TY - JOUR AU1 - Berini,, Francesca AU2 - Casciello,, Carmine AU3 - Marcone, Giorgia, Letizia AU4 - Marinelli,, Flavia AB - Abstract In the transition to the post-petroleum economy, there is a growing demand for novel enzymes with high process performances to replace traditional chemistry with a more ‘green’ approach. To date, microorganisms encompass the richest source of industrial biocatalysts, but the Earth-living microbiota remains largely untapped by using traditional isolation and cultivation methods. Metagenomics, which is culture independent, represents a powerful tool for discovering novel enzymes from unculturable microorganisms. Herein, we summarize the variety of approaches adopted for mining environmental DNA and, based on a systematic literature review, we provide a comprehensive list of 332 industrially relevant enzymes discovered from metagenomes within the last three years. metagenomics, environmental libraries, screening, heterologous expression, industrial enzymes INTRODUCTION Microbial enzymes are employed in almost all industrial sectors, from the chemical, pharmaceutical and food industries to the manufacturing of detergents, textiles, leather, pulp and paper (Demain and Adrio 2008). In 2015, the application of industrial enzymes generated a turnover of about 5 billion USD, a value that is forecasted to rise to 6.9 billion USD in 2017 and to 10.7 billion USD in 2024 (World Enzyme to 2017, https://www.gminsights.com/industry-analysis/enzymes-market), thanks to the increasing demand for novel biocatalysts with high process performances to replace traditional chemistry. Enzyme-based processes are favored by reduced costs, increased efficiency, improved product recovery, and reduced use of toxic compounds and harsh conditions. Microorganisms represent the largest proportion of biomass on Earth, with a total number of prokaryotic cells estimated to be 4–6 × 1030 (Bunge, Willis and Walsh 2014), inhabiting a widest variety of ecosystems, including the less-hospitable habitats, such as hot springs, nearly saturated salt brines, acid mine waters at pH near zero, deep-sea hydrothermal vents and Antarctic ices (Mirete, Morgante and Gonzàlez-Pastor 2016). Environmental DNA (eDNA) analysis of microbial communities currently estimates that only from 0.1% to 1% of these prokaryotes are culturable by using traditional microbiological methods (Culligan et al.2014a). Also part of eukaryotic microbes is unculturable (Hirst, Kita and Dawson 2011), although the extent of this phenomenon is less clear. Magnuson and Lasure (2002) reported that 10% to 30% of fungi from different soils can be cultivated. In the last two decades, the development of culture-independent methods based on collecting biological material from environmental samples (metagenomics, metatranscriptomics and metaproteomics) revealed the potential of unculturable microorganisms as sources of novel enzymes. Metagenomics is generally considered the most promising methodology for identifying innovative biocatalysts from prokaryotic eDNA (Lorenz and Eck 2005), although recent advances in metaproteomics have shown great potential (Wilmes, Heintz-Buschart and Bond 2015) leading to the discovery of novel lipases (Sukul et al.2017) and cellulases (Speda et al.2017). Differently from prokaryotic genes that can be directly transcribed and translated in a suitable heterologous host, the presence of large introns in eukaryotic genes limits metagenomic analyses. Consequently, starting from the pioneering work of Grant et al. (2006), metatranscriptomics (based on selective enrichment of eukaryotic 3΄-polyadenylated mRNAs and reverse transcription) was preferred in the search for novel eukaryotic enzymes. By this approach, few industrially relevant biocatalysts were characterized as a cellulase (Takasaki et al.2013) and a phosphatase (Kellner et al.2011). The emphasis of this review is on metagenomics applied to prokaryotic eDNA, underlining recent trends and discussing innovative examples in mining metagenomes for discovering potential biocatalysts. It does so by looking at studies published in the last three years (since 1 January 2014 to 31 March 2017) on 332 metagenome-sourced enzymes (refer to Table 1 for criteria adopted in literature search and enzyme selection). With the exception of two β-glucosidases affiliated to archaea (Bergmann et al.2014; Schröder et al.2014), all the listed enzymes are of bacterial origin. Table 1. Industrially relevant enzymes discovered from metagenomics since 1 January 2014 to 31 March 2017. Target . DNA source . Library type . Heterologous host . Screening approach . Number of screened clones . Number of positive clones . Hit frequency . Number of characterized enzymes . Reference . Activity . EC number . . . . . . . . . . Cellulase/hemicellulase Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 na na 1 Pimentel et al. (2017) Endoglucanase 3.2.1.4 Hot spring sediment / / Sequence-based (G) / / / 1 Zhao et al. (2017) Endoglucanase 3.2.1.4 Ovine rumen BAC E. coli Function-based (A) 1.3 × 104 6 1:2150 1 Cheng et al. (2016) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) na 1 na 1 Garg et al. (2016) Endoglucanase 3.2.1.4 Compost Cosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Meneses et al. (2016) Endoglucanase 3.2.1.4 Beer lees / / Sequence-based (G) / 23 na 3 Yang et al. (2016) Endoglucanase 3.2.1.4 Paddy soil Fosmid E. coli Function-based (A) 2.5 × 104 na na 1 Zhou et al. (2016) Endoglucanase 3.2.1.4 Soil / / Sequence-based (E) / 1 na 1 Hua et al. (2015) Endoglucanase 3.2.1.4 Compost Fosmid E. coli Function-based (A) 2.1 × 104 3 1:7000 2 Okano et al. (2015b) Endoglucanase 3.2.1.4 Soil Fosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Mai et al. (2014) Endoglucanase 3.2.1.4 Algae Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Martin et al. (2014) Endoglucanase 3.2.1.4 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2014) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 1 1:24 000 1 Xiang et al. (2014) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Matsuzawa and Yaoi (2017) β-Glucosidase 3.2.1.21 Insect gut Plasmid E. coli Function-based (A) 8.0 × 105 13 1:61 500 1 Gao et al. (2016a) β-Glucosidase 3.2.1.21 Soil Cosmid E. coli Sequence-based (F) na na na 1 Gomes-Pepe et al. (2016) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 Ramírez-Escudero et al. (2016) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 104 5 1:10 000 1 Cao et al. (2015) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 3.0 × 104 45 1:650 1 Loaces et al. (2015) β-Glucosidase 3.2.1.21 Kusaya gravy Plasmid E. coli Function-based (A and B) 1.0 × 104 7 1:1450 1 Uchiyama, Yaoi and Miyazaki (2015) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 9.8 × 104 2 1:49 000 2 Bergmann et al. (2014) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 9.0 × 104 4 1:22 500 2 Biver et al. (2014) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Li et al. (2014b) β-Glucosidase 3.2.1.21 Hydrothermal spring Plasmid E. coli Function-based (A) na na na 1 Schröder et al. (2014) β-Glucosidase 3.2.1.21 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 12 1:850 3 Zhang et al. (2014a) β-Xylanase 3.2.1.8 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 13 1:750 1 Qian et al. (2015) β-Xylanase 3.2.1.8 Compost / / Sequence-based (E) / na / 1 Sun et al. (2015) β-Xylanase 3.2.1.8 Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 104 18 1:650 1 Wang et al. (2015b) β-Xylosidase/ arabinofuranosidase 3.2.1.37 Bovine rumen Phagemid E. coli Function-based (A) na na na 1 Jordan et al. (2016) α-Xylosidase/ arabinofuranosidase 3.2.1.177 Soil Fosmid E. coli Function-based (A) 5.0 × 104 1 1:50 000 1 Matsuzawa et al. (2016) β-Xylosidase/ arabinofuranosidase 3.2.1.21 Compost Plasmid E. coli Function-based (A) 3.0 × 104 40 1:750 1 Matsuzawa, Kaneko and Yaoi (2015) α-Arabinofuranosidase 3.2.1.55 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 87 1:450 4 Arnal et al. (2015) α-Fucosidase 3.2.1.51 Soil Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 7 Lezyk et al. (2016) β-Galactosidase 3.2.1.23 Soil Cosmid E. coli and Sinorhizobium melitoti Function-based (B) 7.9 × 104 na na 3 Cheng et al. (2017) α-Galactosidase 3.2.1.23 Hot spring water and sediment / / Sequence-based (G) / / / 1 Schröder et al. (2017) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 1.3 × 106 6 1:216 700 1 Erich et al. (2015) β-Galactosidase 3.2.1.23 Marine sediment Plasmid E. coli Function-based (A) na 28 na 1 Li et al. (2015) β-Galactosidase 3.2.1.23 Hot spring water / / Sequence-based (E) / 1 / 1 Liu et al. (2015b) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 7.0 × 105 1 1:700 000 1 Wang et al. (2014) β-N-Acetylhexosaminidase 3.2.1.52 Soil Fosmid E. coli Function-based (A) 1.0 × 105 30 1:3300 2 Nyffenegger et al. (2015) α-Rhamnosidase 3.2.1.40 Feces Fosmid E. coli Function-based (A) 2.0 × 104 na na 1 Rabausch, Ilmberger and Streit (2014) Lichenase (endoglucanase) 3.2.1.73 Soil Plasmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Kim, Oh and Kwon (2014) Cellulase 3.2.1.- Compost Fosmid E. coli Function-based (A) 6.0 × 103 24 1:250 1 Okano et al. (2014) Polygalacturonase 3.2.1.15 Soil Plasmid E. coli Function-based (A) 2.0 × 103 9 1:200 1 Sathya, Jacob and Khan (2014) Cellobiose epimerase 5.1.3.11 Ovine rumen / / Sequence-based (E) / 71 / 2 Wasaki et al. (2015) Glycosyl hydrolase with multifunctional activity 3.2.1.- Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 105 155 1:750 1 Song et al. (2017) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen / / Sequence-based (G) / 2597 / 1 Patel et al. (2016) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen BAC E. coli Function-based (A) na na na 1 Gruninger et al. (2014) Glycosyl hydrolase with multifunctional activity 3.2.1.- Compost Fosmid E. coli Function-based (A) 2.5 × 102 5 1:50 1 Sae-Lee and Boonmee (2014) β-Xylanase, cellulase, α-fucosidase 3.2.1.8, 3.2.1.51 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 31 1:1300 8 Rashamuse et al. (2017) β-Galactosidase, β-xylosidase, α-glucosidase 3.2.1.23, 3.2.1.37, 3.2.1.20 Wheat straw Fosmid E. coli Function-based (A) 4.4 × 104 71 1:600 7 Maruthamuthu et al. (2016) Endoglucanase, endoxylanase 3.2.1.4, 3.2.1.8 Sugarcane bagasse Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 2 Kanokratana et al. (2015) β-Xylosidase, xylanase, β-glucosidase, cellulase 3.2.1.37, 3.2.1.8, 3.2.1.21 Digester Fosmid E. coli Function-based (A) 9.7 × 103 178 1:54 4 Wang et al. (2015a) Glycosyl hydrolases belonging to various families 3.2.1.- Digester / / Sequence-based (G) / 163 / 6 Wei et al. (2015) β-Glucosidase, endomannanase, endoxylanase, β-xylosidase 3.2.1.21, 3.2.1.25, 3.2.1.8, 3.2.1.37 Subseafloor sediments / / Sequence-based (G) / 60 / 10 Klippel et al. (2014) Cellulase, xylanase 3.2.1.4, 3.2.1.8 Soil Plasmid E. coli Function-based (A) 1.5 × 105 6 1:25 000 3 Mori et al. (2014) β-Glucosidase, glycosyltransferases 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 105 9 1:55 600 9 Stroobants, Portetelle, Vandenbol (2014) Amylase Amylopullulanase (α-amylase) 3.2.1.1 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2016b) α-Amylase 3.2.1.1 Cow dung Plasmid E. coli Function-based (C) 1.0 × 105 200 1:500 1 Pooja et al. (2015) α-Amylase 3.2.1.1 Submarine ikaite column BAC E. coli Function-based (A) 2.8 × 103 3 1:900 3 Vester, Glaring and Stougaard (2014) α-Amylase 3.2.1.1 Feces Fosmid E. coli Function-based (A) 5.0 × 104 8 1:6200 1 Xu et al. (2014) Chitinase Chitinase 3.2.1.14 Soil Fosmid E. coli Sequence- (D) and function-based (A) 7.8 × 103 1 1:7800 1 Hjort et al. (2014); Berini et al. (2017) Chitinase 3.2.1.14 Soil Fosmid E. coli Function-based (A) 5.0 × 104 15 1:3300 1 Thimoteo et al. (2017) Chitinase 3.2.1.14, 3.5.1.41 Soil Fosmid E. coli Sequence-based (D) 1.45 × 105 8 1:18 100 1 Cretoiu et al. (2015) Chitinase 3.2.1.14 Pig feces / / Sequence-based (E) / 1 / 1 Liu et al. (2015a) Chitinase 3.2.1.14, 3.5.1.41 Soil / / Sequence-based(G) / 10 / 1 Stöveken et al. (2015) Chitin deacetylase 3.5.1.41 Sediment Plasmid E. coli Sequence-based (F) 10 1 1:10 1 Liu et al. (2016) Esterase/lipase Carboxylesterase 3.1.1.1 Anaerobic digester, sunken shipwreck's tar, water, soil etc. Fosmid E. coli Function-based (A) 1.1 × 106 714 1:1500 77a Popovic et al. (2017) Carboxylesterase 3.1.1.1 Marine mud Fosmid E. coli Function-based (A) 4.0 × 104 34 1:1200 1 Gao et al. (2016b) Carboxylesterase 3.1.1.1 Soil Cosmid E. coli Function-based (A) 8.0 × 104 1 1:80 000 1 Jeon et al. (2016) Carboxylesterase 3.1.1.1 Gill chamber Fosmid E. coli Function-based (A) 2.7 × 104 10 1:2700 3 Alcaide et al. (2015) Carboxylesterase 3.1.1.1 Biogas digester Plasmid E. coli Function-based (A) 9.6 × 103 1 1:9600 1 Cheng et al. (2014) Carboxylesterase 3.1.1.1 Hot vent sediment Fosmid E. coli Function-based (A) 9.6 × 103 120 1:80 3 Placido et al. (2015) Carboxylesterase 3.1.1.1 Seawater Phagemid E. coli Function-based (A) 3.0 × 105 23 1:13 050 5 Tchigvintsev et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 7.2 × 103 10 1:720 1 Zhang et al. (2017) Esterase 3.1.1.1 Marine sediment Fosmid E. coli Function-based (A) 3.9 × 103 19 1:200 1 De Santi et al. (2016) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 2.3 × 104 18 1:1300 1 Lee et al. (2016a) Esterase 3.1.1.1 Moss Fosmid E. coli Function-based (A) 9.0 × 104 83 1:1100 6 Müller et al. (2017) Esterase 3.1.1.- Hot spring mud / / Sequence-based (G) / 1 / 1 Zarafeta et al. (2016) Esterase 3.1.1.1 Glacier soil Fosmid E. coli Function-based (A) 1.0 × 104 5 1:2000 1 De Santi et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 2.0 × 105 1 1.200 000 1 Hu et al. (2015) Esterase 3.1.1.1 Hot spring water, sediment and compost Fosmid E. coli and Thermus thermophilus Function-based (A for E. coli, B for T. thermophilus) 8.0 × 103 8 1:2650 2b Leis et al. (2015) Esterase 3.1.1.1 Hot spring water Fosmid E. coli Function-based (A) 1.2 × 104 6 1:2000 1 López-López et al. (2015) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 6.0 × 103 19 1:300 1 Okano et al. (2015a) Esterase 3.1.1.1 Bovine rumen Fosmid E. coli Function-based (A) 2.8 × 104 3 1:9200 1 Rodríguez et al. (2015) Esterase 3.1.1.1 Soil Plasmid E. coli Function-based (A) 1.0 × 104 3 1:3300 1 Sudan and Vakhlu (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 3.2 × 104 1 1:32 000 1 Seo et al. (2014) Hormone-sensitive lipase 3.1.1.79 Soil Plasmid E. coli Function-based (A) 1.7 × 105 1 1:170 000 1 Dukunde et al. (2017) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 2.0 × 104 12 1:1700 1 Huang et al. (2016) Hormone-sensitive lipase 3.1.1.79 Permafrost Fosmid E. coli Function-based (A) 5.0 × 103 7 1:700 1 Petrovskaya et al. (2016) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 1.1 × 104 7 1:1600 1 Li et al. (2014a) Hormone-sensitive lipase 3.1.1.79 Sediment Plasmid E. coli Function-based (A) 1.2 × 105 15 1:8000 1 Peng et al. (2014) Lipase 3.1.1.3 Hot spring sediment Plasmid E. coli Function-based (A) 1.3 × 104 7 1:1900 1 Sahoo et al. (2017) Lipase 3.1.1.3 Hot spring water BAC E. coli Function-based (A) 6.8 × 104 4 1:17 000 1 Yan et al. (2017) Lipase 3.1.1.3 Soil / / Sequence-based (E) / na / 1 Kumar et al. (2017) Lipase 3.1.1.3 Soil Plasmid E. coli Function-based (A) 2.0 × 103 15 1:130 1 Khan and Kumar (2016) Lipase 3.1.1.3 Soil Fosmid E. coli Function-based (A) 5.0 × 105 32 1:15 600 2 Martini et al. (2014); Alnoch et al. (2015) Lipase 3.1.1.3 Water / / Sequence-based (F) / 777 / 1 Masuch et al. (2015) Lipase 3.1.1.3 Marine sponge Plasmid E. coli Function-based (A) 6.5 × 103 1 1:6500 1 Su et al. (2015) Lipase 3.1.1.3 Fed-batch reactor Cosmid E. coli Function-based (A) 1.0 × 104 10 1:1000 1 Brault et al. (2014) Lipase 3.1.1.3 Soil BAC E. coli Function-based (A) 3.0 × 103 6 1:500 1 Pindi, Srinath and Pavankumar (2014) Lipase 3.1.1.3 Human oral microbiome Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Preeti et al. (2014) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 4.2 × 103 30 1:140 2 Pereira et al. (2015); Maester et al. (2016) Esterase/lipase 3.1.1.