.85  1.97      Phe  0.63  0.99  4.67  3.98      Thr  0.39  0.91  2.89  3.65      Trp  0.19  0.27  1.41  1.08      Val  0.56  1.19  4.15  4.78  Dispensable AA, %      Ala  0.47  1.04  3.48  4.18      Asp  0.66  1.46  4.89  5.86      Cys  0.30  0.57  2.22  2.29      Glu  3.90  4.00  28.89  16.06      Gly  0.53  1.06  3.93  4.26      Pro  1.29  1.54  9.56  6.18      Ser  0.56  0.90  4.15  3.61      Tyr  0.33  0.68  2.44  2.73  Available Lys1  0.38  1.26  2.81  5.06  Total glucosinolates,2 μmol/g  –  9.97  –  –  1Defined as chemically available Lys (method 975.44; AOAC, 2006). 2Contained the following glucosinolates (μmol/g of FFGC): 3-butenyl, 1.22; 4-pentenyl, 0.16; 2-OH-3-butenyl, 4.45; 2-OH-4-pentenyl, 0.16; CH3-thiobutenyl, 0.11; phenylethyl, 0.05; 3-CH3-indolyl, 0.23; and 4-H-3-CH3-indolyl, 3.59. View Large Table 4. Analyzed energy and nutrient content (DM basis) of wheat grain and full-fat green canola seed (FFGC) fed in Exp. 1 and 2   % of DM  % of CP  Item  Wheat  FFGC  Wheat  FFGC  DM, %  87.5  94.8  –  –  GE, Mcal/kg  4.41  6.58  –  –  CP, %  13.5  24.9  –  –  Ether extract, %  2.64  43.1  –  –  NDF, %  13.1  22.0  –  –  ADF, %  2.68  10.6  –  –  Crude fiber, %  2.45  4.72  –  –  Ash, %  1.96  5.96  –  –  Ca, %  0.03  0.86  –  –  P, %  0.39  0.64  –  –  Starch, %  60.8  0.42  –  –  Indispensable AA, %      Arg  0.61  1.37  4.52  5.50      His  0.30  0.61  2.22  2.45      Ile  0.46  0.92  3.41  3.69      Leu  0.89  1.72  6.59  6.91      Lys  0.40  1.34  2.96  5.38      Met  0.25  0.49  1.85  1.97      Phe  0.63  0.99  4.67  3.98      Thr  0.39  0.91  2.89  3.65      Trp  0.19  0.27  1.41  1.08      Val  0.56  1.19  4.15  4.78  Dispensable AA, %      Ala  0.47  1.04  3.48  4.18      Asp  0.66  1.46  4.89  5.86      Cys  0.30  0.57  2.22  2.29      Glu  3.90  4.00  28.89  16.06      Gly  0.53  1.06  3.93  4.26      Pro  1.29  1.54  9.56  6.18      Ser  0.56  0.90  4.15  3.61      Tyr  0.33  0.68  2.44  2.73  Available Lys1  0.38  1.26  2.81  5.06  Total glucosinolates,2 μmol/g  –  9.97  –  –    % of DM  % of CP  Item  Wheat  FFGC  Wheat  FFGC  DM, %  87.5  94.8  –  –  GE, Mcal/kg  4.41  6.58  –  –  CP, %  13.5  24.9  –  –  Ether extract, %  2.64  43.1  –  –  NDF, %  13.1  22.0  –  –  ADF, %  2.68  10.6  –  –  Crude fiber, %  2.45  4.72  –  –  Ash, %  1.96  5.96  –  –  Ca, %  0.03  0.86  –  –  P, %  0.39  0.64  –  –  Starch, %  60.8  0.42  –  –  Indispensable AA, %      Arg  0.61  1.37  4.52  5.50      His  0.30  0.61  2.22  2.45      Ile  0.46  0.92  3.41  3.69      Leu  0.89  1.72  6.59  6.91      Lys  0.40  1.34  2.96  5.38      Met  0.25  0.49  1.85  1.97      Phe  0.63  0.99  4.67  3.98      Thr  0.39  0.91  2.89  3.65      Trp  0.19  0.27  1.41  1.08      Val  0.56  1.19  4.15  4.78  Dispensable AA, %      Ala  0.47  1.04  3.48  4.18      Asp  0.66  1.46  4.89  5.86      Cys  0.30  0.57  2.22  2.29      Glu  3.90  4.00  28.89  16.06      Gly  0.53  1.06  3.93  4.26      Pro  1.29  1.54  9.56  6.18      Ser  0.56  0.90  4.15  3.61      Tyr  0.33  0.68  2.44  2.73  Available Lys1  0.38  1.26  2.81  5.06  Total glucosinolates,2 μmol/g  –  9.97  –  –  1Defined as chemically available Lys (method 975.44; AOAC, 2006). 2Contained the following glucosinolates (μmol/g of FFGC): 3-butenyl, 1.22; 4-pentenyl, 0.16; 2-OH-3-butenyl, 4.45; 2-OH-4-pentenyl, 0.16; CH3-thiobutenyl, 0.11; phenylethyl, 0.05; 3-CH3-indolyl, 0.23; and 4-H-3-CH3-indolyl, 3.59. View Large Table 5. Apparent and standardized ileal digestibility of AA, apparent total tract digestibility (ATTD) of GE, and DE and NE values of wheat and full-fat green canola seed (FFGC) fed to the pigs in Exp. 1   Apparent digestibility  Standardized digestibility    Wheat  FFGC  Wheat  FFGC  Item  Mean  SEM  Mean  SEM  Mean  SEM  Mean  SEM  Ileal digestibility, %      Indispensable AA          Arg  84.8  1.2  85.6  2.0  90.2  1.9  88.1  1.3          His  86.0  1.0  86.9  1.5  90.6  1.7  89.4  0.8          Ile  84.4  1.2  79.4  2.3  91.2  2.2  81.2  1.3          Leu  86.5  1.1  82.0  2.1  91.7  1.9  83.5  1.1          Lys  75.2  3.2  82.0  1.7  85.0  4.2  86.9  1.4          Met  88.7  1.1  86.0  1.4  92.4  1.8  87.3  0.7          Phe  88.0  0.9  82.3  2.3  92.3  1.6  84.1  1.3          Thr  76.5  1.9  73.4  2.2  88.5  3.7  76.9  1.1          Trp  88.7  0.4  78.5  3.5  97.0  1.3  84.3  2.3          Val  83.2  1.3  77.8  2.6  89.2  2.2  79.0  1.5      Dispensable AA, %          Ala  75.3  2.3  79.0  1.8  84.3  3.6  84.1  1.0          Asp  77.0  2.0  74.8  2.2  87.2  3.4  78.4  1.3          Cys  86.3  1.1  84.0  1.7  91.0  1.8  85.6  0.9          Glu  93.5  0.6  90.2  2.1  95.3  0.8  91.4  0.7          Gly  72.6  2.6  76.3  3.2  86.8  5.2  84.9  2.5          Pro  83.1  3.9  81.8  6.9  90.3  4.3  89.4  4.9          Ser  85.0  1.2  77.8  3.3  91.8  2.1  80.1  1.4          Tyr  84.7  1.2  80.2  2.2  90.1  2.1  81.9  1.5  GE  78.5  1.6  70.1  3.0          ATTD of GE, %  87.7  0.6  74.7  2.3          DE, Mcal/kg of DM  3.72  0.26  4.92  0.21          NE, Mcal/kg of DM  2.62  0.18  3.50  0.15            Apparent digestibility  Standardized digestibility    Wheat  FFGC  Wheat  FFGC  Item  Mean  SEM  Mean  SEM  Mean  SEM  Mean  SEM  Ileal digestibility, %      Indispensable AA          Arg  84.8  1.2  85.6  2.0  