TY - JOUR AU - HATANO, Tsutomu AB - Abstract Zanthoxylum piperitum (Rutaceae) is used as a spice and a natural medicine in Japan. Our study found that ZP-CT-A, a polymeric proanthocyanidin purified from the fruit of this species, noticeably decreased the minimum inhibitory concentrations of β-lactam antibiotics for methicillin-resistant Staphylococcus aureus (MRSA). The structure of ZP-CT-A was characterized on the basis of 13C NMR and size exclusion chromatographic data and the results of thiolytic degradation. A mechanistic study of the effects of ZP-CT-A indicated that it suppressed the activity of β-lactamase and largely decreased the stability of the bacterial cell membrane of MRSA, as shown by a reduction in the tolerance of MRSA to low osmotic pressure and high ionic strength solutions. antibiotic resistance, methicillin-resistant Staphylococcus aureus (MRSA), polymeric proanthocyanidin, polyphenol, Zanthoxylum piperitum 1) Iinuma, M., Tosa, H., Tanaka, T., Asai, F., Kobayashi, Y., Shimano, R., and Miyauchi, K., Antibacterial activity of xanthones from guttiferaeous plants against methicillin-resistant Staphylococcus aureus. J. Pharm. Pharmacol., 48, 861–865 (1996). 2) Hatano, T., Uebayashi, H., Ito, H., Shiota, S., Tsuchiya, T., and Yoshida, T., Phenolic constituents of cassia seeds and antibacterial effect of some naphthalenes and anthraquinones on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull., 47, 1121–1127 (1999). 3) Shiota, S., Shimizu, M., Mizusima, T., Ito, H., Hatano, T., Yoshida, T., and Tsuchiya, T., Restoration of effectiveness of β-lactams on methicillin-resistant Staphylococcus aureus by tellimagrandin I from rose red. FEMS Microbiol. Lett., 185, 135–138 (2000). 4) Hatano, T., Shintani, Y., Aga, Y., Shiota, S., Tsuchiya, T., and Yoshida, T., Phenolic constituents of licorice. VIII. Structures of glicophenone and glicoisoflavanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull., 48, 1286–1292 (2000). 5) Shimizu, M., Shiota, S., Mizushima, T., Ito, H., Hatano, T., Yoshida, T., and Tsuchiya, T., Marked potentiation of activity of β-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob. Agents Chemother., 45, 3198–3201 (2001). 6) Shiota, S., Shimizu, M., Sugiyama, J., Morita, Y., Mizushima, T., and Tsuchiya, T., Mechanisms of action of corilagin and tellimagrandin I that remarkably potentiate the activity of β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 48, 67–73 (2004). 7) Stapleton, P. D., Shah, S., Anderson, J. C., Hara, Y., Hamilton-Miller, J. M., and Taylor, P. W., Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Agents, 23, 462–467 (2004). 8) Fujita, M., Shiota, S., Kuroda, T., Hatano, T., Yoshida, T., Mizushima, T., and Tsuchiya, T., Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 49, 391–396 (2005). 9) Hatano, T., Kusuda, M., Hori, M., Shiota, S., Tsuchiya, T., and Yoshida, T., Theasinensin A, a tea polyphenol formed from (−)-epigallocatechin gallate, suppresses antibiotic resistance of methicillin-resistant Staphylococcus aureus. Planta Med., 69, 984–989 (2003). 10) Hatano, T., Inada, K., Ogawa, T., Ito, H., and Yoshida, T., Aliphatic acid amides of the fruits of Zanthoxylum piperitum. Phytochemistry, 65, 2599–2604 (2004). 11) Hatano, T., Miyatake, H., Natsume, M., Osakabe, N., Takizawa, T., Ito, H., and Yoshida, T., Proanthocyanidin glycosides and related polyphenols from cacao liquor and their antioxidant effects. Phytochemistry, 59, 749–758 (2002). 12) Novic, R. P., Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus. J. Gen. Microbiol., 33, 121–136 (1963). 13) Nakatani, N., Kayano, S., Kikuzaki, H., Sumino, K., Katagiri, K., and Mitani, T., Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in Prune (Prunus domestica L.). J. Agric. Food Chem., 48, 5512–5516 (2000). 14) Foo, L. Y., Newman, R., Waghorn, G., McNabb, W. C., and Ulyatt, M. J., Proanthocyanidins from Lotus corniculatus. Phytochemistry, 41, 617–624 (1996). 15) Hatano, T., and Hemingway, R. W., Conformational isomerism of phenolic procyanidins: preferred conformations in organic solvents and water. J. Chem. Soc., Perkin Trans. 