- Mud flat Plasmid E. coli Function-based (A) 3.0 × 103 9 1:300 2 Kim et al. (2015) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 O’Mahony et al. (2015) Esterase/lipase/phospholipase 3.1.1.- Bovine rumen Fosmid E. coli Function-based (A) 2.4 × 104 14 1:1700 5 Privé et al. (2015) Esterase/lipase 3.1.1.- Water BAC E. coli Sequence-based (F) / / / 1 Fang et al. (2014) Thioesterase 3.1.2.- Activated sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Sánchez-Reyez et al. (2017) Glucuronoyl esterase 3.1.1.- Marine sediment Fosmid E. coli Function-based (A) 1.7 × 102 1 1:170 1 De Santi, Willassen and Williamson (2016) Sulfatase, sulfotransferase 3.1.6.-, 2.8.2.1 Soil and rumen Plasmid E. coli Function-based (A) 1.3 × 106 14 1:89 000 13c Colin et al. (2015) Feruloyl esterase 3.1.1.73 Hindgut symbiont Fosmid E. coli Function-based (A) 4.0 × 104 7 1:5700 6 Rashamuse et al. (2014) Phospholipase (patatin-like) 3.1.1.- Hydrothermal vent Fosmid E. coli Function-based (A) 1.8 × 104 7 1:2600 1 Fu et al. (2015) Phosphodiesterase 3.1.1.- Coalfield Fosmid E. coli Function-based (A) na 1 na 1 Singh et al. (2015a) Wax ester synthase 2.3.1.75 Soil Fosmid E. coli Function-based (A) 3.3 × 105 155 1:2100 1 Kim et al. (2016a) Oxidoreductase Dioxygenase 1.13.11.- Soil Fosmid E. coli Function-based (B) 1.5 × 105 62 1:2400 1 dos Santos et al. (2015) Dioxygenase 1.13.11.- Soil Plasmid E. coli Function-based (A) na 1 na 1 Wang et al. (2015c) Dioxygenase 1.13.11.- Soil / / Sequence-based (G) / 510 / 4 Chemerys et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil Plasmid E. coli Sequence- (D) and function-based (A) 1.2 × 102 23 1:5 2 Itoh et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil and compost Plasmid E. coli Sequence- (D) and function-based (A) 2.0 × 103 40 1:50 2d Itoh, Kariya and Kurokawa (2014) d-Amino acid oxidase 1.4.3.3 Soil Plasmid E. coli Sequence-based (F) 3.2 × 104 1 1:32 000 1 Ou et al. (2015) Monooxygenase, dioxygenase 1.14.-, 1.13.11.- Soil Cosmid E. coli and P. putida Function-based (B) 2.2 × 105 29 1:7600 2 Nagayama et al. (2015) β-Carotene monooxygenase 1.14.99.36 Human gut microbiome Fosmid E. coli Function-based (B) 2.3 × 104 53 1:450 1 Culligan et al. (2014b) Glucose dehydrogenase 1.1.99.10 Hay infusion Phagemid E. coli Function-based (A) 2.0 × 104 13 1:1550 1 Basner and Antranikian (2014) Aldehyde dehydrogenase 1.2.1.3 Hot spring water and soil / / Sequence-based (E) / na / 1 Chen et al. (2014) Mercuric reductase 1.16.1.1 Brine pool / / Sequence-based (G) / 1 / 1 Sayed et al. (2014) Multicopper oxidase 1.10.- Coalbed Fosmid E. coli Function-based (C) 4.6 × 104 24 1.1900 1 Strachan et al. (2014) Bilirubin oxidase (laccase) 1.3.3.5 Activated sludge Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Kimura and Kamagata (2016) Protease Serine protease 3.4.21.- Tannery sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Devi et al. (2016) Serine protease 3.4.21.- Hot spring sediment Plasmid E. coli Function-based (A) 9.0 × 103 1 1:9000 1 Singh et al. (2015b) Subtilisin-like serine protease 3.4.21.62 Underground water Fosmid E. coli Function-based (A) 2.1 × 104 23 1:900 2 Apolinar–Hernández et al. (2016) Cysteine protease 3.4.22.- Ovine rumen Plasmid E. coli Sequence-based (G) na na na 1 Faheem et al. (2016) Metalloprotease 3.4.- Sludge Fosmid E. coli Function-based (A) 2.8 × 104 2 1:14 000 1 Morris and Marchesi (2015) Phosphatase/phytase Phytase 3.1.3.- Bovine rumen / / Sequence-based (G) / 1 / 1 Mootapally et al. (2016) Phytase 3.1.3.- Peat soil na na Sequence-based (F) na 4 na 1 Tan et al. (2016a) Phytase 3.1.3.- Fungus garden na na Sequence-based (F) na 11 na 1 Tan et al. (2016b) Phytase 3.1.3.- Groundwater na na Sequence-based (F) na 1 na 1 Tan et al. (2015) Phytase 3.1.3.- Soil Fosmid E. coli Function-based (B) 1.4 × 104 28 1:500 1 Tan et al. (2014) Alkaline phosphatase 3.1.3.1 Sediment Fosmid E. coli Function-based (C) 8.0 × 104 6 1:13 350 1 Lee et al. (2015) Other Amine transferase 3.6.1.- Hot spring / / Sequence-based (G) / 3 / 3 Ferrandi et al. (2017) β-Agarase 3.2.1.81 Soil Fosmid E. coli Function-based (A) 1.0 × 105 3 1:33 350 1 Mai, Su and Zhang (2016) Penicillin G acylase 3.5.1.11 Sediment Cosmid E. coli Function-based (B) 7.0 × 103 1 1:7000 1 Zhang et al. (2014b) Epoxide hydrolase 3.3.2.8 Hot spring / / Sequence-based (G) / 2 / 2 Ferrandi et al. (2015) Nitrilase 3.5.5.1 Water / / Sequence-based (G) / 1 / 1 Sonbol, Ferreira and Siam (2016) Exonuclease 3.1.11.1 Soil Plasmid E. coli Function-based (B) 2.7 × 103 1 1:2700 1 Silva-Portela et al. (2016) Rhodanese (sulfur transferase) 2.8.1.1 Soil Plasmid E. coli Function-based (A) 8.5 × 103 5 1:1700 1 Bhat et al. (2015) Target . DNA source . Library type . Heterologous host . Screening approach . Number of screened clones . Number of positive clones . Hit frequency . Number of characterized enzymes . Reference . Activity . EC number . . . . . . . . . . Cellulase/hemicellulase Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 na na 1 Pimentel et al. (2017) Endoglucanase 3.2.1.4 Hot spring sediment / / Sequence-based (G) / / / 1 Zhao et al. (2017) Endoglucanase 3.2.1.4 Ovine rumen BAC E. coli Function-based (A) 1.3 × 104 6 1:2150 1 Cheng et al. (2016) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) na 1 na 1 Garg et al. (2016) Endoglucanase 3.2.1.4 Compost Cosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Meneses et al. (2016) Endoglucanase 3.2.1.4 Beer lees / / Sequence-based (G) / 23 na 3 Yang et al. (2016) Endoglucanase 3.2.1.4 Paddy soil Fosmid E. coli Function-based (A) 2.5 × 104 na na 1 Zhou et al. (2016) Endoglucanase 3.2.1.4 Soil / / Sequence-based (E) / 1 na 1 Hua et al. (2015) Endoglucanase 3.2.1.4 Compost Fosmid E. coli Function-based (A) 2.1 × 104 3 1:7000 2 Okano et al. (2015b) Endoglucanase 3.2.1.4 Soil Fosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Mai et al. (2014) Endoglucanase 3.2.1.4 Algae Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Martin et al. (2014) Endoglucanase 3.2.1.4 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2014) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 1 1:24 000 1 Xiang et al. (2014) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Matsuzawa and Yaoi (2017) β-Glucosidase 3.2.1.21 Insect gut Plasmid E. coli Function-based (A) 8.0 × 105 13 1:61 500 1 Gao et al. (2016a) β-Glucosidase 3.2.1.21 Soil Cosmid E. coli Sequence-based (F) na na na 1 Gomes-Pepe et al. (2016) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 Ramírez-Escudero et al. (2016) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 104 5 1:10 000 1 Cao et al. (2015) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 3.0 × 104 45 1:650 1 Loaces et al. (2015) β-Glucosidase 3.2.1.21 Kusaya gravy Plasmid E. coli Function-based (A and B) 1.0 × 104 7 1:1450 1 Uchiyama, Yaoi and Miyazaki (2015) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 9.8 × 104 2 1:49 000 2 Bergmann et al. (2014) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 9.0 × 104 4 1:22 500 2 Biver et al. (2014) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Li et al. (2014b) β-Glucosidase 3.2.1.21 Hydrothermal spring Plasmid E. coli Function-based (A) na na na 1 Schröder et al. (2014) β-Glucosidase 3.2.1.21 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 12 1:850 3 Zhang et al. (2014a) β-Xylanase 3.2.1.8 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 13 1:750 1 Qian et al. (2015) β-Xylanase 3.2.1.8 Compost / / Sequence-based (E) / na / 1 Sun et al. (2015) β-Xylanase 3.2.1.8 Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 104 18 1:650 1 Wang et al. (2015b) β-Xylosidase/ arabinofuranosidase 3.2.1.37 Bovine rumen Phagemid E. coli Function-based (A) na na na 1 Jordan et al. (2016) α-Xylosidase/ arabinofuranosidase 3.2.1.177 Soil Fosmid E. coli Function-based (A) 5.0 × 104 1 1:50 000 1 Matsuzawa et al. (2016) β-Xylosidase/ arabinofuranosidase 3.2.1.21 Compost Plasmid E. coli Function-based (A) 3.0 × 104 40 1:750 1 Matsuzawa, Kaneko and Yaoi (2015) α-Arabinofuranosidase 3.2.1.55 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 87 1:450 4 Arnal et al. (2015) α-Fucosidase 3.2.1.51 Soil Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 7 Lezyk et al. (2016) β-Galactosidase 3.2.1.23 Soil Cosmid E. coli and Sinorhizobium melitoti Function-based (B) 7.9 × 104 na na 3 Cheng et al. (2017) α-Galactosidase 3.2.1.23 Hot spring water and sediment / / Sequence-based (G) / / / 1 Schröder et al. (2017) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 1.3 × 106 6 1:216 700 1 Erich et al. (2015) β-Galactosidase 3.2.1.23 Marine sediment Plasmid E. coli Function-based (A) na 28 na 1 Li et al. (2015) β-Galactosidase 3.2.1.23 Hot spring water / / Sequence-based (E) / 1 / 1 Liu et al. (2015b) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 7.0 × 105 1 1:700 000 1 Wang et al. (2014) β-N-Acetylhexosaminidase 3.2.1.52 Soil Fosmid E. coli Function-based (A) 1.0 × 105 30 1:3300 2 Nyffenegger et al. (2015) α-Rhamnosidase 3.2.1.40 Feces Fosmid E. coli Function-based (A) 2.0 × 104 na na 1 Rabausch, Ilmberger and Streit (2014) Lichenase (endoglucanase) 3.2.1.73 Soil Plasmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Kim, Oh and Kwon (2014) Cellulase 3.2.1.- Compost Fosmid E. coli Function-based (A) 6.0 × 103 24 1:250 1 Okano et al. (2014) Polygalacturonase 3.2.1.15 Soil Plasmid E. coli Function-based (A) 2.0 × 103 9 1:200 1 Sathya, Jacob and Khan (2014) Cellobiose epimerase 5.1.3.11 Ovine rumen / / Sequence-based (E) / 71 / 2 Wasaki et al. (2015) Glycosyl hydrolase with multifunctional activity 3.2.1.- Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 105 155 1:750 1 Song et al. (2017) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen / / Sequence-based (G) / 2597 / 1 Patel et al. (2016) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen BAC E. coli Function-based (A) na na na 1 Gruninger et al. (2014) Glycosyl hydrolase with multifunctional activity 3.2.1.- Compost Fosmid E. coli Function-based (A) 2.5 × 102 5 1:50 1 Sae-Lee and Boonmee (2014) β-Xylanase, cellulase, α-fucosidase 3.2.1.8, 3.2.1.51 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 31 1:1300 8 Rashamuse et al. (2017) β-Galactosidase, β-xylosidase, α-glucosidase 3.2.1.23, 3.2.1.37, 3.2.1.20 Wheat straw Fosmid E. coli Function-based (A) 4.4 × 104 71 1:600 7 Maruthamuthu et al. (2016) Endoglucanase, endoxylanase 3.2.1.4, 3.2.1.8 Sugarcane bagasse Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 2 Kanokratana et al. (2015) β-Xylosidase, xylanase, β-glucosidase, cellulase 3.2.1.37, 3.2.1.8, 3.2.1.21 Digester Fosmid E. coli Function-based (A) 9.7 × 103 178 1:54 4 Wang et al. (2015a) Glycosyl hydrolases belonging to various families 3.2.1.- Digester / / Sequence-based (G) / 163 / 6 Wei et al. (2015) β-Glucosidase, endomannanase, endoxylanase, β-xylosidase 3.2.1.21, 3.2.1.25, 3.2.1.8, 3.2.1.37 Subseafloor sediments / / Sequence-based (G) / 60 / 10 Klippel et al. (2014) Cellulase, xylanase 3.2.1.4, 3.2.1.8 Soil Plasmid E. coli Function-based (A) 1.5 × 105 6 1:25 000 3 Mori et al. (2014) β-Glucosidase, glycosyltransferases 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 105 9 1:55 600 9 Stroobants, Portetelle, Vandenbol (2014) Amylase Amylopullulanase (α-amylase) 3.2.1.1 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2016b) α-Amylase 3.2.1.1 Cow dung Plasmid E. coli Function-based (C) 1.0 × 105 200 1:500 1 Pooja et al. (2015) α-Amylase 3.2.1.1 Submarine ikaite column BAC E. coli Function-based (A) 2.8 × 103 3 1:900 3 Vester, Glaring and Stougaard (2014) α-Amylase 3.2.1.1 Feces Fosmid E. coli Function-based (A) 5.0 × 104 8 1:6200 1 Xu et al. (2014) Chitinase Chitinase 3.2.1.14 Soil Fosmid E. coli Sequence- (D) and function-based (A) 7.8 × 103 1 1:7800 1 Hjort et al. (2014); Berini et al. (2017) Chitinase 3.2.1.14 Soil Fosmid E. coli Function-based (A) 5.0 × 104 15 1:3300 1 Thimoteo et al. (2017) Chitinase 3.2.1.14, 3.5.1.41 Soil Fosmid E. coli Sequence-based (D) 1.45 × 105 8 1:18 100 1 Cretoiu et al. (2015) Chitinase 3.2.1.14 Pig feces / / Sequence-based (E) / 1 / 1 Liu et al. (2015a) Chitinase 3.2.1.14, 3.5.1.41 Soil / / Sequence-based(G) / 10 / 1 Stöveken et al. (2015) Chitin deacetylase 3.5.1.41 Sediment Plasmid E. coli Sequence-based (F) 10 1 1:10 1 Liu et al. (2016) Esterase/lipase Carboxylesterase 3.1.1.1 Anaerobic digester, sunken shipwreck's tar, water, soil etc. Fosmid E. coli Function-based (A) 1.1 × 106 714 1:1500 77a Popovic et al. (2017) Carboxylesterase 3.1.1.1 Marine mud Fosmid E. coli Function-based (A) 4.0 × 104 34 1:1200 1 Gao et al. (2016b) Carboxylesterase 3.1.1.1 Soil Cosmid E. coli Function-based (A) 8.0 × 104 1 1:80 000 1 Jeon et al. (2016) Carboxylesterase 3.1.1.1 Gill chamber Fosmid E. coli Function-based (A) 2.7 × 104 10 1:2700 3 Alcaide et al. (2015) Carboxylesterase 3.1.1.1 Biogas digester Plasmid E. coli Function-based (A) 9.6 × 103 1 1:9600 1 Cheng et al. (2014) Carboxylesterase 3.1.1.1 Hot vent sediment Fosmid E. coli Function-based (A) 9.6 × 103 120 1:80 3 Placido et al. (2015) Carboxylesterase 3.1.1.1 Seawater Phagemid E. coli Function-based (A) 3.0 × 105 23 1:13 050 5 Tchigvintsev et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 7.2 × 103 10 1:720 1 Zhang et al. (2017) Esterase 3.1.1.1 Marine sediment Fosmid E. coli Function-based (A) 3.9 × 103 19 1:200 1 De Santi et al. (2016) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 2.3 × 104 18 1:1300 1 Lee et al. (2016a) Esterase 3.1.1.1 Moss Fosmid E. coli Function-based (A) 9.0 × 104 83 1:1100 6 Müller et al. (2017) Esterase 3.1.1.