TY - JOUR AU1 - Hejda, Tomáš AB - Let $$\beta \in (1,2)$$ β ∈ ( 1 , 2 ) be a Pisot unit and consider the symmetric $$\beta $$ β -expansions. We give a necessary and sufficient condition for the associated Rauzy fractals to form a tiling of the contractive hyperplane. For $$\beta $$ β a d-Bonacci number, i.e., Pisot root of $$x^d-x^{d-1}-\dots -x-1$$ x d - x d - 1 - ⋯ - x - 1 we show that the Rauzy fractals form a multiple tiling with covering degree $$d-1$$ d - 1 . TI - Multiple tilings associated to d-Bonacci beta-expansions JF - Monatshefte für Mathematik DO - 10.1007/s00605-018-1219-2 DA - 2018-08-14 UR - https://www.deepdyve.com/lp/springer-journals/multiple-tilings-associated-to-d-bonacci-beta-expansions-DOygZj30c0 SP - 275 EP - 291 VL - 187 IS - 2 DP - DeepDyve ER -