TY - JOUR AU - Barrangou, Rodolphe AB - Introduction The experimental demonstrations, in 2007 and 2008, that the Clustered Regularly Interspaced Short Palindromic Repeats that abound in the genomes of the vast majority of archaea and nearly half of bacteria can serve as part of an adaptive immune system (CRISPR–cas) that protects these prokaryotes against lytic phage [1] and conjugative plasmids [2] raised many intriguing questions and stimulated a great deal of research. Between 2007 and 2012, according to PubMed, the number of articles with the acronym CRISPR in their title and/or body has been doubling every 20 months. Understandably, the majority of these articles are reports or reviews of the genetic, biochemical, and molecular mechanisms by which (i) the CRISPR–cas system acquires the 26–72 base pair sequences (spacers) of DNA from infecting phage, generating Bacteriophage Insensitive Mutants (BIMs), or from invading plasmids, forming Plasmid Interfering Mutants (PIMs); (ii) the small RNAs coded for by these spacers abort subsequent infections by phage and plasmids with DNA sequences corresponding to those in these spacers (protospacers) [3], [4], [5], [6]; (iii) the phage can evade this resistance and generate CRISPR Escape Mutants (CEMs) by modifying the DNA sequences of protospacers or protospacer adjacent motifs (PAM) [3], [7], [8], [9]; (iv) the Cas proteins participate in these processes [1], [8], [9]; and (v) the existence, distribution and genetic diversity of CRISPR–cas systems in the archaea and bacteria came about [10], [11], [12] Some of this research has been devoted to the practical applications of CRISPR and the CRISPR–cas system. Long before the immunological role of CRISPR in these microorganisms was recognized, differences in the number of these palindromic repeats had been used as markers for studies of the genetic (molecular) epidemiology and forensics of pathogenic bacteria [13], [14], [15], [16]. Isolates that would be classified as identical by standard typing procedures, like Serotyping, Multi-Locus Sequence Typing, and Pulse Field Gel Electrophoresis, can differ in their CRISPR regions, particularly in their spacer sequences [17], [18]. Genes, and clusters of genes, borne on plasmids, phage, or chromosomal genes, and acquired by horizontal transfer, code for the virulence and antibiotic resistance of many pathogenic bacteria. And, as one might anticipate, strains of at least some species of pathogenic bacteria that lack functional CRISPR–cas systems are more likely to be virulent and resistant to antibiotics than those that bear these systems [19]. A number of biotechnological and industrial processes rely on the use of bacteria that are subject to infection by phage, and therefore risk disruption of production, low-quality products and economic loss. Can CRISPR–cas systems be harnessed to counter antibiotic resistance and virulence of pathogenic bacteria and/or prevent phage contamination of industrially important bacteria (8)? Central to understanding these practical implications and potential applications of CRISPR–cas systems are the population and evolutionary dynamics of bacteria bearing these adaptive immune systems and those of the phage and plasmids that infect them. Prior to the experimental demonstration that CRISPR is part of an adaptive immune system, and motivating those experiments, were observations that the spacer sequences in the CRISPR regions of bacteria and archaea from natural communities were identical to sequences in the genomes of viruses in their communities [15], [20], [21]. These and more recent studies of bacteria and archaea and their viruses [10], [11], [12], [22], and metagenomic studies of microbiomes [23], provided compelling support for the hypothesis that CRISPR–cas systems play an active role in the population dynamics and co-evolution of these organisms in natural communities. However, the inferences one can draw from these investigations are limited. They provide little of the necessary quantitative information about the nature and contribution of CRISPR–cas to these dynamics and co-evolution and its consequential role in determining the structure of their communities. Studies using mathematical models and computer simulations suggest that bacteria with CRISPR–cas systems can invade communities of phage and bacteria without this immune system and can also prevent phage from invading their communities [24]. Modeling studies also suggest that, in theory, a CRISPR–cas-mediated BIM-CEM co-evolutionary arms race can maintain considerable diversity in the interacting populations of bacteria and phage [25] and account for spacer changes in the CRISPR elements in the metagenomic structure of natural communities of archaea and bacteria and their phage [26]. But, as compelling as these mathematical models and computer simulation studies may be, their limitations are also apparent. The models used are based on simplifying assumptions about the phage infection process and CRISPR–cas adaptive immunity that have not been formally tested in the systems under study. The computer simulations and other numerical analyses of the properties of these models use parameter values for which there are few independent estimates. In this study we use mathematical models, computer simulations, parameter estimation, and population dynamic and other microbiological experiments with the Gram-positive bacteria Streptococcus thermophilus and its virulent phage 2972 (Siphoviridae family) to explore the nature and contribution of CRISPR–cas adaptive immunity to the population and evolutionary dynamics of bacteria and phage. The results of these experiments and the molecular characterization of the bacteria and phage employed demonstrate that the qualitative Lamarckian (iterative acquisition of spacers) [27] and Darwinian (mutation in protospacers) genetic conditions for a CRISPR–mediated arms race are met with this phage-host system. BIMs are readily formed and CEMs capable of growing on these BIMs are generated at high rates. On the other hand, our experimental results and theoretical analyses indicate that even at a qualitative level, models based on existing assumptions about phage infection and CRISPR–mediated resistance cannot account for the population and evolutionary dynamics of the interactions between S. thermophilus and phage 2972. Findings contrary to what is anticipated from the analysis of the properties of these models include: (i) the invasion of phage into populations of BIMs resistant due to the acquisition of one (but not two) spacers; (ii) the survival of substantial numbers of sensitive bacteria despite the presence of high densities of phage; and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild type bacteria and phage. We postulate that the latter two results can be attributed to the phage infection-associated production of enzymes or other compounds that kill resistant BIMs and generate phenotypically phage-resistant “persister” populations of sensitive bacteria. By modifying the model to account for these chemical processes we can explain the observed dynamics. The predictions of this extended model are supported by longer-term population dynamic experiments. Results Theoretical framework Overview. We open this report with a mathematical model that is based on the classical view of the process of infection of bacteria with lytic phage [28] and the current perspective on CRISPR–cas-mediated immunity to phage infection [3]. The roles of this model and the computer simulations used to analyze its properties are to (i) evaluate the contributions of the major parameters governing the dynamics of phage infection of bacteria with CRISPR–cas immune systems; (ii) generate testable hypotheses about these dynamics; (iii) guide the design of the experiments testing these hypotheses; and (iv) interpret the results of these experiments. This opening model is in essence a quantitative straw person. It is not intended to provide quantitatively precise descriptions of these dynamics, but rather to identify major qualitative deviations between the results of our experiments and a theory based on the canonical view of phage infection and CRISPR–cas immunity. For our analysis of the properties of this model, we use semi-stochastic simulations employing parameter values estimated experimentally in cultures of S. thermophilus strain DGCC7710 and phage 2972. The model. The bacteria and phage are of three possible orders, with densities and designations, respectively, B0, B1, and B2, as well as P0, P1, and P2 (Figure 1). Phage are able to adsorb to bacteria of all orders, but are only able to replicate on bacteria of states with the same or lower index numbers (earlier states). For example, phage P1 can adsorb to and replicate on B0 and B1 and adsorb to but not replicate on B2. Phage that adsorb to bacteria on which they cannot replicate are lost from their population. Phage resistance (the generation of BIMs) is acquired by the addition of DNA sequences (spacers) into the CRISPR locus that correspond to sequences borne by the infecting phage (protospacers). Although we realize that there are at least two active CRISPR–cas systems in this S. thermophilus strain, for simplicity, we