90.2  1.9  88.1  1.3          His  86.0  1.0  86.9  1.5  90.6  1.7  89.4  0.8          Ile  84.4  1.2  79.4  2.3  91.2  2.2  81.2  1.3          Leu  86.5  1.1  82.0  2.1  91.7  1.9  83.5  1.1          Lys  75.2  3.2  82.0  1.7  85.0  4.2  86.9  1.4          Met  88.7  1.1  86.0  1.4  92.4  1.8  87.3  0.7          Phe  88.0  0.9  82.3  2.3  92.3  1.6  84.1  1.3          Thr  76.5  1.9  73.4  2.2  88.5  3.7  76.9  1.1          Trp  88.7  0.4  78.5  3.5  97.0  1.3  84.3  2.3          Val  83.2  1.3  77.8  2.6  89.2  2.2  79.0  1.5      Dispensable AA, %          Ala  75.3  2.3  79.0  1.8  84.3  3.6  84.1  1.0          Asp  77.0  2.0  74.8  2.2  87.2  3.4  78.4  1.3          Cys  86.3  1.1  84.0  1.7  91.0  1.8  85.6  0.9          Glu  93.5  0.6  90.2  2.1  95.3  0.8  91.4  0.7          Gly  72.6  2.6  76.3  3.2  86.8  5.2  84.9  2.5          Pro  83.1  3.9  81.8  6.9  90.3  4.3  89.4  4.9          Ser  85.0  1.2  77.8  3.3  91.8  2.1  80.1  1.4          Tyr  84.7  1.2  80.2  2.2  90.1  2.1  81.9  1.5  GE  78.5  1.6  70.1  3.0          ATTD of GE, %  87.7  0.6  74.7  2.3          DE, Mcal/kg of DM  3.72  0.26  4.92  0.21          NE, Mcal/kg of DM  2.62  0.18  3.50  0.15          1The NE value of wheat and FFGC was calculated from the determined DE value (kcal/kg of DM) and analyzed macronutrient content (g/kg of DM) using Eq. [5] that was developed by Noblet et al. (1994) and adopted by NRC (2012): NE = 0.700 × DE + 1.61 × ether extract + 0.48 × starch – 0.91 × CP – 0.87 × ADF. View Large Table 5. Apparent and standardized ileal digestibility of AA, apparent total tract digestibility (ATTD) of GE, and DE and NE values of wheat and full-fat green canola seed (FFGC) fed to the pigs in Exp. 1   Apparent digestibility  Standardized digestibility    Wheat  FFGC  Wheat  FFGC  Item  Mean  SEM  Mean  SEM  Mean  SEM  Mean  SEM  Ileal digestibility, %      Indispensable AA          Arg  84.8  1.2  85.6  2.0  90.2  1.9  88.1  1.3          His  86.0  1.0  86.9  1.5  90.6  1.7  89.4  0.8          Ile  84.4  1.2  79.4  2.3  91.2  2.2  81.2  1.3          Leu  86.5  1.1  82.0  2.1  91.7  1.9  83.5  1.1          Lys  75.2  3.2  82.0  1.7  85.0  4.2  86.9  1.4          Met  88.7  1.1  86.0  1.4  92.4  1.8  87.3  0.7          Phe  88.0  0.9  82.3  2.3  92.3  1.6  84.1  1.3          Thr  76.5  1.9  73.4  2.2  88.5  3.7  76.9  1.1          Trp  88.7  0.4  78.5  3.5  97.0  1.3  84.3  2.3          Val  83.2  1.3  77.8  2.6  89.2  2.2  79.0  1.5      Dispensable AA, %          Ala  75.3  2.3  79.0  1.8  84.3  3.6  84.1  1.0          Asp  77.0  2.0  74.8  2.2  87.2  3.4  78.4  1.3          Cys  86.3  1.1  84.0  1.7  91.0  1.8  85.6  0.9          Glu  93.5  0.6  90.2  2.1  95.3  0.8  91.4  0.7          Gly  72.6  2.6  76.3  3.2  86.8  5.2  84.9  2.5          Pro  83.1  3.9  81.8  6.9  90.3  4.3  89.4  4.9          Ser  85.0  1.2  77.8  3.3  91.8  2.1  80.1  1.4          Tyr  84.7  1.2  80.2  2.2  90.1  2.1  81.9  1.5  GE  78.5  1.6  70.1  3.0          ATTD of GE, %  87.7  0.6  74.7  2.3          DE, Mcal/kg of DM  3.72  0.26  4.92  0.21          NE, Mcal/kg of DM  2.62  0.18  3.50  0.15            Apparent digestibility  Standardized digestibility    Wheat  FFGC  Wheat  FFGC  Item  Mean  SEM  Mean  SEM  Mean  SEM  Mean  SEM  Ileal digestibility, %      Indispensable AA          Arg  84.8  1.2  85.6  2.0  90.2  1.9  88.1  1.3          His  86.0  1.0  86.9  1.5  90.6  1.7  89.4  0.8          Ile  84.4  1.2  79.4  2.3  91.2  2.2  81.2  1.3          Leu  86.5  1.1  82.0  2.1  91.7  1.9  83.5  1.1          Lys  75.2  3.2  82.0  1.7  85.0  4.2  86.9  1.4          Met  88.7  1.1  86.0  1.4  92.4  1.8  87.3  0.7          Phe  88.0  0.9  82.3  2.3  92.3  1.6  84.1  1.3          Thr  76.5  1.9  73.4  2.2  88.5  3.7  76.9  1.1          Trp  88.7  0.4  78.5  3.5  97.0  1.3  84.3  2.3          Val  83.2  1.3  77.8  2.6  89.2  2.2  79.0  1.5      Dispensable AA, %          Ala  75.3  2.3  79.0  1.8  84.3  3.6  84.1  1.0          Asp  77.0  2.0  74.8  2.2  87.2  3.4  78.4  1.3          Cys  86.3  1.1  84.0  1.7  91.0  1.8  85.6  0.9          Glu  93.5  0.6  90.2  2.1  95.3  0.8  91.4  0.7          Gly  72.6  2.6  76.3  3.2  86.8  5.2  84.9  2.5          Pro  83.1  3.9  81.8  6.9  90.3  4.3  89.4  4.9          Ser  85.0  1.2  77.8  3.3  91.8  2.1  80.1  1.4          Tyr  84.7  1.2  80.2  2.2  90.1  2.1  81.9  1.5  GE  78.5  1.6  70.1  3.0          ATTD of GE, %  87.7  0.6  74.7  2.3          DE, Mcal/kg of DM  3.72  0.26  4.92  0.21          NE, Mcal/kg of DM  2.62  0.18  3.50  0.15          1The NE value of wheat and FFGC was calculated from the determined DE value (kcal/kg of DM) and analyzed macronutrient content (g/kg of DM) using Eq. [5] that was developed by Noblet et al. (1994) and adopted by NRC (2012): NE = 0.700 × DE + 1.61 × ether extract + 0.48 × starch – 0.91 × CP – 0.87 × ADF. View Large Growth Performance and Carcass Characteristics During Exp. 2, 25 pigs (2.46% of total) did not complete the study and were excluded from analyses. The pig removal or death was not related to dietary regimen. Barrows had greater (P < 0.05) ADFI, ADG, and carcass backfat thickness and lower (P < 0.05) carcass loin depth and estimated pork yield than gilts (data not shown). However, FFCS × sex interactions