- Hot spring mud / / Sequence-based (G) / 1 / 1 Zarafeta et al. (2016) Esterase 3.1.1.1 Glacier soil Fosmid E. coli Function-based (A) 1.0 × 104 5 1:2000 1 De Santi et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 2.0 × 105 1 1.200 000 1 Hu et al. (2015) Esterase 3.1.1.1 Hot spring water, sediment and compost Fosmid E. coli and Thermus thermophilus Function-based (A for E. coli, B for T. thermophilus) 8.0 × 103 8 1:2650 2b Leis et al. (2015) Esterase 3.1.1.1 Hot spring water Fosmid E. coli Function-based (A) 1.2 × 104 6 1:2000 1 López-López et al. (2015) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 6.0 × 103 19 1:300 1 Okano et al. (2015a) Esterase 3.1.1.1 Bovine rumen Fosmid E. coli Function-based (A) 2.8 × 104 3 1:9200 1 Rodríguez et al. (2015) Esterase 3.1.1.1 Soil Plasmid E. coli Function-based (A) 1.0 × 104 3 1:3300 1 Sudan and Vakhlu (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 3.2 × 104 1 1:32 000 1 Seo et al. (2014) Hormone-sensitive lipase 3.1.1.79 Soil Plasmid E. coli Function-based (A) 1.7 × 105 1 1:170 000 1 Dukunde et al. (2017) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 2.0 × 104 12 1:1700 1 Huang et al. (2016) Hormone-sensitive lipase 3.1.1.79 Permafrost Fosmid E. coli Function-based (A) 5.0 × 103 7 1:700 1 Petrovskaya et al. (2016) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 1.1 × 104 7 1:1600 1 Li et al. (2014a) Hormone-sensitive lipase 3.1.1.79 Sediment Plasmid E. coli Function-based (A) 1.2 × 105 15 1:8000 1 Peng et al. (2014) Lipase 3.1.1.3 Hot spring sediment Plasmid E. coli Function-based (A) 1.3 × 104 7 1:1900 1 Sahoo et al. (2017) Lipase 3.1.1.3 Hot spring water BAC E. coli Function-based (A) 6.8 × 104 4 1:17 000 1 Yan et al. (2017) Lipase 3.1.1.3 Soil / / Sequence-based (E) / na / 1 Kumar et al. (2017) Lipase 3.1.1.3 Soil Plasmid E. coli Function-based (A) 2.0 × 103 15 1:130 1 Khan and Kumar (2016) Lipase 3.1.1.3 Soil Fosmid E. coli Function-based (A) 5.0 × 105 32 1:15 600 2 Martini et al. (2014); Alnoch et al. (2015) Lipase 3.1.1.3 Water / / Sequence-based (F) / 777 / 1 Masuch et al. (2015) Lipase 3.1.1.3 Marine sponge Plasmid E. coli Function-based (A) 6.5 × 103 1 1:6500 1 Su et al. (2015) Lipase 3.1.1.3 Fed-batch reactor Cosmid E. coli Function-based (A) 1.0 × 104 10 1:1000 1 Brault et al. (2014) Lipase 3.1.1.3 Soil BAC E. coli Function-based (A) 3.0 × 103 6 1:500 1 Pindi, Srinath and Pavankumar (2014) Lipase 3.1.1.3 Human oral microbiome Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Preeti et al. (2014) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 4.2 × 103 30 1:140 2 Pereira et al. (2015); Maester et al. (2016) Esterase/lipase 3.1.1.- Mud flat Plasmid E. coli Function-based (A) 3.0 × 103 9 1:300 2 Kim et al. (2015) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 O’Mahony et al. (2015) Esterase/lipase/phospholipase 3.1.1.- Bovine rumen Fosmid E. coli Function-based (A) 2.4 × 104 14 1:1700 5 Privé et al. (2015) Esterase/lipase 3.1.1.- Water BAC E. coli Sequence-based (F) / / / 1 Fang et al. (2014) Thioesterase 3.1.2.- Activated sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Sánchez-Reyez et al. (2017) Glucuronoyl esterase 3.1.1.- Marine sediment Fosmid E. coli Function-based (A) 1.7 × 102 1 1:170 1 De Santi, Willassen and Williamson (2016) Sulfatase, sulfotransferase 3.1.6.-, 2.8.2.1 Soil and rumen Plasmid E. coli Function-based (A) 1.3 × 106 14 1:89 000 13c Colin et al. (2015) Feruloyl esterase 3.1.1.73 Hindgut symbiont Fosmid E. coli Function-based (A) 4.0 × 104 7 1:5700 6 Rashamuse et al. (2014) Phospholipase (patatin-like) 3.1.1.- Hydrothermal vent Fosmid E. coli Function-based (A) 1.8 × 104 7 1:2600 1 Fu et al. (2015) Phosphodiesterase 3.1.1.- Coalfield Fosmid E. coli Function-based (A) na 1 na 1 Singh et al. (2015a) Wax ester synthase 2.3.1.75 Soil Fosmid E. coli Function-based (A) 3.3 × 105 155 1:2100 1 Kim et al. (2016a) Oxidoreductase Dioxygenase 1.13.11.- Soil Fosmid E. coli Function-based (B) 1.5 × 105 62 1:2400 1 dos Santos et al. (2015) Dioxygenase 1.13.11.- Soil Plasmid E. coli Function-based (A) na 1 na 1 Wang et al. (2015c) Dioxygenase 1.13.11.- Soil / / Sequence-based (G) / 510 / 4 Chemerys et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil Plasmid E. coli Sequence- (D) and function-based (A) 1.2 × 102 23 1:5 2 Itoh et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil and compost Plasmid E. coli Sequence- (D) and function-based (A) 2.0 × 103 40 1:50 2d Itoh, Kariya and Kurokawa (2014) d-Amino acid oxidase 1.4.3.3 Soil Plasmid E. coli Sequence-based (F) 3.2 × 104 1 1:32 000 1 Ou et al. (2015) Monooxygenase, dioxygenase 1.14.-, 1.13.11.- Soil Cosmid E. coli and P. putida Function-based (B) 2.2 × 105 29 1:7600 2 Nagayama et al. (2015) β-Carotene monooxygenase 1.14.99.36 Human gut microbiome Fosmid E. coli Function-based (B) 2.3 × 104 53 1:450 1 Culligan et al. (2014b) Glucose dehydrogenase 1.1.99.10 Hay infusion Phagemid E. coli Function-based (A) 2.0 × 104 13 1:1550 1 Basner and Antranikian (2014) Aldehyde dehydrogenase 1.2.1.3 Hot spring water and soil / / Sequence-based (E) / na / 1 Chen et al. (2014) Mercuric reductase 1.16.1.1 Brine pool / / Sequence-based (G) / 1 / 1 Sayed et al. (2014) Multicopper oxidase 1.10.- Coalbed Fosmid E. coli Function-based (C) 4.6 × 104 24 1.1900 1 Strachan et al. (2014) Bilirubin oxidase (laccase) 1.3.3.5 Activated sludge Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Kimura and Kamagata (2016) Protease Serine protease 3.4.21.- Tannery sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Devi et al. (2016) Serine protease 3.4.21.- Hot spring sediment Plasmid E. coli Function-based (A) 9.0 × 103 1 1:9000 1 Singh et al. (2015b) Subtilisin-like serine protease 3.4.21.62 Underground water Fosmid E. coli Function-based (A) 2.1 × 104 23 1:900 2 Apolinar–Hernández et al. (2016) Cysteine protease 3.4.22.- Ovine rumen Plasmid E. coli Sequence-based (G) na na na 1 Faheem et al. (2016) Metalloprotease 3.4.- Sludge Fosmid E. coli Function-based (A) 2.8 × 104 2 1:14 000 1 Morris and Marchesi (2015) Phosphatase/phytase Phytase 3.1.3.- Bovine rumen / / Sequence-based (G) / 1 / 1 Mootapally et al. (2016) Phytase 3.1.3.- Peat soil na na Sequence-based (F) na 4 na 1 Tan et al. (2016a) Phytase 3.1.3.- Fungus garden na na Sequence-based (F) na 11 na 1 Tan et al. (2016b) Phytase 3.1.3.- Groundwater na na Sequence-based (F) na 1 na 1 Tan et al. (2015) Phytase 3.1.3.- Soil Fosmid E. coli Function-based (B) 1.4 × 104 28 1:500 1 Tan et al. (2014) Alkaline phosphatase 3.1.3.1 Sediment Fosmid E. coli Function-based (C) 8.0 × 104 6 1:13 350 1 Lee et al. (2015) Other Amine transferase 3.6.1.- Hot spring / / Sequence-based (G) / 3 / 3 Ferrandi et al. (2017) β-Agarase 3.2.1.81 Soil Fosmid E. coli Function-based (A) 1.0 × 105 3 1:33 350 1 Mai, Su and Zhang (2016) Penicillin G acylase 3.5.1.11 Sediment Cosmid E. coli Function-based (B) 7.0 × 103 1 1:7000 1 Zhang et al. (2014b) Epoxide hydrolase 3.3.2.8 Hot spring / / Sequence-based (G) / 2 / 2 Ferrandi et al. (2015) Nitrilase 3.5.5.1 Water / / Sequence-based (G) / 1 / 1 Sonbol, Ferreira and Siam (2016) Exonuclease 3.1.11.1 Soil Plasmid E. coli Function-based (B) 2.7 × 103 1 1:2700 1 Silva-Portela et al. (2016) Rhodanese (sulfur transferase) 2.8.1.1 Soil Plasmid E. coli Function-based (A) 8.5 × 103 5 1:1700 1 Bhat et al. (2015) The list was created by searching Pubmed database (accession on 17 July 2017) with the following query: (metagenom*[Title/Abstract]) AND (enzyme[Title/Abstract]) AND (‘2014/01/01’[Date—Publication]: ‘2017/03/31’[Date—Publication]) (where ‘enzyme’ was substituted with the name of each enzymatic class considered). The results were manually checked in order to select only those publications dealing with enzymes fulfilling three criteria: (i) identification by metagenomics, (ii) heterologous expression and at least partial purification (thus confirming the activity of the putative hit), (iii) biochemical and/or functional and/or structural characterization. For functional screening: A = phenotypical detection; B = heterologous complementation; C = induced gene expression (see also Fig. 1). For genetic screening: D = PCR amplification of metagenomic library DNA; E = PCR amplification of eDNA; F = in silico analysis of metagenomic library DNA; G = in silico analysis of shotgun eDNA (see also Fig. 1). na = data not available. a 28 from anaerobic digester, 21 from water sample, 11 from sunken shipwreck's tar, 7 from soil and sediment, 5 from compost, 4 from eukaryote-associated microbiome, 1 from paper mill. b 1 from sediment, 1 from compost. c 10 from soil, 3 from rumen. d From compost. Open in new tab Table 1. Industrially relevant enzymes discovered from metagenomics since 1 January 2014 to 31 March 2017. Target . DNA source . Library type . Heterologous host . Screening approach . Number of screened clones . Number of positive clones . Hit frequency . Number of characterized enzymes . Reference . Activity . EC number . . . . . . . . . . Cellulase/hemicellulase Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 na na 1 Pimentel et al. (2017) Endoglucanase 3.2.1.4 Hot spring sediment / / Sequence-based (G) / / / 1 Zhao et al. (2017) Endoglucanase 3.2.1.4 Ovine rumen BAC E. coli Function-based (A) 1.3 × 104 6 1:2150 1 Cheng et al. (2016) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) na 1 na 1 Garg et al. (2016) Endoglucanase 3.2.1.4 Compost Cosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Meneses et al. (2016) Endoglucanase 3.2.1.4 Beer lees / / Sequence-based (G) / 23 na 3 Yang et al. (2016) Endoglucanase 3.2.1.4 Paddy soil Fosmid E. coli Function-based (A) 2.5 × 104 na na 1 Zhou et al. (2016) Endoglucanase 3.2.1.4 Soil / / Sequence-based (E) / 1 na 1 Hua et al. (2015) Endoglucanase 3.2.1.4 Compost Fosmid E. coli Function-based (A) 2.1 × 104 3 1:7000 2 Okano et al. (2015b) Endoglucanase 3.2.1.4 Soil Fosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Mai et al. (2014) Endoglucanase 3.2.1.4 Algae Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Martin et al. (2014) Endoglucanase 3.2.1.4 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2014) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 1 1:24 000 1 Xiang et al. (2014) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Matsuzawa and Yaoi (2017) β-Glucosidase 3.2.1.21 Insect gut Plasmid E. coli Function-based (A) 8.0 × 105 13 1:61 500 1 Gao et al. (2016a) β-Glucosidase 3.2.1.21 Soil Cosmid E. coli Sequence-based (F) na na na 1 Gomes-Pepe et al. (2016) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 Ramírez-Escudero et al. (2016) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 104 5 1:10 000 1 Cao et al. (2015) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 3.0 × 104 45 1:650 1 Loaces et al. (2015) β-Glucosidase 3.2.1.21 Kusaya gravy Plasmid E. coli Function-based (A and B) 1.0 × 104 7 1:1450 1 Uchiyama, Yaoi and Miyazaki (2015) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 9.8 × 104 2 1:49 000 2 Bergmann et al. (2014) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 9.0 × 104 4 1:22 500 2 Biver et al. (2014) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Li et al. (2014b) β-Glucosidase 3.2.1.21 Hydrothermal spring Plasmid E. coli Function-based (A) na na na 1 Schröder et al. (2014) β-Glucosidase 3.2.1.21 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 12 1:850 3 Zhang et al. (2014a) β-Xylanase 3.2.1.8 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 13 1:750 1 Qian et al. (2015) β-Xylanase 3.2.1.8 Compost / / Sequence-based (E) / na / 1 Sun et al. (2015) β-Xylanase 3.2.1.8 Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 104 18 1:650 1 Wang et al. (2015b) β-Xylosidase/ arabinofuranosidase 3.2.1.37 Bovine rumen Phagemid E. coli Function-based (A) na na na 1 Jordan et al. (2016) α-Xylosidase/ arabinofuranosidase 3.2.1.177 Soil Fosmid E. coli Function-based (A) 5.0 × 104 1 1:50 000 1 Matsuzawa et al. (2016) β-Xylosidase/ arabinofuranosidase 3.2.1.21 Compost Plasmid E. coli Function-based (A) 3.0 × 104 40 1:750 1 Matsuzawa, Kaneko and Yaoi (2015) α-Arabinofuranosidase 3.2.1.55 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 87 1:450 4 Arnal et al. (2015) α-Fucosidase 3.2.1.51 Soil Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 7 Lezyk et al. (2016) β-Galactosidase 3.2.1.23 Soil Cosmid E. coli and Sinorhizobium melitoti Function-based (B) 7.9 × 104 na na 3 Cheng et al. (2017) α-Galactosidase 3.2.1.23 Hot spring water and sediment / / Sequence-based (G) / / / 1 Schröder et al. (2017) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 1.3 × 106 6 1:216 700 1 Erich et al. (2015) β-Galactosidase 3.2.1.23 Marine sediment Plasmid E. coli Function-based (A) na 28 na 1 Li et al. (2015) β-Galactosidase 3.2.1.23 Hot spring water / / Sequence-based (E) / 1 / 1 Liu et al. (2015b) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 7.0 × 105 1 1:700 000 1 Wang et al. (2014) β-N-Acetylhexosaminidase 3.2.1.52 Soil Fosmid E. coli Function-based (A) 1.0 × 105 30 1:3300 2 Nyffenegger et al. (2015) α-Rhamnosidase 3.2.1.40 Feces Fosmid E. coli Function-based (A) 2.0 × 104 na na 1 Rabausch, Ilmberger and Streit (2014) Lichenase (endoglucanase) 3.2.1.73 Soil Plasmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Kim, Oh and Kwon (2014) Cellulase 3.2.1.- Compost Fosmid E. coli Function-based (A) 6.0 × 103 24 1:250 1 Okano et al. (2014) Polygalacturonase 3.2.1.15 Soil Plasmid E. coli Function-based (A) 2.0 × 103 9 1:200 1 Sathya, Jacob and Khan (2014) Cellobiose epimerase 5.1.3.11 Ovine rumen / / Sequence-based (E) / 71 / 2 Wasaki et al. (2015) Glycosyl hydrolase with multifunctional activity 3.2.1.- Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 105 155 1:750 1 Song et al. (2017) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen / / Sequence-based (G) / 2597 / 1 Patel et al. (2016) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen BAC E. coli Function-based (A) na na na 1 Gruninger et al. (2014) Glycosyl hydrolase with multifunctional activity 3.2.1.- Compost Fosmid E. coli Function-based (A) 2.5 × 102 5 1:50 1 Sae-Lee and Boonmee (2014) β-Xylanase, cellulase, α-fucosidase 3.2.1.8, 3.2.1.51 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 31 1:1300 8 Rashamuse et al. (2017) β-Galactosidase, β-xylosidase, α-glucosidase 3.2.1.23, 3.2.1.37, 3.2.1.20 Wheat straw Fosmid E. coli Function-based (A) 4.4 × 104 71 1:600 7 Maruthamuthu et al. (2016) Endoglucanase, endoxylanase 3.2.1.4, 3.2.1.8 Sugarcane bagasse Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 2 Kanokratana et al. (2015) β-Xylosidase, xylanase, β-glucosidase, cellulase 3.2.1.37, 3.2.1.8, 3.2.1.21 Digester Fosmid E. coli Function-based (A) 9.7 × 103 178 1:54 4 Wang et al. (2015a) Glycosyl hydrolases belonging to various families 3.2.1.- Digester / / Sequence-based (G) / 163 / 6 Wei et al. (2015) β-Glucosidase, endomannanase, endoxylanase, β-xylosidase 3.2.1.21, 3.2.1.25, 3.2.1.8, 3.2.1.37 Subseafloor sediments / / Sequence-based (G) / 60 / 10 Klippel et al. (2014) Cellulase, xylanase 3.2.1.4, 3.2.1.8 Soil Plasmid E. coli Function-based (A) 1.5 × 105 6 1:25 000 3 Mori et al. (2014) β-Glucosidase, glycosyltransferases 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 105 9 1:55 600 9 Stroobants, Portetelle, Vandenbol (2014) Amylase Amylopullulanase (α-amylase) 3.2.1.1 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2016b) α-Amylase 3.2.1.1 Cow dung Plasmid E. coli Function-based (C) 1.0 × 105 200 1:500 1 Pooja et al. (2015) α-Amylase 3.2.1.1 Submarine ikaite column BAC E. coli Function-based (A) 2.8 × 103 3 1:900 3 Vester, Glaring and Stougaard (2014) α-Amylase 3.2.1.1 Feces Fosmid E. coli Function-based (A) 5.0 × 104 8 1:6200 1 Xu et al. (2014) Chitinase Chitinase 3.2.1.14 Soil Fosmid E. coli Sequence- (D) and function-based (A) 7.8 × 103 1 1:7800 1 Hjort et al. (2014); Berini et al. (2017) Chitinase 3.2.1.14 Soil Fosmid E. coli Function-based (A) 5.0 × 104 15 1:3300 1 Thimoteo et al. (2017) Chitinase 3.2.1.14, 3.5.1.41 Soil Fosmid E. coli Sequence-based (D) 1.45 × 105 8 1:18 100 1 Cretoiu et al. (2015) Chitinase 3.2.1.14 Pig feces / / Sequence-based (E) / 1 / 1 Liu et al. (2015a) Chitinase 3.2.1.14, 3.5.1.41 Soil / / Sequence-based(G) / 10 / 1 Stöveken et al. (2015) Chitin deacetylase 3.5.1.41 Sediment Plasmid E. coli Sequence-based (F) 10 1 1:10 1 Liu et al. (2016) Esterase/lipase Carboxylesterase 3.1.1.1 Anaerobic digester, sunken shipwreck's tar, water, soil etc. Fosmid E. coli Function-based (A) 1.1 × 106 714 1:1500 77a Popovic et al. (2017) Carboxylesterase 3.1.1.1 Marine mud Fosmid E. coli Function-based (A) 4.0 × 104 34 1:1200 1 Gao et al. (2016b) Carboxylesterase 3.1.1.1 Soil Cosmid E. coli Function-based (A) 8.0 × 104 1 1:80 000 1 Jeon et al. (2016) Carboxylesterase 3.1.1.1 Gill chamber Fosmid E. coli Function-based (A) 2.7 × 104 10 1:2700 3 Alcaide et al. (2015) Carboxylesterase 3.1.1.1 Biogas digester Plasmid E. coli Function-based (A) 9.6 × 103 1 1:9600 1 Cheng et al. (2014) Carboxylesterase 3.1.1.1 Hot vent sediment Fosmid E. coli Function-based (A) 9.6 × 103 120 1:80 3 Placido et al. (2015) Carboxylesterase 3.1.1.1 Seawater Phagemid E. coli Function-based (A) 3.0 × 105 23 1:13 050 5 Tchigvintsev et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 7.2 × 103 10 1:720 1 Zhang et al. (2017) Esterase 3.1.1.1 Marine sediment Fosmid E. coli Function-based (A) 3.9 × 103 19 1:200 1 De Santi et al. (2016) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 2.3 × 104 18 1:1300 1 Lee et al. (2016a) Esterase 3.1.1.1 Moss Fosmid E. coli Function-based (A) 9.0 × 104 83 1:1100 6 Müller et al. (2017) Esterase 3.1.1.