assume there is a unique functional CRISPR–cas system. Spacers accumulate without loss of earlier spacers. By mutation in a phage protospacer corresponding to a host spacer, phage are able to replicate on bacteria with that spacer. These CEMs accumulate protospacer (or PAM) mutations without loss of those acquired earlier and thereby can replicate on bacteria with spacers providing resistance to all earlier incarnations of that phage. For example a phage P1 with protospacer mutation that enables it to replicate on bacteria B1 can also replicate on B0. For simplicity and tractability, we assume that there is a single bacterial and phage genotype within each order as defined by the number of spacers. In reality BIMs may be generated by the acquisition of many different spacers. We consider the implications of this simplifying assumption in the Discussion. Download: PPT PowerPoint slide PNG larger image TIFF original image Figure 1. CRISPR–mediated arms race. Ellipses - bacteria; Pentagons - phage; red and blue rectangles - acquired spacers; red and blue circles, regions of the phage genome corresponding to the acquired spacers (protospacers); stars, mutated protospacers generating CEMs. WT, Wild type bacteria and phage; BIMX and CEMX, bacteria with spacers for acquired resistance to WT phage and the first-order CRISPR Escape mutants (CEMX), respectively; BIMX2 and CEMX2, bacteria with spacers for acquired resistance to CEMX and the second-order CRISPR–escape mutants, respectively. Panel A: Infection and phage replication relationships. Solid black lines, phage adsorption and replication; broken red lines - phage adsorption and loss. Panel B: Changes in state. BIMX are produced by WT phage infecting WT cells and BIMX2 are produced by CEMX infecting BIMX. CEMX are produced by P0 infecting and replicating on B0 and CEMX2 are produced by CEMX infecting and replicating on BIMX. https://doi.org/10.1371/journal.pgen.1003312.g001 The rate of growth of the bacteria is a monotonic increasing function of the concentration of a limiting resource r (µg/ml), , where v (per hour) is the maximum growth rate and k (µg) is the concentration of the resource where the growth rate is half its maximum value (v/2) [29]. Resources are taken up at a rate proportional to the densities of the bacteria, their growth rates, and a conversion efficiency parameter e (µg) which is the amount of resource needed to produce a new cell [30]. The phage adsorb to bacteria of all states with a rate parameter δ (ml per cell per phage per hour) and produce β phage per infection (burst size). As in [24], [25], [31], we assume phage infection is a mass action process that occurs at a rate proportional to the product of the densities of the populations of bacteria and phage and the rate constant, δ. Spacers are incorporated only from phage capable of replicating on bacteria of a given state. The parameter m is the probability that a bacterium infected by a phage that can replicate on it will add a spacer for immunity to that phage. CEM phage of state P1 are produced by Po during the course of replication on B0 with a probability μ per phage per infection. To account for the latent period of length λ hours, we assume that infected bacteria enter a fated state, Mij, for bacteria of state i infected with phage of state j. At time t, a fraction (1-m) of the cells infected λ hours earlier (at time t-λ) burst and produce β-1 particles. The (1-m) is to account for the fraction of infected B0 and B1 cells forming BIMs (B1 and B2, respectively); the β-1 new phage particles accounts for the loss of the infecting phage. CEMs of a given order are formed by mutation occurring during infections of sensitive bacteria by phage of the previous order. For example, phage of state P1 are produced as a fraction μ of the phage particles generated upon burst of B0 cells infected with P0. With these definitions and assumptions, the rates of change in the concentration of the resource and densities of phage are given by: Computer simulations. In our numerical solutions to these equations - computer simulations - the acquisition of spacers and CEM mutations are random processes. We use the Euler method for solving the differential equations and a Monte Carlo protocol for the generation of BIMs and CEMs. In any time interval Δt, the probability that a BIM is formed is proportional to the number of sensitive cells infected with phage during that time interval. For example, in a given interval Δt, the probability that a P1 infecting a B1 will produce a single B2 is approximately mM1(t-λ)Δt where t is time in hours. If a random number x (0