were not observed; therefore, only effects of dietary treatment were reported. Increasing dietary FFGC inclusion from 0 to 15% linearly decreased (P < 0.05) BW of pigs for d 42 and 62 and tended to decrease (P = 0.08) BW of pigs for d 21 (Table 6). However, increasing dietary FFGC inclusion did not affect BW of pigs at d 83. Pigs fed decreasing inclusion of FFGC did not have different BW from pigs fed 0% FFGC at d 83. Table 6. Effect of feeding diets including full-fat green canola seed on pig growth performance (Exp. 2)1   Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  BW, kg      d 0  33.0  33.2  32.7  32.7  32.9  –  –  –  –      d 21  53.6  53.5  53.3  52.9  53.6  0.6  0.079  0.642  0.945      d 42  76.2  75.9  75.5  74.9  75.9  0.7  0.018  0.614  0.630      d 62  96.8  96.7  96.3  94.9  96.8  0.9  0.015  0.226  0.991      d 83  112.6  114.3  113.0  113.2  111.9  0.7  0.833  0.211  0.458  ADFI, kg      d 0 to 21  2.041  1.982  2.011  2.021  2.067  0.037  0.833  0.280  0.649      d 22 to 42  2.568  2.580  2.644  2.605  2.684  0.038  0.299  0.494  0.039      d 43 to 62  2.931  3.092  3.000  2.957  3.083  0.057  0.945  0.019  0.014      d 63 to 83  3.043  3.225  3.198  3.121  3.130  0.042  0.195  0.001  0.140      d 0 to 83  2.646  2.720  2.713  2.676  2.721  0.034  0.422  0.020  0.060  ADG, kg      d 0 to 21  0.984  0.947  0.963  0.961  0.981  0.015  0.379  0.193  0.791      d 22 to 42  1.073  1.065  1.057  1.042  1.060  0.009  0.007  0.647  0.252      d 43 to 62  1.028  1.039  1.039  0.994  1.044  0.017  0.087  0.038  0.534      d 63 to 83  0.957  0.996  0.977  0.974  0.952  0.017  0.622  0.146  0.832      d 0 to 83  1.011  1.012  1.009  0.993  1.010  0.009  0.078  0.223  0.903  G:F      d 0 to 21  0.483  0.479  0.480  0.476  0.476  0.009  0.416  0.986  0.527      d 22 to 42  0.419  0.414  0.401  0.400  0.396  0.004  0.002  0.622  0.010      d 43 to 62  0.352  0.337  0.348  0.337  0.340  0.005  0.080  0.600  0.017      d 63 to 83  0.315  0.310  0.306  0.313  0.305  0.005  0.460  0.095  0.141      d 0 to 83  0.392  0.385  0.384  0.381  0.372  0.003  0.006  0.344  0.011    Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  BW, kg      d 0  33.0  33.2  32.7  32.7  32.9  –  –  –  –      d 21  53.6  53.5  53.3  52.9  53.6  0.6  0.079  0.642  0.945      d 42  76.2  75.9  75.5  74.9  75.9  0.7  0.018  0.614  0.630      d 62  96.8  96.7  96.3  94.9  96.8  0.9  0.015  0.226  0.991      d 83  112.6  114.3  113.0  113.2  111.9  0.7  0.833  0.211  0.458  ADFI, kg      d 0 to 21  2.041  1.982  2.011  2.021  2.067  0.037  0.833  0.280  0.649      d 22 to 42  2.568  2.580  2.644  2.605  2.684  0.038  0.299  0.494  0.039      d 43 to 62  2.931  3.092  3.000  2.957  3.083  0.057  0.945  0.019  0.014      d 63 to 83  3.043  3.225  3.198  3.121  3.130  0.042  0.195  0.001  0.140      d 0 to 83  2.646  2.720  2.713  2.676  2.721  0.034  0.422  0.020  0.060  ADG, kg      d 0 to 21  0.984  0.947  0.963  0.961  0.981  0.015  0.379  0.193  0.791      d 22 to 42  1.073  1.065  1.057  1.042  1.060  0.009  0.007  0.647  0.252      d 43 to 62  1.028  1.039  1.039  0.994  1.044  0.017  0.087  0.038  0.534      d 63 to 83  0.957  0.996  0.977  0.974  0.952  0.017  0.622  0.146  0.832      d 0 to 83  1.011  1.012  1.009  0.993  1.010  0.009  0.078  0.223  0.903  G:F      d 0 to 21  0.483  0.479  0.480  0.476  0.476  0.009  0.416  0.986  0.527      d 22 to 42  0.419  0.414  0.401  0.400  0.396  0.004  0.002  0.622  0.010      d 43 to 62  0.352  0.337  0.348  0.337  0.340  0.005  0.080  0.600  0.017      d 63 to 83  0.315  0.310  0.306  0.313  0.305  0.005  0.460  0.095  0.141      d 0 to 83  0.392  0.385  0.384  0.381  0.372  0.003  0.006  0.344  0.011  1Least square means based on 5 pens of 22 barrows and 5 pens of 22 gilts. 2For d 0 to 21, d 22 to 42, d 43 to 62, and d 63 to 83, diets contained 15, 10, 5, and 0% full-fat green canola seed, respectively. View Large Table 6. Effect of feeding diets including full-fat green canola seed on pig growth performance (Exp. 2)1   Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  BW, kg      d 0  33.0  33.2  32.7  32.7  32.9  –  –  –  –      d 21  53.6  53.5  53.3  52.9  53.6  0.6  0.079  0.642  0.945      d 42  76.2  75.9  75.5  74.9  75.9  0.7  0.018  0.614  0.630      d 62  96.8  96.7  96.3  94.9  96.8  0.9  0.015  0.226  0.991      d 83  112.6  114.3  113.0  113.2  111.9  0.7  0.833  0.211  0.458  ADFI, kg      d 0 to 21  2.041  1.982  2.011  2.021  2.067  0.037  0.833  0.280  0.649      d 22 to 42  2.568  2.580  2.644  2.605  2.684  0.038  0.299  0.494  0.039      d 43 to 62  2.931  3.092  3.000  2.957  3.083  0.057  0.945  0.019  0.014      d 63 to 83  3.043  3.225  3.198  3.121  3.130  0.042  0.195  0.001  0.140      d 0 to 83  2.646  2.720  2.713  2.676  2.721  0.034  0.422  0.020  0.060  ADG, kg      d 0 to 21  0.984  0.947  0.963  0.961  0.981  0.015  0.379  0.193  0.791      d 22 to 42  1.073  1.065  1.057  1.042  1.060  0.009  0.007  0.647  0.252      d 43 to 62  1.028  1.039  1.039  0.994  1.044  0.017  0.087  0.038  0.534      d 63 to 83  0.957  0.996  0.977  0.974  0.952  0.017  0.622  0.146  0.832      d 0 to 83  1.011  1.012  1.009  0.993  1.010  0.009  0.078  0.223  0.903  G:F      d 0 to 21  0.483  