- Hot spring mud / / Sequence-based (G) / 1 / 1 Zarafeta et al. (2016) Esterase 3.1.1.1 Glacier soil Fosmid E. coli Function-based (A) 1.0 × 104 5 1:2000 1 De Santi et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 2.0 × 105 1 1.200 000 1 Hu et al. (2015) Esterase 3.1.1.1 Hot spring water, sediment and compost Fosmid E. coli and Thermus thermophilus Function-based (A for E. coli, B for T. thermophilus) 8.0 × 103 8 1:2650 2b Leis et al. (2015) Esterase 3.1.1.1 Hot spring water Fosmid E. coli Function-based (A) 1.2 × 104 6 1:2000 1 López-López et al. (2015) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 6.0 × 103 19 1:300 1 Okano et al. (2015a) Esterase 3.1.1.1 Bovine rumen Fosmid E. coli Function-based (A) 2.8 × 104 3 1:9200 1 Rodríguez et al. (2015) Esterase 3.1.1.1 Soil Plasmid E. coli Function-based (A) 1.0 × 104 3 1:3300 1 Sudan and Vakhlu (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 3.2 × 104 1 1:32 000 1 Seo et al. (2014) Hormone-sensitive lipase 3.1.1.79 Soil Plasmid E. coli Function-based (A) 1.7 × 105 1 1:170 000 1 Dukunde et al. (2017) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 2.0 × 104 12 1:1700 1 Huang et al. (2016) Hormone-sensitive lipase 3.1.1.79 Permafrost Fosmid E. coli Function-based (A) 5.0 × 103 7 1:700 1 Petrovskaya et al. (2016) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 1.1 × 104 7 1:1600 1 Li et al. (2014a) Hormone-sensitive lipase 3.1.1.79 Sediment Plasmid E. coli Function-based (A) 1.2 × 105 15 1:8000 1 Peng et al. (2014) Lipase 3.1.1.3 Hot spring sediment Plasmid E. coli Function-based (A) 1.3 × 104 7 1:1900 1 Sahoo et al. (2017) Lipase 3.1.1.3 Hot spring water BAC E. coli Function-based (A) 6.8 × 104 4 1:17 000 1 Yan et al. (2017) Lipase 3.1.1.3 Soil / / Sequence-based (E) / na / 1 Kumar et al. (2017) Lipase 3.1.1.3 Soil Plasmid E. coli Function-based (A) 2.0 × 103 15 1:130 1 Khan and Kumar (2016) Lipase 3.1.1.3 Soil Fosmid E. coli Function-based (A) 5.0 × 105 32 1:15 600 2 Martini et al. (2014); Alnoch et al. (2015) Lipase 3.1.1.3 Water / / Sequence-based (F) / 777 / 1 Masuch et al. (2015) Lipase 3.1.1.3 Marine sponge Plasmid E. coli Function-based (A) 6.5 × 103 1 1:6500 1 Su et al. (2015) Lipase 3.1.1.3 Fed-batch reactor Cosmid E. coli Function-based (A) 1.0 × 104 10 1:1000 1 Brault et al. (2014) Lipase 3.1.1.3 Soil BAC E. coli Function-based (A) 3.0 × 103 6 1:500 1 Pindi, Srinath and Pavankumar (2014) Lipase 3.1.1.3 Human oral microbiome Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Preeti et al. (2014) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 4.2 × 103 30 1:140 2 Pereira et al. (2015); Maester et al. (2016) Esterase/lipase 3.1.1.- Mud flat Plasmid E. coli Function-based (A) 3.0 × 103 9 1:300 2 Kim et al. (2015) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 O’Mahony et al. (2015) Esterase/lipase/phospholipase 3.1.1.- Bovine rumen Fosmid E. coli Function-based (A) 2.4 × 104 14 1:1700 5 Privé et al. (2015) Esterase/lipase 3.1.1.- Water BAC E. coli Sequence-based (F) / / / 1 Fang et al. (2014) Thioesterase 3.1.2.- Activated sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Sánchez-Reyez et al. (2017) Glucuronoyl esterase 3.1.1.- Marine sediment Fosmid E. coli Function-based (A) 1.7 × 102 1 1:170 1 De Santi, Willassen and Williamson (2016) Sulfatase, sulfotransferase 3.1.6.-, 2.8.2.1 Soil and rumen Plasmid E. coli Function-based (A) 1.3 × 106 14 1:89 000 13c Colin et al. (2015) Feruloyl esterase 3.1.1.73 Hindgut symbiont Fosmid E. coli Function-based (A) 4.0 × 104 7 1:5700 6 Rashamuse et al. (2014) Phospholipase (patatin-like) 3.1.1.- Hydrothermal vent Fosmid E. coli Function-based (A) 1.8 × 104 7 1:2600 1 Fu et al. (2015) Phosphodiesterase 3.1.1.- Coalfield Fosmid E. coli Function-based (A) na 1 na 1 Singh et al. (2015a) Wax ester synthase 2.3.1.75 Soil Fosmid E. coli Function-based (A) 3.3 × 105 155 1:2100 1 Kim et al. (2016a) Oxidoreductase Dioxygenase 1.13.11.- Soil Fosmid E. coli Function-based (B) 1.5 × 105 62 1:2400 1 dos Santos et al. (2015) Dioxygenase 1.13.11.- Soil Plasmid E. coli Function-based (A) na 1 na 1 Wang et al. (2015c) Dioxygenase 1.13.11.- Soil / / Sequence-based (G) / 510 / 4 Chemerys et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil Plasmid E. coli Sequence- (D) and function-based (A) 1.2 × 102 23 1:5 2 Itoh et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil and compost Plasmid E. coli Sequence- (D) and function-based (A) 2.0 × 103 40 1:50 2d Itoh, Kariya and Kurokawa (2014) d-Amino acid oxidase 1.4.3.3 Soil Plasmid E. coli Sequence-based (F) 3.2 × 104 1 1:32 000 1 Ou et al. (2015) Monooxygenase, dioxygenase 1.14.-, 1.13.11.- Soil Cosmid E. coli and P. putida Function-based (B) 2.2 × 105 29 1:7600 2 Nagayama et al. (2015) β-Carotene monooxygenase 1.14.99.36 Human gut microbiome Fosmid E. coli Function-based (B) 2.3 × 104 53 1:450 1 Culligan et al. (2014b) Glucose dehydrogenase 1.1.99.10 Hay infusion Phagemid E. coli Function-based (A) 2.0 × 104 13 1:1550 1 Basner and Antranikian (2014) Aldehyde dehydrogenase 1.2.1.3 Hot spring water and soil / / Sequence-based (E) / na / 1 Chen et al. (2014) Mercuric reductase 1.16.1.1 Brine pool / / Sequence-based (G) / 1 / 1 Sayed et al. (2014) Multicopper oxidase 1.10.- Coalbed Fosmid E. coli Function-based (C) 4.6 × 104 24 1.1900 1 Strachan et al. (2014) Bilirubin oxidase (laccase) 1.3.3.5 Activated sludge Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Kimura and Kamagata (2016) Protease Serine protease 3.4.21.- Tannery sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Devi et al. (2016) Serine protease 3.4.21.- Hot spring sediment Plasmid E. coli Function-based (A) 9.0 × 103 1 1:9000 1 Singh et al. (2015b) Subtilisin-like serine protease 3.4.21.62 Underground water Fosmid E. coli Function-based (A) 2.1 × 104 23 1:900 2 Apolinar–Hernández et al. (2016) Cysteine protease 3.4.22.- Ovine rumen Plasmid E. coli Sequence-based (G) na na na 1 Faheem et al. (2016) Metalloprotease 3.4.- Sludge Fosmid E. coli Function-based (A) 2.8 × 104 2 1:14 000 1 Morris and Marchesi (2015) Phosphatase/phytase Phytase 3.1.3.- Bovine rumen / / Sequence-based (G) / 1 / 1 Mootapally et al. (2016) Phytase 3.1.3.- Peat soil na na Sequence-based (F) na 4 na 1 Tan et al. (2016a) Phytase 3.1.3.- Fungus garden na na Sequence-based (F) na 11 na 1 Tan et al. (2016b) Phytase 3.1.3.- Groundwater na na Sequence-based (F) na 1 na 1 Tan et al. (2015) Phytase 3.1.3.- Soil Fosmid E. coli Function-based (B) 1.4 × 104 28 1:500 1 Tan et al. (2014) Alkaline phosphatase 3.1.3.1 Sediment Fosmid E. coli Function-based (C) 8.0 × 104 6 1:13 350 1 Lee et al. (2015) Other Amine transferase 3.6.1.- Hot spring / / Sequence-based (G) / 3 / 3 Ferrandi et al. (2017) β-Agarase 3.2.1.81 Soil Fosmid E. coli Function-based (A) 1.0 × 105 3 1:33 350 1 Mai, Su and Zhang (2016) Penicillin G acylase 3.5.1.11 Sediment Cosmid E. coli Function-based (B) 7.0 × 103 1 1:7000 1 Zhang et al. (2014b) Epoxide hydrolase 3.3.2.8 Hot spring / / Sequence-based (G) / 2 / 2 Ferrandi et al. (2015) Nitrilase 3.5.5.1 Water / / Sequence-based (G) / 1 / 1 Sonbol, Ferreira and Siam (2016) Exonuclease 3.1.11.1 Soil Plasmid E. coli Function-based (B) 2.7 × 103 1 1:2700 1 Silva-Portela et al. (2016) Rhodanese (sulfur transferase) 2.8.1.1 Soil Plasmid E. coli Function-based (A) 8.5 × 103 5 1:1700 1 Bhat et al. (2015) Target . DNA source . Library type . Heterologous host . Screening approach . Number of screened clones . Number of positive clones . Hit frequency . Number of characterized enzymes . Reference . Activity . EC number . . . . . . . . . . Cellulase/hemicellulase Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 na na 1 Pimentel et al. (2017) Endoglucanase 3.2.1.4 Hot spring sediment / / Sequence-based (G) / / / 1 Zhao et al. (2017) Endoglucanase 3.2.1.4 Ovine rumen BAC E. coli Function-based (A) 1.3 × 104 6 1:2150 1 Cheng et al. (2016) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) na 1 na 1 Garg et al. (2016) Endoglucanase 3.2.1.4 Compost Cosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Meneses et al. (2016) Endoglucanase 3.2.1.4 Beer lees / / Sequence-based (G) / 23 na 3 Yang et al. (2016) Endoglucanase 3.2.1.4 Paddy soil Fosmid E. coli Function-based (A) 2.5 × 104 na na 1 Zhou et al. (2016) Endoglucanase 3.2.1.4 Soil / / Sequence-based (E) / 1 na 1 Hua et al. (2015) Endoglucanase 3.2.1.4 Compost Fosmid E. coli Function-based (A) 2.1 × 104 3 1:7000 2 Okano et al. (2015b) Endoglucanase 3.2.1.4 Soil Fosmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Mai et al. (2014) Endoglucanase 3.2.1.4 Algae Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Martin et al. (2014) Endoglucanase 3.2.1.4 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2014) Endoglucanase 3.2.1.4 Soil Plasmid E. coli Function-based (A) 2.4 × 104 1 1:24 000 1 Xiang et al. (2014) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Matsuzawa and Yaoi (2017) β-Glucosidase 3.2.1.21 Insect gut Plasmid E. coli Function-based (A) 8.0 × 105 13 1:61 500 1 Gao et al. (2016a) β-Glucosidase 3.2.1.21 Soil Cosmid E. coli Sequence-based (F) na na na 1 Gomes-Pepe et al. (2016) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 Ramírez-Escudero et al. (2016) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 104 5 1:10 000 1 Cao et al. (2015) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 3.0 × 104 45 1:650 1 Loaces et al. (2015) β-Glucosidase 3.2.1.21 Kusaya gravy Plasmid E. coli Function-based (A and B) 1.0 × 104 7 1:1450 1 Uchiyama, Yaoi and Miyazaki (2015) β-Glucosidase 3.2.1.21 Soil Fosmid E. coli Function-based (A) 9.8 × 104 2 1:49 000 2 Bergmann et al. (2014) β-Glucosidase 3.2.1.21 Soil Plasmid E. coli Function-based (A) 9.0 × 104 4 1:22 500 2 Biver et al. (2014) β-Glucosidase 3.2.1.21 Bovine rumen Fosmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Li et al. (2014b) β-Glucosidase 3.2.1.21 Hydrothermal spring Plasmid E. coli Function-based (A) na na na 1 Schröder et al. (2014) β-Glucosidase 3.2.1.21 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 12 1:850 3 Zhang et al. (2014a) β-Xylanase 3.2.1.8 Insect gut Fosmid E. coli Function-based (A) 1.0 × 104 13 1:750 1 Qian et al. (2015) β-Xylanase 3.2.1.8 Compost / / Sequence-based (E) / na / 1 Sun et al. (2015) β-Xylanase 3.2.1.8 Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 104 18 1:650 1 Wang et al. (2015b) β-Xylosidase/ arabinofuranosidase 3.2.1.37 Bovine rumen Phagemid E. coli Function-based (A) na na na 1 Jordan et al. (2016) α-Xylosidase/ arabinofuranosidase 3.2.1.177 Soil Fosmid E. coli Function-based (A) 5.0 × 104 1 1:50 000 1 Matsuzawa et al. (2016) β-Xylosidase/ arabinofuranosidase 3.2.1.21 Compost Plasmid E. coli Function-based (A) 3.0 × 104 40 1:750 1 Matsuzawa, Kaneko and Yaoi (2015) α-Arabinofuranosidase 3.2.1.55 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 87 1:450 4 Arnal et al. (2015) α-Fucosidase 3.2.1.51 Soil Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 7 Lezyk et al. (2016) β-Galactosidase 3.2.1.23 Soil Cosmid E. coli and Sinorhizobium melitoti Function-based (B) 7.9 × 104 na na 3 Cheng et al. (2017) α-Galactosidase 3.2.1.23 Hot spring water and sediment / / Sequence-based (G) / / / 1 Schröder et al. (2017) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 1.3 × 106 6 1:216 700 1 Erich et al. (2015) β-Galactosidase 3.2.1.23 Marine sediment Plasmid E. coli Function-based (A) na 28 na 1 Li et al. (2015) β-Galactosidase 3.2.1.23 Hot spring water / / Sequence-based (E) / 1 / 1 Liu et al. (2015b) β-Galactosidase 3.2.1.23 Soil Plasmid E. coli Function-based (A) 7.0 × 105 1 1:700 000 1 Wang et al. (2014) β-N-Acetylhexosaminidase 3.2.1.52 Soil Fosmid E. coli Function-based (A) 1.0 × 105 30 1:3300 2 Nyffenegger et al. (2015) α-Rhamnosidase 3.2.1.40 Feces Fosmid E. coli Function-based (A) 2.0 × 104 na na 1 Rabausch, Ilmberger and Streit (2014) Lichenase (endoglucanase) 3.2.1.73 Soil Plasmid E. coli Function-based (A) 2.0 × 104 1 1:20 000 1 Kim, Oh and Kwon (2014) Cellulase 3.2.1.- Compost Fosmid E. coli Function-based (A) 6.0 × 103 24 1:250 1 Okano et al. (2014) Polygalacturonase 3.2.1.15 Soil Plasmid E. coli Function-based (A) 2.0 × 103 9 1:200 1 Sathya, Jacob and Khan (2014) Cellobiose epimerase 5.1.3.11 Ovine rumen / / Sequence-based (E) / 71 / 2 Wasaki et al. (2015) Glycosyl hydrolase with multifunctional activity 3.2.1.- Ovine rumen Fosmid E. coli Function-based (A) 1.2 × 105 155 1:750 1 Song et al. (2017) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen / / Sequence-based (G) / 2597 / 1 Patel et al. (2016) Glycosyl hydrolase with multifunctional activity 3.2.1.- Bovine rumen BAC E. coli Function-based (A) na na na 1 Gruninger et al. (2014) Glycosyl hydrolase with multifunctional activity 3.2.1.- Compost Fosmid E. coli Function-based (A) 2.5 × 102 5 1:50 1 Sae-Lee and Boonmee (2014) β-Xylanase, cellulase, α-fucosidase 3.2.1.8, 3.2.1.51 Insect gut Fosmid E. coli Function-based (A) 4.0 × 104 31 1:1300 8 Rashamuse et al. (2017) β-Galactosidase, β-xylosidase, α-glucosidase 3.2.1.23, 3.2.1.37, 3.2.1.20 Wheat straw Fosmid E. coli Function-based (A) 4.4 × 104 71 1:600 7 Maruthamuthu et al. (2016) Endoglucanase, endoxylanase 3.2.1.4, 3.2.1.8 Sugarcane bagasse Fosmid E. coli Function-based (A) 1.0 × 105 7 1:14 300 2 Kanokratana et al. (2015) β-Xylosidase, xylanase, β-glucosidase, cellulase 3.2.1.37, 3.2.1.8, 3.2.1.21 Digester Fosmid E. coli Function-based (A) 9.7 × 103 178 1:54 4 Wang et al. (2015a) Glycosyl hydrolases belonging to various families 3.2.1.