1, 1035–1043 (1997). 16) Aritomi, M., Chemical studies on the constituents of edible plants (Part 2). J. Home Econ. Jpn., 34, 233–236 (1983). 17) Bae, Y. S., Foo, L. Y., and Karchesy, J. J., GPC of natural procyanidin oligomers and polymers. Holzforschung, 48, 4–6 (1994). 18) Laks, P. E., Flavonoid biocides: phytoalexin analogues from condensed tannins. Phytochemistry, 26, 1617–1621 (1987). 19) O’Callaghan, C. H., Morris, A., Kirby, S. M., and Shingler, A. H., Novel method for detection of β-lactamase by using a chromogenic cephalosporin substrate. Antimicrob. Agents Chemother., 1, 283–288 (1972). 20) Czochanska, Z., Foo, L. Y., Newman, R. H., and Porter, L. J., Polymeric proanthocyanidins: stereochemistry, structural units, and molecular weight. J. Chem. Soc., Perkin Trans. 1, 2278–2286 (1980). 21) Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y., and Shimamura, T., Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 45, 1737–1742 (2001). 22) Sato, Y., Shibata, H., Arai, T., Yamamoto, A., Okimura, Y., Arakai, N., and Higuti, T., Variation in synergistic activity by flavone and its related compounds on the increased susceptibility of various strains of methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. Int. J. Antimicrob. Agents, 24, 28–35 (2004). 23) Ikigai, H., Nakae, T., Hara, Y., and Shimamura, T., Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta, 1147, 132–136 (1993). 24) Caturla, N., Vera-Samper, E., Villalai’n, J., Mateo, R., and Micol, V., The relationship between the antioxidant and the antibacterial properties of galloylated and the structure of phospholipids model membranes. Free Radic. Biol. Med., 34, 648–662 (2003). 25) Kubo, I., Fujita, K., Nihei, K., and Masuoka, N., Non-antibiotic antibacterial activity of dodecyl gallate. Bioorg. Med. Chem., 11, 573–580 (2003). 26) Stapleton, P. D., Shah, S., Hamilton-Miller, J. M. T., Hara, Y., Nagaoka, Y., Kumagai, A., Uesato, S., and Taylor, P. W., Anti-Staphylococcus aureus activity and oxacillin resistance modulating capacity of 3-O-acyl-catechins. Int. J. Antimicrob. Agents, 24, 374–380 (2004). 27) Kajiya, K., Hojo, H., Suzuki, M., Nanjo, F., Kumazawa, S., and Nakayama, T., Relationship between antibacterial activity of (+)-catechin derivatives and their interaction with a model membrane. J. Agric. Food Chem., 52, 1514–1519 (2004). 28) Guyot, S., Doco, T., Souquet, J. M., Moutounet, M., and Drilleau, J. F., Characterization of highly polymerized procyanidins in cider apple (Malus sylvestris var. kermerrien) skin and pulp. Phytochemistry, 44, 351–357 (1997). 29) De Freitas, V. A. P., Glories, Y., and Laguerre, M., Incidence of molecular structure in oxidation of grape seed procyanidins. J. Agric. Food Chem., 46, 376–382 (1998). 30) Natume, M., Osakabe, N., Yamaguchi, M., Takizawa, T., Nakamura, T., Miyatake, H., Hatano, T., and Yoshida, T., Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci. Biotechnol. Biochem., 64, 2581–2587 (2000). 31) Shoji, T., Mutsuga, M., Nakamura, T., Kanda, T., Akiyama, H., and Goda, Y., Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance. J. Agric. Food Chem., 51, 3806–3813 (2003). 32) Taylor, A. W., Barofsky, E., Kennedy, J. A., and Deinzer, M. L., Hop (Humulus lupulus L.) proanthocyanidins characterized by mass spectrometry, acid catalysis, and gel permeation chromatography. J. Agric. Food Chem., 51, 4101–4110 (2003). PDF This content is only available as a PDF. © 2006 by Japan Society for Bioscience, Biotechnology, and Agrochemistry This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) © 2006 by Japan Society for Bioscience, Biotechnology, and Agrochemistry TI - Polyphenolic Constituent Structures of Zanthoxylum piperitum Fruit and the Antibacterial Effects of Its Polymeric Procyanidin on Methicillin-Resistant Staphylococcus aureus JF - Bioscience Biotechnology and Biochemistry DO - 10.1271/bbb.50669 DA - 2006-06-23 UR - https://www.deepdyve.com/lp/oxford-university-press/polyphenolic-constituent-structures-of-zanthoxylum-piperitum-fruit-and-I4z8WQLkbR SP - 1423 EP - 1431 VL - 70 IS - 6 DP - DeepDyve ER -