0.479  0.480  0.476  0.476  0.009  0.416  0.986  0.527      d 22 to 42  0.419  0.414  0.401  0.400  0.396  0.004  0.002  0.622  0.010      d 43 to 62  0.352  0.337  0.348  0.337  0.340  0.005  0.080  0.600  0.017      d 63 to 83  0.315  0.310  0.306  0.313  0.305  0.005  0.460  0.095  0.141      d 0 to 83  0.392  0.385  0.384  0.381  0.372  0.003  0.006  0.344  0.011    Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  BW, kg      d 0  33.0  33.2  32.7  32.7  32.9  –  –  –  –      d 21  53.6  53.5  53.3  52.9  53.6  0.6  0.079  0.642  0.945      d 42  76.2  75.9  75.5  74.9  75.9  0.7  0.018  0.614  0.630      d 62  96.8  96.7  96.3  94.9  96.8  0.9  0.015  0.226  0.991      d 83  112.6  114.3  113.0  113.2  111.9  0.7  0.833  0.211  0.458  ADFI, kg      d 0 to 21  2.041  1.982  2.011  2.021  2.067  0.037  0.833  0.280  0.649      d 22 to 42  2.568  2.580  2.644  2.605  2.684  0.038  0.299  0.494  0.039      d 43 to 62  2.931  3.092  3.000  2.957  3.083  0.057  0.945  0.019  0.014      d 63 to 83  3.043  3.225  3.198  3.121  3.130  0.042  0.195  0.001  0.140      d 0 to 83  2.646  2.720  2.713  2.676  2.721  0.034  0.422  0.020  0.060  ADG, kg      d 0 to 21  0.984  0.947  0.963  0.961  0.981  0.015  0.379  0.193  0.791      d 22 to 42  1.073  1.065  1.057  1.042  1.060  0.009  0.007  0.647  0.252      d 43 to 62  1.028  1.039  1.039  0.994  1.044  0.017  0.087  0.038  0.534      d 63 to 83  0.957  0.996  0.977  0.974  0.952  0.017  0.622  0.146  0.832      d 0 to 83  1.011  1.012  1.009  0.993  1.010  0.009  0.078  0.223  0.903  G:F      d 0 to 21  0.483  0.479  0.480  0.476  0.476  0.009  0.416  0.986  0.527      d 22 to 42  0.419  0.414  0.401  0.400  0.396  0.004  0.002  0.622  0.010      d 43 to 62  0.352  0.337  0.348  0.337  0.340  0.005  0.080  0.600  0.017      d 63 to 83  0.315  0.310  0.306  0.313  0.305  0.005  0.460  0.095  0.141      d 0 to 83  0.392  0.385  0.384  0.381  0.372  0.003  0.006  0.344  0.011  1Least square means based on 5 pens of 22 barrows and 5 pens of 22 gilts. 2For d 0 to 21, d 22 to 42, d 43 to 62, and d 63 to 83, diets contained 15, 10, 5, and 0% full-fat green canola seed, respectively. View Large Increasing dietary FFGC inclusion resulted in a quadratic response (P < 0.05) in ADFI of pigs for d 43 to 62 and d 63 to 83 such that the ADFI increased up to 5% FFGC and then declined when dietary inclusion of FFGC was further increased to 15% (Table 6). However, increasing dietary FFGC inclusion did not affect ADFI of pigs for d 0 to 21 and d 22 to 42. Pigs fed decreasing inclusions of FFGC by growth phase had greater (P < 0.05) ADFI than control pigs fed 0% FFGC for d 22 to 42 and d 43 to 62 but not for d 0 to 21 and d 63 to 83. For the overall study, ADFI quadratically increased (P = 0.02) with increasing dietary inclusions of FFGC such that the ADFI increased up to 5% FFGC but then declined with further FFGC inclusions up to 15%. Pigs fed decreasing amounts of FFGC by growth phase tended to have greater (P = 0.06) overall ADFI than pigs fed 0% FFGC. Increasing dietary FFGC inclusion linearly decreased (P = 0.007) ADG for d 22 to 42 and quadratically decreased (P = 0.04) ADG for d 43 to 62. However, increasing dietary FFGC inclusion did not affect ADG for d 0 to 21 and d 63 to 83. Pigs fed decreasing amounts of FFGC by growth phase did not have different ADG from pigs fed 0% FFGC for each of the phases and overall. For the overall study, ADG tended to decrease (P = 0.078) with increasing dietary inclusions of FFGC. Increasing dietary FFGC inclusion linearly decreased (P = 0.002) G:F for d 22 to 42 and tended to decrease (P = 0.080) G:F for d 43 to 62. Increasing dietary FFGC inclusion tended to quadratically decrease (P = 0.095) G:F of pigs for d 63 to 83. However, increasing dietary FFGC inclusion did not affect G:F for d 0 to 21. Pigs fed decreasing amounts of FFGC per growth phase did not have different G:F from control pigs fed 0% FFGC for d 0 to 21 and d 63 to 83. However, pigs fed decreasing amounts of FFGC, compared with those fed 0% FFGC, had lower (P < 0.05) G:F for d 22 to 42 and d 43 to 62. Overall, increasing dietary FFGC inclusion linearly decreased (P = 0.006) G:F. Also, pigs fed decreasing amounts of FFGC per phase compared with those fed 0% FFGC had lower (P = 0.011) overall G:F. Increasing dietary FFGC inclusion linearly decreased (P < 0.05) carcass weight and dressing percentage and linearly increased (P = 0.016) days to slaughter (Table 7). Increasing dietary FFGC did not affect backfat thickness, loin depth, and estimated pork yield. Also, pigs fed decreasing amounts of FFGC per phase did not have different carcass weight, dressing percentage, backfat, loin depth, and estimated carcass pork yield from control pigs fed 0% FFGC. Table 7. Effect of feeding diets including full-fat green canola seed on carcass characteristics and days after d 83 required for pigs to reach slaughter weight (Exp. 2)1   Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  Shipping weight, kg  122.8  123.0  122.3  122.9  124.1  –  –  –    Carcass weight, kg  96.7  96.5  96.1  95.7  96.3  0.3  0.011  0.771  0.371  Dressing, %  78.5  78.3  78.2  77.8  78.6  0.2  0.001  0.338  0.505  Backfat thickness, mm  19.4  19.6  