- Digester / / Sequence-based (G) / 163 / 6 Wei et al. (2015) β-Glucosidase, endomannanase, endoxylanase, β-xylosidase 3.2.1.21, 3.2.1.25, 3.2.1.8, 3.2.1.37 Subseafloor sediments / / Sequence-based (G) / 60 / 10 Klippel et al. (2014) Cellulase, xylanase 3.2.1.4, 3.2.1.8 Soil Plasmid E. coli Function-based (A) 1.5 × 105 6 1:25 000 3 Mori et al. (2014) β-Glucosidase, glycosyltransferases 3.2.1.21 Soil Plasmid E. coli Function-based (A) 5.0 × 105 9 1:55 600 9 Stroobants, Portetelle, Vandenbol (2014) Amylase Amylopullulanase (α-amylase) 3.2.1.1 Insect gut Fosmid E. coli Function-based (A) 9.2 × 104 1 1:92 000 1 Lee et al. (2016b) α-Amylase 3.2.1.1 Cow dung Plasmid E. coli Function-based (C) 1.0 × 105 200 1:500 1 Pooja et al. (2015) α-Amylase 3.2.1.1 Submarine ikaite column BAC E. coli Function-based (A) 2.8 × 103 3 1:900 3 Vester, Glaring and Stougaard (2014) α-Amylase 3.2.1.1 Feces Fosmid E. coli Function-based (A) 5.0 × 104 8 1:6200 1 Xu et al. (2014) Chitinase Chitinase 3.2.1.14 Soil Fosmid E. coli Sequence- (D) and function-based (A) 7.8 × 103 1 1:7800 1 Hjort et al. (2014); Berini et al. (2017) Chitinase 3.2.1.14 Soil Fosmid E. coli Function-based (A) 5.0 × 104 15 1:3300 1 Thimoteo et al. (2017) Chitinase 3.2.1.14, 3.5.1.41 Soil Fosmid E. coli Sequence-based (D) 1.45 × 105 8 1:18 100 1 Cretoiu et al. (2015) Chitinase 3.2.1.14 Pig feces / / Sequence-based (E) / 1 / 1 Liu et al. (2015a) Chitinase 3.2.1.14, 3.5.1.41 Soil / / Sequence-based(G) / 10 / 1 Stöveken et al. (2015) Chitin deacetylase 3.5.1.41 Sediment Plasmid E. coli Sequence-based (F) 10 1 1:10 1 Liu et al. (2016) Esterase/lipase Carboxylesterase 3.1.1.1 Anaerobic digester, sunken shipwreck's tar, water, soil etc. Fosmid E. coli Function-based (A) 1.1 × 106 714 1:1500 77a Popovic et al. (2017) Carboxylesterase 3.1.1.1 Marine mud Fosmid E. coli Function-based (A) 4.0 × 104 34 1:1200 1 Gao et al. (2016b) Carboxylesterase 3.1.1.1 Soil Cosmid E. coli Function-based (A) 8.0 × 104 1 1:80 000 1 Jeon et al. (2016) Carboxylesterase 3.1.1.1 Gill chamber Fosmid E. coli Function-based (A) 2.7 × 104 10 1:2700 3 Alcaide et al. (2015) Carboxylesterase 3.1.1.1 Biogas digester Plasmid E. coli Function-based (A) 9.6 × 103 1 1:9600 1 Cheng et al. (2014) Carboxylesterase 3.1.1.1 Hot vent sediment Fosmid E. coli Function-based (A) 9.6 × 103 120 1:80 3 Placido et al. (2015) Carboxylesterase 3.1.1.1 Seawater Phagemid E. coli Function-based (A) 3.0 × 105 23 1:13 050 5 Tchigvintsev et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 7.2 × 103 10 1:720 1 Zhang et al. (2017) Esterase 3.1.1.1 Marine sediment Fosmid E. coli Function-based (A) 3.9 × 103 19 1:200 1 De Santi et al. (2016) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 2.3 × 104 18 1:1300 1 Lee et al. (2016a) Esterase 3.1.1.1 Moss Fosmid E. coli Function-based (A) 9.0 × 104 83 1:1100 6 Müller et al. (2017) Esterase 3.1.1.- Hot spring mud / / Sequence-based (G) / 1 / 1 Zarafeta et al. (2016) Esterase 3.1.1.1 Glacier soil Fosmid E. coli Function-based (A) 1.0 × 104 5 1:2000 1 De Santi et al. (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 2.0 × 105 1 1.200 000 1 Hu et al. (2015) Esterase 3.1.1.1 Hot spring water, sediment and compost Fosmid E. coli and Thermus thermophilus Function-based (A for E. coli, B for T. thermophilus) 8.0 × 103 8 1:2650 2b Leis et al. (2015) Esterase 3.1.1.1 Hot spring water Fosmid E. coli Function-based (A) 1.2 × 104 6 1:2000 1 López-López et al. (2015) Esterase 3.1.1.1 Compost Fosmid E. coli Function-based (A) 6.0 × 103 19 1:300 1 Okano et al. (2015a) Esterase 3.1.1.1 Bovine rumen Fosmid E. coli Function-based (A) 2.8 × 104 3 1:9200 1 Rodríguez et al. (2015) Esterase 3.1.1.1 Soil Plasmid E. coli Function-based (A) 1.0 × 104 3 1:3300 1 Sudan and Vakhlu (2015) Esterase 3.1.1.1 Sediment Fosmid E. coli Function-based (A) 3.2 × 104 1 1:32 000 1 Seo et al. (2014) Hormone-sensitive lipase 3.1.1.79 Soil Plasmid E. coli Function-based (A) 1.7 × 105 1 1:170 000 1 Dukunde et al. (2017) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 2.0 × 104 12 1:1700 1 Huang et al. (2016) Hormone-sensitive lipase 3.1.1.79 Permafrost Fosmid E. coli Function-based (A) 5.0 × 103 7 1:700 1 Petrovskaya et al. (2016) Hormone-sensitive lipase 3.1.1.79 Sediment Fosmid E. coli Function-based (A) 1.1 × 104 7 1:1600 1 Li et al. (2014a) Hormone-sensitive lipase 3.1.1.79 Sediment Plasmid E. coli Function-based (A) 1.2 × 105 15 1:8000 1 Peng et al. (2014) Lipase 3.1.1.3 Hot spring sediment Plasmid E. coli Function-based (A) 1.3 × 104 7 1:1900 1 Sahoo et al. (2017) Lipase 3.1.1.3 Hot spring water BAC E. coli Function-based (A) 6.8 × 104 4 1:17 000 1 Yan et al. (2017) Lipase 3.1.1.3 Soil / / Sequence-based (E) / na / 1 Kumar et al. (2017) Lipase 3.1.1.3 Soil Plasmid E. coli Function-based (A) 2.0 × 103 15 1:130 1 Khan and Kumar (2016) Lipase 3.1.1.3 Soil Fosmid E. coli Function-based (A) 5.0 × 105 32 1:15 600 2 Martini et al. (2014); Alnoch et al. (2015) Lipase 3.1.1.3 Water / / Sequence-based (F) / 777 / 1 Masuch et al. (2015) Lipase 3.1.1.3 Marine sponge Plasmid E. coli Function-based (A) 6.5 × 103 1 1:6500 1 Su et al. (2015) Lipase 3.1.1.3 Fed-batch reactor Cosmid E. coli Function-based (A) 1.0 × 104 10 1:1000 1 Brault et al. (2014) Lipase 3.1.1.3 Soil BAC E. coli Function-based (A) 3.0 × 103 6 1:500 1 Pindi, Srinath and Pavankumar (2014) Lipase 3.1.1.3 Human oral microbiome Plasmid E. coli Function-based (A) 4.0 × 104 20 1:2000 1 Preeti et al. (2014) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 4.2 × 103 30 1:140 2 Pereira et al. (2015); Maester et al. (2016) Esterase/lipase 3.1.1.- Mud flat Plasmid E. coli Function-based (A) 3.0 × 103 9 1:300 2 Kim et al. (2015) Esterase/lipase 3.1.1.- Soil Fosmid E. coli Function-based (A) 1.4 × 104 1 1:14 000 1 O’Mahony et al. (2015) Esterase/lipase/phospholipase 3.1.1.- Bovine rumen Fosmid E. coli Function-based (A) 2.4 × 104 14 1:1700 5 Privé et al. (2015) Esterase/lipase 3.1.1.- Water BAC E. coli Sequence-based (F) / / / 1 Fang et al. (2014) Thioesterase 3.1.2.- Activated sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Sánchez-Reyez et al. (2017) Glucuronoyl esterase 3.1.1.- Marine sediment Fosmid E. coli Function-based (A) 1.7 × 102 1 1:170 1 De Santi, Willassen and Williamson (2016) Sulfatase, sulfotransferase 3.1.6.-, 2.8.2.1 Soil and rumen Plasmid E. coli Function-based (A) 1.3 × 106 14 1:89 000 13c Colin et al. (2015) Feruloyl esterase 3.1.1.73 Hindgut symbiont Fosmid E. coli Function-based (A) 4.0 × 104 7 1:5700 6 Rashamuse et al. (2014) Phospholipase (patatin-like) 3.1.1.- Hydrothermal vent Fosmid E. coli Function-based (A) 1.8 × 104 7 1:2600 1 Fu et al. (2015) Phosphodiesterase 3.1.1.- Coalfield Fosmid E. coli Function-based (A) na 1 na 1 Singh et al. (2015a) Wax ester synthase 2.3.1.75 Soil Fosmid E. coli Function-based (A) 3.3 × 105 155 1:2100 1 Kim et al. (2016a) Oxidoreductase Dioxygenase 1.13.11.- Soil Fosmid E. coli Function-based (B) 1.5 × 105 62 1:2400 1 dos Santos et al. (2015) Dioxygenase 1.13.11.- Soil Plasmid E. coli Function-based (A) na 1 na 1 Wang et al. (2015c) Dioxygenase 1.13.11.- Soil / / Sequence-based (G) / 510 / 4 Chemerys et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil Plasmid E. coli Sequence- (D) and function-based (A) 1.2 × 102 23 1:5 2 Itoh et al. (2014) Alcohol dehydrogenase 1.1.1.1 Soil and compost Plasmid E. coli Sequence- (D) and function-based (A) 2.0 × 103 40 1:50 2d Itoh, Kariya and Kurokawa (2014) d-Amino acid oxidase 1.4.3.3 Soil Plasmid E. coli Sequence-based (F) 3.2 × 104 1 1:32 000 1 Ou et al. (2015) Monooxygenase, dioxygenase 1.14.-, 1.13.11.- Soil Cosmid E. coli and P. putida Function-based (B) 2.2 × 105 29 1:7600 2 Nagayama et al. (2015) β-Carotene monooxygenase 1.14.99.36 Human gut microbiome Fosmid E. coli Function-based (B) 2.3 × 104 53 1:450 1 Culligan et al. (2014b) Glucose dehydrogenase 1.1.99.10 Hay infusion Phagemid E. coli Function-based (A) 2.0 × 104 13 1:1550 1 Basner and Antranikian (2014) Aldehyde dehydrogenase 1.2.1.3 Hot spring water and soil / / Sequence-based (E) / na / 1 Chen et al. (2014) Mercuric reductase 1.16.1.1 Brine pool / / Sequence-based (G) / 1 / 1 Sayed et al. (2014) Multicopper oxidase 1.10.- Coalbed Fosmid E. coli Function-based (C) 4.6 × 104 24 1.1900 1 Strachan et al. (2014) Bilirubin oxidase (laccase) 1.3.3.5 Activated sludge Fosmid E. coli Function-based (A) 1.0 × 105 1 1:100 000 1 Kimura and Kamagata (2016) Protease Serine protease 3.4.21.- Tannery sludge Plasmid E. coli Function-based (A) 1.0 × 104 1 1:10 000 1 Devi et al. (2016) Serine protease 3.4.21.- Hot spring sediment Plasmid E. coli Function-based (A) 9.0 × 103 1 1:9000 1 Singh et al. (2015b) Subtilisin-like serine protease 3.4.21.62 Underground water Fosmid E. coli Function-based (A) 2.1 × 104 23 1:900 2 Apolinar–Hernández et al. (2016) Cysteine protease 3.4.22.- Ovine rumen Plasmid E. coli Sequence-based (G) na na na 1 Faheem et al. (2016) Metalloprotease 3.4.- Sludge Fosmid E. coli Function-based (A) 2.8 × 104 2 1:14 000 1 Morris and Marchesi (2015) Phosphatase/phytase Phytase 3.1.3.- Bovine rumen / / Sequence-based (G) / 1 / 1 Mootapally et al. (2016) Phytase 3.1.3.- Peat soil na na Sequence-based (F) na 4 na 1 Tan et al. (2016a) Phytase 3.1.3.- Fungus garden na na Sequence-based (F) na 11 na 1 Tan et al. (2016b) Phytase 3.1.3.- Groundwater na na Sequence-based (F) na 1 na 1 Tan et al. (2015) Phytase 3.1.3.- Soil Fosmid E. coli Function-based (B) 1.4 × 104 28 1:500 1 Tan et al. (2014) Alkaline phosphatase 3.1.3.1 Sediment Fosmid E. coli Function-based (C) 8.0 × 104 6 1:13 350 1 Lee et al. (2015) Other Amine transferase 3.6.1.- Hot spring / / Sequence-based (G) / 3 / 3 Ferrandi et al. (2017) β-Agarase 3.2.1.81 Soil Fosmid E. coli Function-based (A) 1.0 × 105 3 1:33 350 1 Mai, Su and Zhang (2016) Penicillin G acylase 3.5.1.11 Sediment Cosmid E. coli Function-based (B) 7.0 × 103 1 1:7000 1 Zhang et al. (2014b) Epoxide hydrolase 3.3.2.8 Hot spring / / Sequence-based (G) / 2 / 2 Ferrandi et al. (2015) Nitrilase 3.5.5.1 Water / / Sequence-based (G) / 1 / 1 Sonbol, Ferreira and Siam (2016) Exonuclease 3.1.11.1 Soil Plasmid E. coli Function-based (B) 2.7 × 103 1 1:2700 1 Silva-Portela et al. (2016) Rhodanese (sulfur transferase) 2.8.1.1 Soil Plasmid E. coli Function-based (A) 8.5 × 103 5 1:1700 1 Bhat et al. (2015) The list was created by searching Pubmed database (accession on 17 July 2017) with the following query: (metagenom*[Title/Abstract]) AND (enzyme[Title/Abstract]) AND (‘2014/01/01’[Date—Publication]: ‘2017/03/31’[Date—Publication]) (where ‘enzyme’ was substituted with the name of each enzymatic class considered). The results were manually checked in order to select only those publications dealing with enzymes fulfilling three criteria: (i) identification by metagenomics, (ii) heterologous expression and at least partial purification (thus confirming the activity of the putative hit), (iii) biochemical and/or functional and/or structural characterization. For functional screening: A = phenotypical detection; B = heterologous complementation; C = induced gene expression (see also Fig. 1). For genetic screening: D = PCR amplification of metagenomic library DNA; E = PCR amplification of eDNA; F = in silico analysis of metagenomic library DNA; G = in silico analysis of shotgun eDNA (see also Fig. 1). na = data not available. a 28 from anaerobic digester, 21 from water sample, 11 from sunken shipwreck's tar, 7 from soil and sediment, 5 from compost, 4 from eukaryote-associated microbiome, 1 from paper mill. b 1 from sediment, 1 from compost. c 10 from soil, 3 from rumen. d From compost. Open in new tab HOW TO MINE eDNA IN THE SEARCH FOR NOVEL ENZYMES The term ‘metagenomics’ is defined as the analysis of the genetic complement of an entire habitat by direct extraction and subsequent cloning of DNA from an assemblage of microorganisms (Handelsman et al.1998). Figure 1 summarizes the general workflow of metagenomics in discovering novel enzymes, outlining the multiplicity of possible screening paths from eDNA extraction to heterologous expression of selected protein sequences. How eDNA is extracted, fragmented and cloned largely dictates the success of metagenomic experiments, but readers are referred to comprehensive reviews of these methods that, although still posing some technical challenges, might be considered quite consolidated (Delmont et al.2011; Lombard et al.2011; Felczykowska et al.2015). Herein, looking at the metagenome sources of the enzymes listed in Table 1, it appears clear that, nowadays, metagenomic libraries could be successfully assembled from widely diverse ecological sources (Fig. 2A). Since a low hit rate of positive clones in screening still represents a persisting bottleneck limiting the success of metagenomics (see below), pre-selecting environmental samples is an increasingly used practice to enrich libraries with target genes. For instance, in 2014 we identified the first metagenome-sourced chitinase from a soil known to be suppressive for chitin-containing phytopathogens (Hjort et al.2014), whereas two esterases were discovered in a soil contaminated with petroleum hydrocarbons (Pereira et al.2015; Maester et al.2016). A promising extension of this concept is the ecological enhancement (also termed targeted metagenomics), by which microbial communities are artificially manipulated prior to DNA extraction in order to increase the in situ prevalence of target functions (Ekkers et al.2012). For example, the addition of chitin to agricultural soils stimulates active chitinolytic microbial communities, increasing the chance of finding novel chitinases (Cretoiu et al.2015; Stöveken et al.2015). Similar approaches were used to identify novel hemicellulases (Sun et al.2015; Zhao et al.2017) and oxidoreductases (Nagayama et al.2015) from cellulose-amended samples or artificially polluted soils. A hormone-sensitive lipase was recovered from an olive oil-fed permafrost-derived microbiome (Petrovskaya et al.2016). Incorporating stable-isotope probing is another tool for innovating target library construction: for example, soil sample incubation with stable-isotope-labeled carbohydrates enriched the eDNA of those bacteria actively engaged in degrading plant-derived biomasses (Verastegui et al.2014). Figure 1. Open in new tabDownload slide Scheme of metagenomic strategies for the identification of novel biocatalysts from environmental DNA. For functional screening: A = phenotypical detection; B = heterologous complementation; C = induced gene expression. For genetic screening: D = PCR amplification of metagenomic library DNA; E = PCR amplification of eDNA; F = in silico analysis of metagenomic library DNA; G = in silico analysis of shotgun eDNA. Figure 1. Open in new tabDownload slide Scheme of metagenomic strategies for the identification of novel biocatalysts from environmental DNA. For functional screening: A = phenotypical detection; B = heterologous complementation; C = induced gene expression. For genetic screening: D = PCR amplification of metagenomic library DNA; E = PCR amplification of eDNA; F = in silico analysis of metagenomic library DNA; G = in silico analysis of shotgun eDNA. Figure 2. Open in new tabDownload slide Distribution of the 332 novel industrially relevant enzymes discovered by metagenomics in the time frame since 1 January 2014 to 31 March 2017 (Table 1) according to (A) DNA source, (B) vector used for library construction, (C) screening method and (D) enzyme class. Figure 2. Open in new tabDownload slide Distribution of the 332 novel industrially relevant enzymes discovered by metagenomics in the time frame since 1 January 2014 to 31 March 2017 (Table 1) according to (A) DNA source, (B) vector used for library construction, (C) screening method and (D) enzyme class. Analysis of Table 1 focusing on how metagenomic libraries are preferentially built up indicates that the majority of the recently isolated metagenome-sourced enzymes (194) were discovered by screening fosmid libraries (Fig. 2B). Although small-insert libraries (in plasmids or phagemids) make it possible to isolate single genes, large-insert libraries (in cosmids, fosmids or bacterial artificial chromosomes) were recently preferred since they permit easily recovering of full-length genes, gaining information on their genetic context in natural sources, and unveiling gene clusters encoding cocktails of enzymes synergistically acting on the same natural substrate. In