19.4  19.5  19.6  0.3  0.910  0.828  0.642  Loin depth, mm  65.4  65.4  65.2  64.6  65.1  0.4  0.147  0.484  0.635  Estimated pork yield, %  60.5  60.4  60.5  60.4  60.4  0.1  0.901  0.935  0.588  d 83 to slaughter,3 d  23.4  22.4  23.3  25.8  22.8  0.9  0.022  0.021  0.568    Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  Shipping weight, kg  122.8  123.0  122.3  122.9  124.1  –  –  –    Carcass weight, kg  96.7  96.5  96.1  95.7  96.3  0.3  0.011  0.771  0.371  Dressing, %  78.5  78.3  78.2  77.8  78.6  0.2  0.001  0.338  0.505  Backfat thickness, mm  19.4  19.6  19.4  19.5  19.6  0.3  0.910  0.828  0.642  Loin depth, mm  65.4  65.4  65.2  64.6  65.1  0.4  0.147  0.484  0.635  Estimated pork yield, %  60.5  60.4  60.5  60.4  60.4  0.1  0.901  0.935  0.588  d 83 to slaughter,3 d  23.4  22.4  23.3  25.8  22.8  0.9  0.022  0.021  0.568  1Least square means based on 10 pens. 2For d 0 to 21, d 22 to 42, d 43 to 62, and d 63 to 83, diets contained 15, 10, 5, and 0% full-fat green canola seed, respectively. 3Pen average number of days from d 83 until slaughter. Pigs were fed phase 5 diets from d 83 until slaughter. View Large Table 7. Effect of feeding diets including full-fat green canola seed on carcass characteristics and days after d 83 required for pigs to reach slaughter weight (Exp. 2)1   Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  Shipping weight, kg  122.8  123.0  122.3  122.9  124.1  –  –  –    Carcass weight, kg  96.7  96.5  96.1  95.7  96.3  0.3  0.011  0.771  0.371  Dressing, %  78.5  78.3  78.2  77.8  78.6  0.2  0.001  0.338  0.505  Backfat thickness, mm  19.4  19.6  19.4  19.5  19.6  0.3  0.910  0.828  0.642  Loin depth, mm  65.4  65.4  65.2  64.6  65.1  0.4  0.147  0.484  0.635  Estimated pork yield, %  60.5  60.4  60.5  60.4  60.4  0.1  0.901  0.935  0.588  d 83 to slaughter,3 d  23.4  22.4  23.3  25.8  22.8  0.9  0.022  0.021  0.568    Full-fat green canola seed, %      P-value  Item  0  5  10  15  Decreasing2  SEM  Linear  Quadratic  Decreasing vs. 0  Shipping weight, kg  122.8  123.0  122.3  122.9  124.1  –  –  –    Carcass weight, kg  96.7  96.5  96.1  95.7  96.3  0.3  0.011  0.771  0.371  Dressing, %  78.5  78.3  78.2  77.8  78.6  0.2  0.001  0.338  0.505  Backfat thickness, mm  19.4  19.6  19.4  19.5  19.6  0.3  0.910  0.828  0.642  Loin depth, mm  65.4  65.4  65.2  64.6  65.1  0.4  0.147  0.484  0.635  Estimated pork yield, %  60.5  60.4  60.5  60.4  60.4  0.1  0.901  0.935  0.588  d 83 to slaughter,3 d  23.4  22.4  23.3  25.8  22.8  0.9  0.022  0.021  0.568  1Least square means based on 10 pens. 2For d 0 to 21, d 22 to 42, d 43 to 62, and d 63 to 83, diets contained 15, 10, 5, and 0% full-fat green canola seed, respectively. 3Pen average number of days from d 83 until slaughter. Pigs were fed phase 5 diets from d 83 until slaughter. View Large DISCUSSION The content of CP, AA, and NDF, the DE and NE values, and the SID of indispensable AA, except Trp, of wheat in the present study were similar to reported values (NRC, 2012). Therefore, the values obtained by difference for FFGC were likely not skewed. Full-fat canola seed can be a good dietary source of AA but also energy because of its high oil content. However, the ether extract content for FFGC varies from regular full-fat canola seed because of the extent of maturity. The ether extract (43.1%) was lower than values reported previously for regular canola seed that ranged from 44. 1 to 50.4% (Assadi et al., 2011; González-Vega and Stein, 2012). During maturation of canola, oil is deposited later in the seeds than other nutrients (Fowler and Downey, 1970), implying that mature canola seeds contain more oil. Therefore, lower ether extract in FFGC in the present study compared with regular canola seed fed previously (Assadi et al., 2011; González-Vega and Stein, 2012) could be due to its immaturity. The AA profile for FFGC used in the present study was similar to previous values reported for regular canola seed (Wang et al., 1999; González-Vega and Stein, 2012). Therefore, maturation of canola seed from green to brown color may not affect AA profile of the seed as much as oil content. Canola seed has a relatively high content of fiber, which can limit its use as feedstuff in swine diets. The NDF (22.0%) in FFGC was within the range of values reported previously for regular full-fat canola seed (14.7% [Montoya and Leterme, 2010]; 17.9% [Assadi et al., 2011]; 22.8%; [González-Vega and Stein, 2012]), but the value was lower than the 37.4% reported for off-grade, heated full-fat canola seed (Seneviratne et al., 2011). The greater NDF content in regular full-fat canola seed fed in the study of Seneviratne et al. (2011) may have been due to Maillard reaction in canola. The color of canola seed changes from brown to dark brown by the heating process during bin storage (CGC, 2011). The total glucosinolate content of FFGC (9.97 μmol/g) in the present study was lower than regular, mature canola seed (13.83 μmol/g; Thacker, 1998) but greater than heated canola seed (3.33 μmol/g; Seneviratne et al., 2011). Similarly, total glucosinolate content was greater for press cake from mature canola seed than green canola seed (Thacker and Petri, 2009). Glucosinolate content in canola seed increases with maturity (Bell, 1993); therefore, the lower glucosinolate content of FFGC compared with mature canola seed could be due to its immaturity. Heating of canola seed (Seneviratne et al., 2011) or toasting of the meal (Newkirk et al., 2003) reduces glucosinolate content, thereby making canola feedstuffs suitable for consumption by pigs. The diet containing 15% FFGC had a calculated total glucosinolate content of 1.5 μmol/g, which is below the generally accepted tolerance level of 2.0 μmol/g (Tripathi and Mishra, 2007). The SID of all indispensable AA (except Ile and Leu) for the FFGC fed in the present study were greater than the SID of indispensable AA for off-grade, heated full-fat canola seed used previously (Seneviratne et al., 2011). The greater digestibility for FFGC could have been due to the heat damage of AA in heated full-fat canola seed that was evidenced by the 72 vs. 94% chemically defined Lys availability in the heated full-fat canola vs. the FFGC, respectively. Subjecting feedstuffs to greater temperatures causes AA and sugars in the feedstuffs to react to form complexes that are indigestible by gastrointestinal (endogenous) enzymes of animals (Rizzi, 2003; Rutherfurd and Moughan, 2012). The SID of indispensable AA for the FFGC was also greater than the SID of indispensable AA values for regular full-fat canola seed as reported by González-Vega and Stein (2012). The FFGC may, therefore, have greater AA digestibility than regular full-fat canola seed, although particle size differences between studies, which were not characterized, might also have played a role (NRC, 2012). The ATTD of energy was similar for FFGC used in the present study and regular full-fat canola seed (Montoya and Leterme, 2010) fed to growing pigs (74.7 vs. 75%, respectively). The GE (6.58 vs. 6.68 Mcal/kg) and macronutrient content were also similar (43.1 vs. 43.9% ether extract and 24.9 vs. 23.5% CP) in FFGC and regular full-fat canola seed, respectively, in the 2 studies; however, the NDF content was greater for FFGC than regular full-fat canola seed (22.0 vs. 14.7%). Therefore, energy digestibility was expected to be lower for FFGC than regular full-fat canola seed because of the greater fiber content. Notably, acid detergent solubles (hemicelluloses) constituted a greater proportion of NDF in FFGC than in the regular full-fat canola seed, because the full-fat canola seed fed in the 2 studies were similar in ADF. In nonruminants such as pigs, digestibility of hemicellulose is greater than that for cellulose, which constitutes a greater proportion of ADF (van Soest, 1994). Therefore, the similarity in ATTD of energy between FFGC and regular full-fat canola seed fed in the 2 studies might be attributed to the greater proportion of NDF in FFGC being hemicellulose, which is at least partly digestible. The DE and NE values for FFGC were similar for regular full-fat canola seed (4.92 vs. 5.03 and 3.50 vs. 3.56 Mcal/kg, respectively) for the 2 studies that resulted from similar GE and macronutrient content and energy digestibility in these full-fat canola seed samples. Increasing dietary FFGC inclusion reduced ADG and G:F of pigs for d 22 to 42 and d 43 to 62 and hence decreased overall ADG and G:F. Also, increasing dietary FFGC inclusion reduced carcass weight. In the present study, diets were formulated to be similar in NE and standardized digestible AA content. Therefore, the decrease in growth performance of pigs and carcass weight because of increasing dietary FFGC inclusion was probably not a result of decrease in dietary nutrient availability. It could, however, have been due to an increase in dietary fiber with increased dietary inclusion of FFGC. The FFGC had a greater content of fiber than the wheat and soybean meal and fat that FFGC replaced in the control diet. Also, the dietary inclusion of barley, which has lower NE content and greater fiber content than wheat (Wu and Ewan, 1979), increased (at the expense of wheat) with increasing dietary FFGC inclusion to maintain dietary NE value, thereby increasing dietary fiber from barley. Dietary fiber reduces nutrient digestibility (Schulze et al., 1994; Wilfart et al., 2007) and increases visceral gut weight (Pond et al., 1989) and gut fill. Energy expenditure in visceral organs forms the bulk of maintenance energy requirement of an animal, and the expenditure of energy in these organs increases with increase in their masses (Ferrell, 1988). Therefore, increased dietary fiber content can increase utilization of dietary energy for maintenance at the expense of growth, leading to reduced growth performance. In the present study, the carcass dressing percent of pigs reduced with increasing dietary FFGC inclusion, implying that gut fill or the sizes of visceral organs in the pigs was indeed increased with increasing dietary FFGC inclusion. Montoya and Leterme (2010) have also reported a decrease in growth performance of pigs because of increasing dietary inclusion of regular full-fat canola seed. The gradual decrease in dietary FFGC inclusion from phases 1 to 5 reduced G:F of pigs for d 22 to 42 and d 43 to 62 and hence overall decrease in G:F, implying that the impact of diets with FFGC on G:F in initial