example, Cretoiu et al. (2015), Maruthamuthu et al. (2016) and Matsuzawa and Yaoi (2017) reported gene annotation of fosmid inserts containing the targeted open reading frames (ORFs) when searching for novel chitinases and hemicellulases (Table 1). Using large-insert libraries also permitted the discovery of complex gene clusters encoding for natural products, which include multiple enzymatic activities that might be useful for expanding the chemical diversity of bioactive molecules. Although potentially interesting as biocatalysts, our review does not cover these biosynthetic enzymes and readers are referred to recent extensive reviews on the subject (Milshteyn, Schneider and Brady 2014; Katz, Hover and Brady 2016). Nowadays, the choice of appropriate screening method remains crucial to eDNA mining (Figs 1 and 2C). Screens could be based on metabolic activity detection (hereby named functional screening or functional metagenomics) or on nucleotide sequence analysis (also indicated as genetic screening) (Table 1, Figs 1 and 2C). Actually, functional screening is considered the best strategy for identifying genes encoding functional products and for potentially discovering completely new classes of enzymes that lack homologies to known sequences (Culligan et al.2014a; Coughlan et al.2015; Batista-García et al.2016). Ferrer et al. (2016) reported that out of ∼6100 total targets (clones and/or enzymes and/or sequences encoding enzymes) identified by metagenomic studies in the last two decades, 5800 were discovered by functional metagenomics. Our analysis—focusing on enzymes that had been (at least partially) characterized at biochemical/functional level (Table 1 and Fig. 2C)—confirms that, in the last three years, the majority of the metagenome-sourced biocatalysts (273) were discovered by functional screening. Despite the enormous potentialities of functional metagenomics, there are some constraints that still limit its success. The first one is the low level of gene expression in the library host, which might introduce a bias in library representativeness and dramatically reduce the hit output from screening. Indeed, Escherichia coli typically remains the first-choice host for constructing a metagenomic library (Table 1). However, it is limited in heterologous protein expression because of its bias in codon usage, improper heterologous promoter recognition, spurious transcription, heterologous protein misfolding, poor secretion and inclusion body formation (Binda et al.2013; Lam and Charles 2015). On average, only 30%–40% of environmental bacterial genes could be efficiently expressed in E. coli, a value dropping to 7% for high G + C DNA (Gabor, Alkema and Janssen 2004). Random insertion of bidirectional promoters into the library (Kim et al.2016b) and addition of heterologous σ-factors for increasing transcription proficiency (Gaida et al.2015) were recently experimented to increase E. coli performance. A different strategy is using alternative expression systems, such as Agrobacterium, Bacillus, Rhodococcus, Streptomyces and Pseudomonas, along with a few archaea (Liebl et al.2014). Multihost expression strategies were proposed too, using shuttle vectors with a broad host range either sequentially or in parallel (Katzke et al.2017). Recent examples (Table 1) include an esterase discovered in a fosmid library propagated in E. coli and in Thermus thermophilus (Leis et al.2015), two dioxygenases from a cosmid metagenomic library in Pseudomonas putida (Nagayama et al.2015) and a β-galactosidase from a library in Sinorhizobiummeliloti (Cheng et al.2017). Interestingly, Bouhajja et al. (2017) identified novel toluene monooxygenase genes by cloning eDNA in three parallel hosts, i.e. E. coli, Cupriavidus metallidurans and Edaphobacter aggregans. Another critical factor is the sensitivity of commonly used function-based screening methods, which might be too low to make gene expression easily detectable (Gabor, Alkema and Janssen 2004; Ekkers et al.2012). Classical phenotypical detection (A in Table 1, Fig. 1), applied for decades in screening microbial isolates and based on identifying specific phenotypic traits associated with the activity of interest, remains the election method in metagenomic, too (260 enzymes). Phenotypical detection on agar plates is still the most widely used approach, especially when searching for hydrolytic enzymes (such as lipases) forming easy-to-detect degradation haloes (Placido et al.2015; Popovic et al.2017) on appropriate substrates. Alternative methods were based on high-throughput assays in liquid culture (Zottig, Meddeb-Mouelhi and Beauregard 2016) or high-performance thin-layer chromatography (Rabausch et al.2013). High-throughput screening (HTS) with multiple substrates, either used in parallel (Ufarté et al.2016) or as a mixture (Maruthamuthu et al.2016), significantly increased hit rate. Proper selection of the screening substrate is highly recommended. Recently, novel hemicellulases were discovered also thanks to a new generation of versatile multiple chromogenic substrates mimicking insoluble plant cell wall components (Maruthamuthu et al.2016). To minimize redundancy (hits showing the same activities/sequences), Ufarté et al. (2016) suggested multistep screening of several small libraries originating from different samples instead of focusing on only one large library from a unique source. A recent frontier in functional metagenomics is using micro- and picodroplet techniques for eDNA HTS: each single clone is encapsulated in water-in-oil droplets together with a suitable substrate and lysis reagents, and hits are selected based on the emitted fluorescence or absorbance (Mair, Gielen and Hollfelder 2017). This method allowed screening over a million clones per day, recovering both slow and fast biocatalysts, promiscuous enzymes or those encoded by rare members of the microbial community. Through this approach, Colin et al.2015 identified novel sulfatases and phosphotriesterases from soil and rumen metagenomic libraries (Table 1). In addition to phenotypical detection, two other functional screening approaches merit mention. Heterologous complementation (B in Table 1, Fig. 1) relies on the selection of clones that have acquired the capability to grow under selective conditions, such as in the presence of a specific substrate given as the sole carbon source. It was used to detect a phytase in E. coli clones grown on phytate as the sole phosphorus source (Tan et al.2014), as well as for the identification of a thermostable penicillin G acylase by selecting E. coli clones growing in the presence of penicillin G (Zhang et al.2014b). Induced gene expression (C in Table 1, Fig. 1) includes substrate-induced gene expression (SIGEX) (Uchiyama et al.2005), product-induced gene expression (PIGEX) (Uchiyama and Miyazaki 2010) and metabolite-regulated expression (METREX) (Williamson et al.2005), which are all based on the use of operon-trap green fluorescent protein (GFP) expression vectors: positive clones, co-expressing the desired enzyme activity and the GFP upon exposure to a target substrate (SIGEX), product (PIGEX) or quorum-sensing signal molecule (METREX) can be isolated by fluorescence-assisted cell sorting. By using PIGEX, a periplasmic α-amylase was discovered in a clone from a cow dung metagenomic library that fluoresced on maltose as substrate (Pooja et al.2015). By-products from a wide variety of enzymes (e.g. cellulases, lipases and lyases) may be detected using a single cell-based reporter system in which GFP expression is activated by the presence of phenyl compounds (Choi et al.2014), as in the case of a psychrophilic alkaline phosphatase from tidal flat sediment (Lee et al.2015). Alternatively to functional metagenomics, genetic screening is gene expression independent. It is traditionally based on the use of PCR with primers specific for conserved regions of the genes being targeted, which for enzymes are usually the catalytic domains (Ekkers et al.2012; Coughlan et al.2015). It can be applied for screening either clones of metagenomic libraries (D in Table 1, Fig. 1) or the eDNA extracted directly from environmental samples (E). The limitation is that, being based on the identification of conserved nucleotide sequences, genetic screening is biased for members of already known gene families and additionally it does not guarantee the recovery of full-length genes. Table 1 indicates that only nine of the recently isolated metagenome-sourced enzymes were identified by PCR-based screening. Interestingly, five other enzymes, namely one chitinase (Hjort et al.2014) and four alcohol dehydrogenases (Itoh et al.2014; Itoh, Kariya and Kurokawa 2014), were discovered by combining PCR- and function-based strategies on the same library (Fig. 2C). The combination of the two approaches, either sequentially or in parallel, in fact might increase the screening hit rate. In the last few years, the rapid advancement of next-generation sequencing (NGS) technologies, coupled with a significant reduction in sequencing costs, promoted the evolution of another genetic screening approach that is based on the bioinformatic analysis of sequenced DNA (in silico screening). Among the enzymes listed in Table 1, eight were discovered by in silico screening of DNA from metagenomic libraries (F in Table 1, Fig. 1). The real revolution occurred with the birth of ‘shotgun metagenomics’, i.e. the direct sequencing and analysis of isolated eDNA, bypassing the laborious steps of library construction (G in Table 1, Fig. 1). Compared to classical PCR-based screening, this approach has the advantage of potentially uncovering genes that are more divergent and more interesting than the consensus genes with known sequences. Additionally, the detection of very rare genes in complex populations is facilitated (Culligan et al.2014a; Kumar et al.2015). In the last three years (Table 1), 37 novel enzymes, including (hemi)cellulases, chitinases, oxidoreductases, proteases and nitrilases, were discovered by shotgun metagenomics and we can expect an increasing contribution from this approach for the near future. Among them, it is worth mentioning the esterase discovered by Zarafeta et al. (2016) from hot spring mud, which, to our knowledge, is the first biocatalyst belonging to an uncharacterized enzymatic family to be retrieved by sequence-based screening. INDUSTRIALLY RELEVANT ENZYMES FROM METAGENOMICS The most common targets in metagenomic investigations for industrial enzymes include glycosyl hydrolases (GHs), lipolytic enzymes, oxidoreductases, proteases and phosphatases; a few other industrially useful enzyme classes, as acylases, nucleases and nitrilases, were also found by metagenomics (Coughlan et al.2015; DeCastro, Rodríguez-Belmonte and González-Siso 2016). Table 2 reports examples of such classes of enzymes from metagenomes patented in the last decade. Additionally, Table 3 indicates some successful cases of metagenome-sourced enzymes that were marketed. Herein, we get insight into the activities and potential applications of few (the most interesting ones from our point of view) among the 332 metagenome-sourced enzymes recently discovered (Table 1, Fig. 2D). Although the majority of them could be considered useful variants of already known protein families, some of the biocatalysts reported in Table 1 belong to previously uncharacterized enzyme families or subfamilies, with unconventional structures and active site architectures pointing to novel catalytic mechanisms. Table 2. Examples of metagenome-sourced enzymes patented in the last decade and their suggested applications. Enzyme . Source . Patent number . Patent filling date . Suggested applications . Cellulase/hemicellulase Xylanase Hot spring EP2990482 A1 2014 Biofuel production from lignocellulosic biomasses Cellobiohydrolase Hot spring EP2980212 A1 2013 Biofuel production from lignocellulosic biomasses Cellulase Bovine rumen WO2014142529 A1 2013 Biofuel production from lignocellulosic biomasses; fiber, detergent, feed, food, pulp, paper production β-Galactosidase na EP2530148 A1 2011 Food processing (lactose depletion) Xylose isomerase Termite intestine US8772012 B2 2009 Biofuel production from lignocellulosic biomasses Amylase α-Amylase Animal manure CN103290039 B 2013 Animal feed, starch processing industries Chitinase Chitosanase Soil CN103361374 A 2013 Industrial chitosan production Esterase/lipase Esterase Brine pool US20160053239 A1 2013 Industrial processes for lipases/esterases (e.g. leather manufacture, oil biodegradation, synthesis of pharmaceuticals and chemicals) under harsh conditions Lipase Soil CN103834626 A 2013 Industrial applications that require high temperature-resistant lipases Lipase/phospholipase Tidal flat sediment EP2784160 A1 2011 Oil and fat purification and conversion, bio-medicine, fine chemistry Protease Peptidase Compost CN103409443 A 2013 Food processes, life science research, protein waste treatment Alkaline protease Seabed mud CN103409398 A 2013 Supplement to liquid detergents Phosphatase/phytase Alkaline phosphatase na US8647854 B2 2009 Genetic cloning, enzyme immunoassays Other Alginate lyase Abalone-associated microbiome CN102971426 B 2011 Seaweed processing DNA polymerase Water WO2012173905 A1 2011 DNA polymerization in high salt conditions l-Methionine γ-lyase Deep sea sediment CN101962651 B 2010 Clinical detection, food flavor production, cancer therapy Muramidase (Lysozyme) Soil CN101892252 B 2010 Antibiosis, bacteriolysis Enzyme . Source . Patent number . Patent filling date . Suggested applications . Cellulase/hemicellulase Xylanase Hot spring EP2990482 A1 2014 Biofuel production from lignocellulosic biomasses Cellobiohydrolase Hot spring EP2980212 A1 2013 Biofuel production from lignocellulosic biomasses Cellulase Bovine rumen WO2014142529 A1 2013 Biofuel production from lignocellulosic biomasses; fiber, detergent, feed, food, pulp, paper production β-Galactosidase na EP2530148 A1 2011 Food processing (lactose depletion) Xylose isomerase Termite intestine US8772012 B2 2009 Biofuel production from lignocellulosic biomasses Amylase α-Amylase Animal manure CN103290039 B 2013 Animal feed, starch processing industries Chitinase Chitosanase Soil CN103361374 A 2013 Industrial chitosan production Esterase/lipase Esterase Brine pool US20160053239 A1 2013 Industrial processes for lipases/esterases (e.g. leather manufacture, oil biodegradation, synthesis of pharmaceuticals and chemicals) under harsh conditions Lipase Soil CN103834626 A 2013 Industrial applications that require high temperature-resistant lipases Lipase/phospholipase Tidal flat sediment EP2784160 A1 2011 Oil and fat purification and conversion, bio-medicine, fine chemistry Protease Peptidase Compost CN103409443 A 2013 Food processes, life science research, protein waste treatment Alkaline protease Seabed mud CN103409398 A 2013 Supplement to liquid detergents Phosphatase/phytase Alkaline phosphatase na US8647854 B2 2009 Genetic cloning, enzyme immunoassays Other Alginate lyase Abalone-associated microbiome CN102971426 B 2011 Seaweed processing DNA polymerase Water WO2012173905 A1 2011 DNA polymerization in high salt conditions l-Methionine γ-lyase Deep sea sediment CN101962651 B 2010 Clinical detection, food flavor production, cancer therapy Muramidase (Lysozyme) Soil CN101892252 B 2010 Antibiosis, bacteriolysis