phases was carried over to the final phases. Therefore, the increased dietary FFGC inclusion for pigs in grower phases that was accomplished by decreased dietary inclusion of wheat, soybean meal, and tallow and increased dietary inclusion of barley to maintain the dietary NE value and SID AA content decreased overall G:F because of the greater fiber content in FFGC and barley than in wheat, soybean meal, and tallow. In the present study, backfat, loin depth, and estimated carcass lean yield were unaffected by an increase in FFGC inclusion despite the fact that carcass weight and carcass dressing percentage were decreased due to increasing dietary FFGC inclusion. A decrease in carcass weight and carcass dressing percent of pigs because of increasing dietary FFGC inclusion was most likely due to greater gut fill. Backfat and carcass weight of pigs with similar BW decreased linearly and carcass leanness increased linearly because of increasing dietary inclusion of expeller extracted canola meal from 0 to 18% for pigs fed diets formulated to similar NE value and content of SID AA (Seneviratne et al., 2010). However, the magnitude by which carcass weight was reduced by increasing expeller canola meal inclusion in the study of Seneviratne et al. (2010) was greater than the magnitude that the carcass weight was reduced by increasing FFGC in the present study (95.7 to 93.1 vs. 96.7 to 95.7 kg). Therefore, the lack of effect of increasing dietary FFGC inclusion on backfat and the carcass leanness in the present study could be attributed to the reduced carcass dressing percentage; hence, the increased size of viscera was not large enough to impact the aforementioned carcass traits. This lack of effect of increasing dietary FFGC inclusion on the carcass traits in the present study implies that the FFGC can be included in diets of growing–finishing pigs without an effect on the same carcass traits regardless of whether FFGC is fed only in the grower phase or in both grower and finisher phases. The lack of a FFGC × sex interaction on growth performance and carcass traits is not unexpected because diet formulations were not specially targeted toward barrows or gilts. In conclusion, FFGC is a good source of dietary AA and energy for pigs. However, increasing dietary FFGC inclusion by decreasing dietary inclusion of wheat, soybean meal, and tallow and increasing dietary inclusion of barley to maintain dietary NE value reduced pig G:F, carcass weight, and dressing percent of pigs likely because of increased dietary fiber content. Therefore, the amount of FFGC included in swine diets should be based on the targeted feed efficiency and relative cost of other feed ingredients. LITERATURE CITED Agriculture and Agri-Food Canada (AAFC) 2013. Canada: Outlook for principal field crops, 2012-09-18. September 18, 2013. AAFC Market Analysis Group, Winnipeg, MB. Adeola O 2001. Digestion and balance techniques in pigs. In: Lewis A. J. Southern L. L. editors, Swine nutrition.  CRC Press, New York. p. 903– 916. Google Scholar CrossRef Search ADS   AOAC 2006. Official methods of analysis. 18th ed. AOAC Int., Gaithersburg, MD. Assadi E. Janmohammadi H. Taghizadeh A. Alijani S. 2011. Nutrient composition of different varieties of full-fat canola seed and nitrogen-corrected true metabolizable energy of full-fat canola seed with or without enzyme addition and thermal processing. J. Appl. Poult. Res.  20: 95– 101. Google Scholar CrossRef Search ADS   Association of Official Analytical Chemists (AOAC) 1990. Official methods of analysis. 15th ed. AOAC, Arlington, VA. Bell J. M 1993. Factors affecting the nutritional value of canola meal: A review. Can. J. Anim. Sci.  73: 689– 697. Google Scholar CrossRef Search ADS   Canadian Council on Animal Care (CCAC) 2009. Guide to the care and use of farm animals in research, teaching and testing. CCAC, Ottawa, ON. Canadian Grain Commission (CGC) 2011. Official grain grading guide. CGC, Winnipeg, MB. Chung D. W. Pruzinska A. Hortensteiner S. Ort D. R. 2006. The role of pheophorbide a oxygenase expression and activity in the canola green seed problem. Plant Physiol.  142: 88– 97. Google Scholar CrossRef Search ADS PubMed  Daun J. K 1985. Effect of frost damage on the quality of canola (B. napus). J. Am. Oil Chem. Soc.  62: 715– 719. Google Scholar CrossRef Search ADS   Daun J. K 2003. How green is green? Long-term relationships between green seeds and chlorophyll in canola grading. J. Am. Oil Chem. Soc.  80: 119– 122. Google Scholar CrossRef Search ADS   Daun J. K. McGregor D. I. 1981. Glucosinolate analysis of rapeseed (canola). Method of the grain research laboratory. Can. Grain Comm., Winnipeg, MB. Fenton T. W. Fenton M. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Can. J. Anim. Sci.  59: 631– 634. Google Scholar CrossRef Search ADS   Ferrell C. L 1988. Contribution of visceral organs to animal energy expenditures. J. Anim. Sci.  66: 23– 34. Fowler D. B. Downey R. K. 1970. Lipid and morphological changes in developing rapeseed, Brassica napus. Can. J. Plant Sci.  50: 233– 247. González Vega J. C. Stein H. H. 2012. Amino acid digestibility in canola, cottonseed, and sunflower products fed to finishing pigs. J. Anim. Sci.  90: 4391– 4400. Google Scholar CrossRef Search ADS PubMed  Heaney R. K. Fenwick G. R. 1980. The analysis of glucosinolates in Brassica species using gas chromatography. Direct determination of the thiocyanate ion precursors, glucosbrassicin and neoglucobrassicin. J. Sci. Food Agric.  