na = data not available Open in new tab Table 2. Examples of metagenome-sourced enzymes patented in the last decade and their suggested applications. Enzyme . Source . Patent number . Patent filling date . Suggested applications . Cellulase/hemicellulase Xylanase Hot spring EP2990482 A1 2014 Biofuel production from lignocellulosic biomasses Cellobiohydrolase Hot spring EP2980212 A1 2013 Biofuel production from lignocellulosic biomasses Cellulase Bovine rumen WO2014142529 A1 2013 Biofuel production from lignocellulosic biomasses; fiber, detergent, feed, food, pulp, paper production β-Galactosidase na EP2530148 A1 2011 Food processing (lactose depletion) Xylose isomerase Termite intestine US8772012 B2 2009 Biofuel production from lignocellulosic biomasses Amylase α-Amylase Animal manure CN103290039 B 2013 Animal feed, starch processing industries Chitinase Chitosanase Soil CN103361374 A 2013 Industrial chitosan production Esterase/lipase Esterase Brine pool US20160053239 A1 2013 Industrial processes for lipases/esterases (e.g. leather manufacture, oil biodegradation, synthesis of pharmaceuticals and chemicals) under harsh conditions Lipase Soil CN103834626 A 2013 Industrial applications that require high temperature-resistant lipases Lipase/phospholipase Tidal flat sediment EP2784160 A1 2011 Oil and fat purification and conversion, bio-medicine, fine chemistry Protease Peptidase Compost CN103409443 A 2013 Food processes, life science research, protein waste treatment Alkaline protease Seabed mud CN103409398 A 2013 Supplement to liquid detergents Phosphatase/phytase Alkaline phosphatase na US8647854 B2 2009 Genetic cloning, enzyme immunoassays Other Alginate lyase Abalone-associated microbiome CN102971426 B 2011 Seaweed processing DNA polymerase Water WO2012173905 A1 2011 DNA polymerization in high salt conditions l-Methionine γ-lyase Deep sea sediment CN101962651 B 2010 Clinical detection, food flavor production, cancer therapy Muramidase (Lysozyme) Soil CN101892252 B 2010 Antibiosis, bacteriolysis Enzyme . Source . Patent number . Patent filling date . Suggested applications . Cellulase/hemicellulase Xylanase Hot spring EP2990482 A1 2014 Biofuel production from lignocellulosic biomasses Cellobiohydrolase Hot spring EP2980212 A1 2013 Biofuel production from lignocellulosic biomasses Cellulase Bovine rumen WO2014142529 A1 2013 Biofuel production from lignocellulosic biomasses; fiber, detergent, feed, food, pulp, paper production β-Galactosidase na EP2530148 A1 2011 Food processing (lactose depletion) Xylose isomerase Termite intestine US8772012 B2 2009 Biofuel production from lignocellulosic biomasses Amylase α-Amylase Animal manure CN103290039 B 2013 Animal feed, starch processing industries Chitinase Chitosanase Soil CN103361374 A 2013 Industrial chitosan production Esterase/lipase Esterase Brine pool US20160053239 A1 2013 Industrial processes for lipases/esterases (e.g. leather manufacture, oil biodegradation, synthesis of pharmaceuticals and chemicals) under harsh conditions Lipase Soil CN103834626 A 2013 Industrial applications that require high temperature-resistant lipases Lipase/phospholipase Tidal flat sediment EP2784160 A1 2011 Oil and fat purification and conversion, bio-medicine, fine chemistry Protease Peptidase Compost CN103409443 A 2013 Food processes, life science research, protein waste treatment Alkaline protease Seabed mud CN103409398 A 2013 Supplement to liquid detergents Phosphatase/phytase Alkaline phosphatase na US8647854 B2 2009 Genetic cloning, enzyme immunoassays Other Alginate lyase Abalone-associated microbiome CN102971426 B 2011 Seaweed processing DNA polymerase Water WO2012173905 A1 2011 DNA polymerization in high salt conditions l-Methionine γ-lyase Deep sea sediment CN101962651 B 2010 Clinical detection, food flavor production, cancer therapy Muramidase (Lysozyme) Soil CN101892252 B 2010 Antibiosis, bacteriolysis na = data not available Open in new tab Table 3. Examples of metagenome-sourced enzymes commercialized by BASF Enzymes LLC (https://www.basf.com). Commercial name . Enzyme class . Applications . Luminase Xylanase Pulp biobleaching in paper production Fuelzyme α-Amylase Fuels and industrial-use alcohols production Pyrolase 160, Pyrolase 200 Cellulase Secondary oil and gas recovery Phyzyme XP Phytase Additive for livestock feed Commercial name . Enzyme class . Applications . Luminase Xylanase Pulp biobleaching in paper production Fuelzyme α-Amylase Fuels and industrial-use alcohols production Pyrolase 160, Pyrolase 200 Cellulase Secondary oil and gas recovery Phyzyme XP Phytase Additive for livestock feed Open in new tab Table 3. Examples of metagenome-sourced enzymes commercialized by BASF Enzymes LLC (https://www.basf.com). Commercial name . Enzyme class . Applications . Luminase Xylanase Pulp biobleaching in paper production Fuelzyme α-Amylase Fuels and industrial-use alcohols production Pyrolase 160, Pyrolase 200 Cellulase Secondary oil and gas recovery Phyzyme XP Phytase Additive for livestock feed Commercial name . Enzyme class . Applications . Luminase Xylanase Pulp biobleaching in paper production Fuelzyme α-Amylase Fuels and industrial-use alcohols production Pyrolase 160, Pyrolase 200 Cellulase Secondary oil and gas recovery Phyzyme XP Phytase Additive for livestock feed Open in new tab Glycosyl hydrolases The classes of metagenome-sourced enzymes mostly represented in our 3-year analysis are (hemi)cellulases and esterases/lipases (Fig. 2D), the two categories of biocatalysts that have been extensively targeted since the beginning of the metagenomic era (Lorenz and Eck 2005). Comprehensive lists of metagenome-sourced enzymes for lignocellulose saccharification and biofuel production are reported in the work of Duan and Feng (2010), Montella, Amore and Faraco (2016), Batista-García et al. (2016) and Xing, Zhang and Huang (2012). Some of the most recent papers listed in Table 1 deal with the identification of versatile (hemi)cellulases with a wide substrate specificity useful for plant biomass saccharification: for example, an endoglucanase possessing also xylanase activity was identified by functional metagenomics from goat rumen (Cheng et al.2016), and Matsuzawa and Yaoi (2017) reported the characterization from a soil metagenome of a saccharide-stimulated β-glucosidase possessing additional β-galactosidase and β-fucosidase activities. Recent studies disclosed interesting uncommon halotolerant (hemi)cellulases: for instance, Garg et al. (2016) retrieved from soil the most halostable endoglucanase so far known, which retained 70%–100% activity after 1-year incubation with 2 M NaCl, 3 M LiCl or 1 M KCl. The NGS screening of a library from an enriched, anaerobic beer lees-converting consortium allowed the identification of three novel acidophilic endoglucanases, one of them highly tolerant to high salt concentrations and to ionic liquids used in cellulose pre-treatment (Yang et al.2016). Interestingly, this enzyme and the thermostable xylanase isolated by Sun et al. (2015) and used in polysaccharide degradation for biofuel production were heterologously produced in Bacillus spp., where the recombinant enzymes were secreted into culture broth, thus facilitating subsequent purification and use. Other industrially valuable (hemi)cellulases include two β-glucosidases with high tolerance towards detergents and oxidants (Biver et al.2014) or towards high sugar concentrations (Gomes-Pepe et al.2016), and a β-galactosidase useful for the industrial production of dairy lactose-free products thanks to its superior activity at low temperatures (Erich et al.2015) (Table 1). Talking about novel protein structures and unconventional active site architectures, Pimentel et al. (2017) discovered from a soil metagenome a modular endoglucanase with a rare Calx-beta motif at the C-terminal domain, whereas Xiang et al. (2014) identified a halotolerant, acid-stable endoglucanase possessing an unusual catalytic triad. Functional screening of metagenomic libraries from cow rumen, corn field soil and elephant feces led to the identification of three novel GHs—a β-glucosidase (Ramírez-Escudero et al.2016), a β-galactosidase (Cheng et al.2017) and a α-l-rhamnosidase (Rabausch, Ilmberger and Streit 2014), respectively—whose sequences could not be assigned to any GH family so far known. Among other industrially relevant GHs, a handful of α-amylases (Table 1, Fig. 2D) with a potential for applications in starch processing and detergent, food and pharmaceutical production were discovered by functional screening of metagenomic libraries from cow and pygmi loris dung (Xu et al.2014; Pooja et al.2015), Greenland submarine ikaite columns (Vester, Glaring and Stougaard 2014) and Hermetia illucens gut microflora (Lee et al.2016b), this last being stable also in polar organic solvents and non-ionic detergents. Chitinases, which are active on chitin—the second most abundant biopolymer after lignocellulose—recently attracted attention for the production of chitin derivatives (chitosan and chitooligosaccharides) with high pharmaceutical and nutritional potential (Cretoiu et al.2015). In 2014, we identified a chitobiosidase by combining genetic and functional screenings applied to a suppressive soil metagenome, now under development as a potential biocontrol agent thanks to its antifungal activity (Hjort et al.2014; Berini et al. 2016, 2017). In 2015, the PCR-based analysis of a library from a chitin-amended agricultural soil led us to discover a novel halophilic chitinase, with the potential to be exploited for the treatment and valorization of seafood wastes (Cretoiu et al.2015). An interesting enzyme for its potential application in producing chitosan from chitin is the chitin deacetylase that has been identified in Arctic Ocean deep-sea sediments (Liu et al.2016). Lipases and esterase Dozens of eDNA libraries were screened in the past to identify novel esterases/lipases for the hydrolysis or the synthesis of ester bonds in a variety of applications, including detergent, food, pulp and paper industries, diagnostics and therapeutics, as well as biodiesel production and biopolymer synthesis. Particular attention was directed to extreme environments, as reviewed in López-López, Cerdán and González Siso (2014). Popovic et al. (2017) recently made an impressive contribution to this class of enzymes: they discovered 77 esterases by functional screening of over one million fosmid clones from 16 terrestrial and marine environments, including a metal-ion-dependent esterase with novel active site architecture (Table 1). Functional metagenomics led to the discovery of a hormone-sensitive lipase from permafrost with an unusual catalytic motif (Petrovskaya et al.2016). Enzymes belonging to novel families of esterases were recovered from cow rumen (Rodríguez et al.2015) and hot spring mud (Zarafeta et al.2016). Additionally, many other metagenome-sourced enzymes have peculiar biochemical properties that make them valuable for industrial application. Examples are the solvent- and detergent-resistant enzymes found in a soil contaminated with petroleum hydrocarbons (Pereira et al.2015) and the alkaline, thermostable and solvent-tolerant carboxylesterase from marine mud (Gao et al.2016b). Peng et al. (2014) described an alkaline-stable lipase from marine sediments with a potential application in milkfat flavor production, whereas Su et al. (2015) and Kim et al. (2015) identified two novel lipases from marine sponge-associated microbiome and oil-polluted mud flats, respectively, which might be applied in detergent industry and organic synthesis. Alnoch et al. (2015) and Kumar et al. (2017) described two regio- and enantioselective lipases from soil samples to be used pharmaceutically for the production of racemic intermediates. Oxidoreductases Oxidoreductases represent a heterogeneous group of enzymes with multiple applications in pharmaceutical and food industries and in bioremediation. Recently discovered oxidoreductases (Table 1, Fig. 2D) include five soil-sourced dioxygenases with bioremediation potential (Chemerys et al.2014; dos Santos et al.2015) and the first metagenome-sourced d-amino acid oxidase with potential application in the biosynthesis of the antibiotic intermediate of 7-aminocephalosporanic acid from cephalosporin C (Ou et al.2015). Belonging to this enzymatic class are multi-copper oxidases (MCOs), enzymes with a broad range of activity on both phenolic and non-phenolic substrates, which attract attention due to their involvement in degrading lignocellulose biomasses. Table 1 includes two MCOs from coal-bed bacterial community (Strachan et al.2014) and activated sludge-associated microbiome (Kimura and Kamagata 2016). More recently, we reported on the isolation and characterization of the first metagenome-sourced acidobacterial MCO, with high tolerance to salt and heat (Ausec et al.2017). Proteases Five metagenomic studies led to the identification of novel proteases, one of the most widely used industrial classes of enzymes in detergent, leather and food processing, peptide and drug synthesis, brewing and wastewater treatment (Table 1, Fig. 2D). Among them, two serine proteases from Yucatán underground water belong to a novel, still uncharacterized subfamily (Apolinar-Hernández et al.2016) and one serine protease isolated from a tannery activated sludge looks promising for its unusual high stability in anionic detergents and organic solvents (Devi et al.2016). Phosphatases Five novel phytases (Table 1, Fig. 2D) (histidine acid phosphatases with applications in agriculture and breeding as an additive to monogastric animal feed) were recently identified and characterized. Tan et al. (2014) reported the discovery of two phytases with unusual sequences from agricultural soils. Two years later, the same researchers described the characterization of a phytase from a fungus garden metagenome with an exceedingly long half-life at high temperatures (Tan et al.2016b). Finally, a novel psychrophilic alkaline phosphatase was discovered by induced gene expression screening in tidal flat sediments (Lee et al.2015). Others Since 2014, seven metagenomic studies have reported heterologous expression and characterization of other potentially useful enzymes (Table 1, Fig. 2D), including a thermostable and heavy metal-resistant nitrilase from Red Sea to be used in the synthesis of cyanocarboxylic acids (Sonbol, Ferreira and Siam 2016) and a β-agarase from mangrove soil applicable in the cosmetic, pharmaceutical and food industries (Mai, Su and Zhang 2016). In Ferrandi et al. (2017), the co-expression of metagenome-sourced amine-transferases with cold-adapted chaperones in the unconventional E. coli Arctic Express RIL cells favored the soluble production of the enzymes up to several mg per liter of culture. The subsequent characterization proved that one of these enzymes is the most thermostable natural amine transferase so far described. CONCLUSIONS Almost unheard of only 10/15 years ago in enzyme biotechnology, metagenomics is now rapidly developing as a mean of encrypting novel biocatalysts from environmental samples. Technical challenges still exist, though, that are connected to screening procedures and heterologous expression of metagenome-derived enzymes, limiting the great potential of functional metagenomics. Advances in HTS and NGS pave the way to make metagenomics more efficient