31: 593– 599. Google Scholar CrossRef Search ADS   Holst D. O 1973. Holst filtration apparatus for Van Soest detergent fiber analysis. J. Assoc. Off. Anal. Chem.  56: 1352– 1356. Montoya C. A. Leterme P. 2010. Validation of the net energy content of canola meal and full-fat canola seeds in growing pigs. Can. J. Anim. Sci.  90: 213– 219. Google Scholar CrossRef Search ADS   Newkirk R. W. Classen H. L. Scott T. A. Edney M. J. 2003. The availability and content of amino acids in toasted and non-toasted canola meals. Can. J. Anim. Sci.  83: 131– 139. Google Scholar CrossRef Search ADS   Noblet J. Fortune H. Shi X. S. Dubois S. 1994. Prediction of net energy value of feeds for growing pigs. J. Anim. Sci.  72: 344– 354. Google Scholar CrossRef Search ADS PubMed  NRC 1998. Nutrient requirements of swine. 10th rev. ed. Natl. Acad. Press, Washington, DC. NRC 2012. Nutrient requirements of swine. 11th rev. ed. Natl. Acad. Press, Washington, DC. Pond W. G. Varel V. H. Dickson J. S. Haschek W. M. 1989. Comparative response of swine and rats to high-fiber or high-protein diets. J. Anim. Sci.  67: 716– 723. Google Scholar CrossRef Search ADS PubMed  Rizzi G. P 2003. Electrochemical study of the Maillard reaction. J. Agric. Food Chem.  51: 1728– 1731. Google Scholar CrossRef Search ADS PubMed  Rutherfurd S. M. Moughan P. J. 2012. Available versus digestible dietary amino acids. Br. J. Nutr.  108: S298– S305. Google Scholar CrossRef Search ADS PubMed  Sauer W. C. Ozimek L. 1986. Digestibility of amino acids in swine: Results and their practical applications. A review. Livest. Prod. Sci.  15: 367– 388. Google Scholar CrossRef Search ADS   Sauvant D. Perez J.-M. Tran G. 2004. Tables of composition and nutritional value of feed materials: Pigs, poultry, cattle, sheep, goats, rabbits, horses, fish. 2nd ed. Wageningen Academic Publishers, Wageningen, The Netherlands, and INRA, Paris. Schulze H. van Leeuwen P. Verstegen M. W. A. Huisman J. Souffrant W. B. Ahrens F. 1994. Effect of level of dietary neutral detergent fiber on ileal apparent digestibility and ileal nitrogen losses in pigs. J. Anim. Sci.  72: 2362– 2368. Google Scholar CrossRef Search ADS PubMed  Seneviratne R. W. Beltranena E. Newkirk R. W. Goonewardene L. A. Zijlstra R. T. 2011. Processing conditions affect nutrient digestibility of cold-pressed canola cake for grower pigs. J. Anim. Sci.  89: 2452– 2461. Google Scholar CrossRef Search ADS PubMed  Seneviratne R. W. Young M. G. Beltranena E. Goonewardene L. A. Newkirk R. W. Zijlstra R. T. 2010. The nutritional value of expeller-pressed canola meal for grower-finisher pigs. J. Anim. Sci.  88: 2073– 2083. Google Scholar CrossRef Search ADS PubMed  Stein H. H. Seve B. Fuller M. F. Moughan P. J. de Lange C. F. M. 2007. Invited review: Amino acid bioavailability and digestibility in pig feed ingredients: Terminology and application. J. Anim. Sci.  85: 172– 180. Google Scholar CrossRef Search ADS PubMed  Thacker P. A 1998. Effect of micronization of full-fat canola seed on performance and carcass characteristics of growing-finishing pigs. Anim. Feed Sci. Technol.  71: 89– 97. Google Scholar CrossRef Search ADS   Thacker P. A. Petri P. 2009. Nutrient digestibility and performance of broiler chickens fed regular or green biodiesel press cakes produced using a micro-scale production process. J. Sci. Food Agric.  89: 1307– 1313. Google Scholar CrossRef Search ADS   Tripathi M. K. Mishra A. S. 2007. Glucosinolates in animal nutrition: A review. Anim. Feed Sci. Technol.  132: 1– 27. van Kleef D. J. Deuring K. van Leeuwen P. 1994. A new method of faeces collection in the pig. Lab. Anim.  28: 78– 79. van Soest P. J 1994. Nutritional ecology of ruminants. 2nd ed. Cornell Univ. Press, Ithaca, NY. Wang Y. McAllister T. A. Pickard M. D. Xu Z. Rode L. M. Cheng K.-J. 1999. Effect of micronizing full fat canola seed on amino acid disappearance in the gastrointestinal tract of dairy cows. J. Dairy Sci.  82: 537– 544. Google Scholar CrossRef Search ADS PubMed  Wilfart A. Montagne L. Simmins H. Noblet J. van Milgen J. 2007. Digesta transit in different segments of the gastrointestinal tract of pigs as affected by insoluble fibre supplied by wheat bran. Br. J. Nutr.  98: 54– 62. Google Scholar CrossRef Search ADS PubMed  Wu J. F. Ewan R. C. 1979. Utilization of energy of wheat and barley by young swine. J. Anim. Sci.  49: 1470– 1477. Google Scholar CrossRef Search ADS   Zijlstra R. T. Beltranena E. 2013. Swine convert co-products from food and biofuel industries into animal protein for food. Anim. Front.  3: 48– 53. Google Scholar CrossRef Search ADS   American Society of Animal Science TI - Nutritional value of full-fat green canola seed fed to growing–finishing pigs JO - Journal of Animal Science DO - 10.2527/jas.2013-6730 DA - 2014-08-01 UR - https://www.deepdyve.com/lp/oxford-university-press/nutritional-value-of-full-fat-green-canola-seed-fed-to-growing-IFSL77yKfl SP - 3449 EP - 3459 VL - 92 IS - 8 DP - DeepDyve ER -