and efficacious in discovering potential industrially valuable biocatalysts. We envisage that very soon, metagenome approaches will be mature enough to substantially impact biobased industrial production. The experience on how to build and screen metagenomic libraries is becoming a common shared knowledge in the scientific community aiming at developing novel biocatalysts to replace chemical processes. A proof of this is the list of the 332 metagenome-sourced enzymes identified and characterized in the past three years. Scientists and industries may select from this pool enzymes that may be translated to industrial development for an incredible variety of industrial applications. Interestingly, only very few metagenome-sourced enzymes have already undergone optimization through directed evolution strategies, and this means that there is room for further improving their protein backbones to fulfill industrial requirements. Acknowledgements MIUR (Ministero italiano dell’Istruzione, dell’Università e della Ricerca) fellowship to CC and CIB (Consorzio Interuniversitario per le Biotecnologie) contributions to FB and CC are acknowledged. FUNDING This work was supported by the Seventh Framework European Union grant agreement No. 222625 for the MetaExplore project (Metagenomics for bioexploration – tools and application) and by MAECI (Ministero Affari Esteri e della Cooperazione Internazionale) for the CHITOBIOCONTROL project (Israel-Italy Joint Innovation Program for Industrial, Scientific and Technological Cooperation in R&D, Industrial Track, call 2016). Conflict of interest. None declared. REFERENCES Alcaide M , Tchigvintsev A, Martínez-Martínez Met al. . Identification and characterization of carboxyl esterases of grill chamber-associated microbiota in the deep-sea shrimp Rimicaris exoculata by using functional metagenomics . Appl Environ Microb 2015 ; 81 : 2125 – 36 . Google Scholar Crossref Search ADS WorldCat Alnoch RC , Martini VP, Glogauer Aet al. . Immobilization and characterization of a new regioselective and enantioselective lipase obtained from a metagenomic library . PLoS One 2015 ; 10 : e0114945 . Google Scholar Crossref Search ADS PubMed WorldCat Apolinar-Hernández MM , Peña-Ramirez YJ, Pérez-Rueda Eet al. . Identification and in silico characterization of two novel genes encoding peptidases S8 found by functional screening in a metagenomic library of Yucatán underground water . Gene 2016 ; 593 : 154 – 61 . Google Scholar Crossref Search ADS PubMed WorldCat Arnal G , Bastien G, Monties Net al. . Investigating the function of an arabinan utilization locus isolated from a termite gut community . Appl Environ Microb 2015 ; 81 : 31 – 9 . Google Scholar Crossref Search ADS WorldCat Ausec L , Berini F, Casciello Cet al. . The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance . Appl Microbiol Biot 2017 ; 101 : 6261 – 76 . Google Scholar Crossref Search ADS WorldCat Basner A , Antranikian G. Isolation and biochemical characterization of a glucose dehydrogenase from a hay infusion metagenome . PLoS One 2014 ; 9 : e85844 . Google Scholar Crossref Search ADS PubMed WorldCat Batista-García RA , del Rayo Sánchez-Carbente M, Talia Pet al. . From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects . Biofuels Bioprod Bior 2016 ; 10 : 864 – 82 . Google Scholar Crossref Search ADS WorldCat Bergmann JC , Costa OY, Gladden LMet al. . Discovery of two novel β-glucosidases from an Amazon soil metagenomic library . FEMS Microbiol Lett 2014 ; 351 : 147 – 55 . Google Scholar Crossref Search ADS PubMed WorldCat Berini F , Caccia S, Franzetti Eet al. . Effects of Trichoderma viride chitinases on the peritrophic matrix of Lepidoptera . Pest Manag Sci 2016 ; 72 : 980 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat Berini F , Presti I, Beltrametti Fet al. . Production and characterization of a novel antifungal chitinase identified by functional screening of a suppressive-soil metagenome . Microb Cell Fact 2017 ; 16 : 16 . Google Scholar Crossref Search ADS PubMed WorldCat Bhat A , Riyaz-Ul-Hassan S, Srivastava Net al. . Molecular cloning of rhodenase gene from soil metagenome of cold desert of North-West Himalayas: sequence and structural features of the rhodanese enzyme . 3 Biotech 2015 ; 5 : 513 – 21 . Google Scholar Crossref Search ADS PubMed WorldCat Binda E , Marcone GL, Berini Fet al. . Streptomyces spp. as efficient expression system for a d,d-peptidase/d,d-carboxypeptidase involved in glycopeptide antibiotic resistance . BMC Biotechnol 2013 ; 13 : 24 . Google Scholar Crossref Search ADS PubMed WorldCat Biver S , Stroobants A, Portetelle Det al. . Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose . J Ind Microbiol Biot 2014 ; 41 : 479 – 88 . Google Scholar Crossref Search ADS WorldCat Bouhajja E , McGuire M, Liles MRet al. . Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries . Appl Microbiol Biot 2017 ; 101 : 797 – 808 . Google Scholar Crossref Search ADS WorldCat Brault G , Shareck F, Hurtubise Yet al. . Short-chain flavour ester synthesis in organic media by an E. coli whole-cell biocatalyst expressing a newly characterized heterologous lipase . PLoS One 2014 ; 9 : e9 1872. Google Scholar Crossref Search ADS WorldCat Bunge J , Willis A, Walsh F. Estimating the number of species in microbial diversity studies . Annu Rev Stat Appl 2014 ; 1 : 427 – 45 . Google Scholar Crossref Search ADS WorldCat Cao LC , Wang ZJ, Ren GHet al. . Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration . Biotechnol Biofuels 2015 ; 8 : 202 . Google Scholar Crossref Search ADS PubMed WorldCat Chemerys A , Pelletier E, Cruaud Cet al. . Characterization of novel polycyclic aromatic hydrocarbon dioxygenases from the bacterial metagenomic DNA of a contaminated soil . Appl Environ Microb 2014 ; 80 : 6591 – 600 . Google Scholar Crossref Search ADS WorldCat Chen R , Li C, Pei Xet al. . Isolation an aldehyde dehydrogenase gene from metagenomics based on semi-nest touch-down PCR . Indian J Microbiol 2014 ; 54 : 74 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat Cheng J , Huang S, Jiang Het al. . Isolation and characterization of a non-specific endoglucanase from a metagenomic library of goat rumen . World J Microb Biot 2016 ; 32 : 12 . Google Scholar Crossref Search ADS WorldCat Cheng J , Romantsov T, Engel Ket al. . Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences . PLoS One 2017 ; 12 : e0172545 . Google Scholar Crossref Search ADS PubMed WorldCat Cheng X , Wang X, Qiu Tet al. . Molecular cloning and characterization of a novel cold-adapted family VIII esterase from a biogas slurry metagenomic library . J Microbiol Biotech 2014 ; 24 : 1484 – 9 . Google Scholar Crossref Search ADS WorldCat Choi SL , Rha E, Lee SJet al. . Toward a generalized and high-throughput enzymes screening system based on artificial genetic circuits . ACS Synth Biol 2014 ; 3 : 163 – 71 . Google Scholar Crossref Search ADS PubMed WorldCat Colin PY , Kintses B, Gielen Fet al. . Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics . Nat Commun 2015 ; 6 : 10008 . Google Scholar Crossref Search ADS PubMed WorldCat Coughlan LM , Cotter PD, Hill Cet al. . Biotechnological applications of functional metagenomics in the food and pharmaceutical industries . Front Microbiol 2015 ; 6 : 672 . Google Scholar Crossref Search ADS PubMed WorldCat Cretoiu MS , Berini F, Kielak AMet al. . A novel salt-tolerant chitobiosidase discovered by genetic screening of a metagenomics library derived from chitin-amended agricultural soil . Appl Microbiol Biot 2015 ; 99 : 8199 – 215 . Google Scholar Crossref Search ADS WorldCat Culligan EP , Sleator RD, Marchesi JRet al. . Metagenomics and novel gene discovery: promise and potential for novel therapeutics . Virulence 2014a ; 5 : 399 – 412 . Google Scholar Crossref Search ADS WorldCat Culligan EP , Sleator RD, Marchesi JRet al. . Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15’-monooxygenase . PLoS One 2014b ; 9 : e103318 . Google Scholar Crossref Search ADS WorldCat De Santi C , Altermark B, Pierechod MMet al. . Characterization of a cold-active and salt tolerant esterase identified by functional screening of arctic metagenomic libraries . BMC Biochem 2016 ; 17 : 1 . Google Scholar Crossref Search ADS PubMed WorldCat De Santi C , Ambrosino L, Tedesco Pet al. . Identification and characterization of a novel salt-tolerant esterase from a Tibetan glacier metagenomic library . Biotechnol Prog 2015 ; 31 : 890 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat De Santi C , Willassen NP, Williamson A. Biochemical characterization of a family 15 carbohydrate esterase from a bacterial marine arctic metagenome . PLoS One 2016 ; 11 : e0159345 . Google Scholar Crossref Search ADS PubMed WorldCat DeCastro ME , Rodríguez-Belmonte E, González-Siso M. Metagenomics of Thermophiles with a focus on discovery of novel thermozymes . Front Microbiol 2016 ; 7 : 1521 . Google Scholar Crossref Search ADS PubMed WorldCat Delmont TO , Robe P, Clark Iet al. . Metagenomic comparison of direct and indirect soil DNA extraction approaches . J Microbiol Meth 2011 ; 86 : 397 – 400 . Google Scholar Crossref Search ADS WorldCat Demain AL , Adrio JL. Contributions of microorganisms to industrial biology . Mol Biotechnol 2008 ; 38 : 41 – 55 . Google Scholar Crossref Search ADS PubMed WorldCat Devi SG , Fathima AA, Sanitha Met al. . Expression and characterization of alkaline protease from the metagenomic library of tannery activated sludge . J Biosci Bioeng 2016 ; 122 : 694 – 700 . Google Scholar Crossref Search ADS PubMed WorldCat dos Santos DF , Istvan P, Noronha EFet al. . New dioxygenase from metagenomic library from Brazilian soil: insight into antibiotic resistance and bioremediation . Biotechnol Lett 2015 ; 37 : 1809 – 17 . Google Scholar Crossref Search ADS PubMed WorldCat Duan CJ , Feng JX. Mining metagenomes for novel cellulase genes . Biotechnol Lett 2010 ; 32 : 1765 – 75 . Google Scholar Crossref Search ADS PubMed WorldCat Dukunde A , Schneider D, Lu Met al. . A novel, versatile family IV carboxylesterase exhibits high stability and activity in a broad pH spectrum . Biotechnol Lett 2017 ; 39 : 577 – 87 . Google Scholar Crossref Search ADS PubMed WorldCat Ekkers DM , Cretoiu MS, Kielak AMet al. . The great screen anomaly - a new frontier in product discovery through functional metagenomics . Appl Microbiol Biot 2012 ; 93 : 1005 – 20 . Google Scholar Crossref Search ADS WorldCat Erich S , Kuschel B, Schwarz Tet al. . Novel high-performance metagenome β-galactosidases for lactose hydrolysis in the dairy industry . J Biotechnol 2015 ; 210 : 27 – 37 . Google Scholar Crossref Search ADS PubMed WorldCat Faheem M , Martins-de-Sa D, Vidal JFet al. . Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome . Sci Rep 2016 ; 6 : 38031 . Google Scholar Crossref Search ADS PubMed WorldCat Fang Z , Li J, Wang Qet al. . A novel esterase from a marine metagenomic library exhibiting salt tolerance ability . J Microbiol Biotech 2014 ; 24 : 771 – 80 . Google Scholar Crossref Search ADS WorldCat Felczykowska A , Krajewska A, Zielińska Set al. . Sampling, metadata and DNA extraction - important steps in metagenomic studies . Acta Biochim Pol 2015 ; 62 : 151 – 60 . Google Scholar Crossref Search ADS PubMed WorldCat Ferrandi EE , Previdi A, Bassanini Iet al. . Novel thermostable amine transferases from hot spring metagenomes . Appl Microbiol Biot 2017 ; 101 : 4963 – 79 . Google Scholar Crossref Search ADS WorldCat Ferrandi EE , Sayer C, Isupov MNet al. . Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries . FEBS J 2015 ; 282 : 2879 – 94 . Google Scholar Crossref Search ADS PubMed WorldCat Ferrer M , Martínez-Martínez M, Bargiela Ret al. . Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends . Microb Biotechnol 2016 ; 9 : 22 – 34 . Google Scholar Crossref Search ADS PubMed WorldCat Fu L , He Y, Xu Fet al. . Characterization of a novel thermostable patatin-like protein from a Guaymas basin metagenomic library . Extremophiles 2015 ; 19 : 829 – 40 . Google Scholar Crossref Search ADS PubMed WorldCat Gabor EM , Alkema WB, Janssen DB. Quantifying the accessibility of the metagenome by random expression cloning techniques . Environ Microbiol 2004 ; 6 : 879 – 86 . Google Scholar Crossref Search ADS PubMed WorldCat Gaida SM , Sandoval NR, Nicholaou SAet al. . Expression of heterologous sigma factors enables functional screening of metagenomic and heterologous genomic libraries . Nat Commun 2015 ; 6 : 7045 . Google Scholar Crossref Search ADS PubMed WorldCat Gao G , Wang A, Gong BLet al. . A novel metagenome-derived gene cluster from termite hindgut: encoding phosphotransferase system components and high glucose tolerant glucosidase . Enzyme Microb Technol 2016a ; 84 : 24 – 31 . Google Scholar Crossref Search ADS WorldCat Gao W , Wu K, Chen Let al. . A novel esterase from a marine mud metagenomics library for biocatalytic synthesis of short-chain flavoresters . Microb Cell Fact 2016b ; 15 : 41 . Google Scholar Crossref Search ADS WorldCat Garg R , Srivastava R, Brahma Vet al. . Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome . Sci Rep 2016 ; 6 : 39634 . Google Scholar Crossref Search ADS PubMed WorldCat Gomes-Pepe ES , Machado Sierra EG, Pereira MRet al. . Bg10: a novel metagenomics alcohol-tolerant and glucose-stimulated GH1 β-glucosidase suitable for lactose-free milk preparation . PLoS One 2016 ; 11 : e0167932 . Google Scholar Crossref Search ADS PubMed WorldCat Grant S , Grant WD, Cowan DAet al. . Identification of eukaryotic open reading frames in metagenomics cDNA libraries made from environmental samples . Appl Environ Microb 2006 ; 72 : 435 – 43 . Google Scholar Crossref Search ADS WorldCat Gruninger RJ , Gong X, Forster RJet al. . Biochemical and kinetic characterization of the multifunctional β-glucosidase/β-xylosidase/α-arabinosidase, Bgxa1 . Appl Microbiol Biot 2014 ; 98 : 3003 – 12 . Google Scholar Crossref Search ADS WorldCat Handelsman J , Rondon MR, Brady SFet al. . Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products . Chem Biol 1998 ; 5 : R245 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat Hirst MB , Kita KN, Dawson SC. Uncultivated microbial eukaryotic diversity: a method to link ssu rRNA gene sequences with morphology . PLoS One 2011 ; 6 : e28158 . Google Scholar Crossref Search ADS PubMed WorldCat Hjort K , Presti I, Elväng Aet al. . Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics . Appl Microbiol Biot 2014 ; 98 : 2819 – 28 . Google Scholar Crossref Search ADS WorldCat Hu Y , Liu Y, Li Jet al. . Structural and functional analysis of a low-temperature-active alkaline esterase from South China sea marine sediment microbial metagenomic library . J Ind Microbiol Biot 2015 ; 42 : 1449 – 61 . Google Scholar Crossref Search ADS WorldCat Hua M , Zhao S, Zhang Let al. . Direct detection, cloning and characterization of a glucoside hydrolase from forest soil . Biotechnol Lett 2015 ; 37 : 1227 – 32 . Google Scholar Crossref Search ADS PubMed WorldCat Huang J , Huo YY, Ji Ret al. . Structural insight of a hormone sensitive lipase homologue Est22 . Sci Rep 2016 ; 6 : 28550 . Google Scholar Crossref Search ADS PubMed WorldCat Itoh N , Isotani K, Makino Yet al. . PCR-based amplification and heterologous expression of Pseudomonas alcohol dehydrogenase genes from the soil metagenome for biocatalysis . Enzyme Microb Technol 2014 ; 55 : 140 – 50 . Google Scholar Crossref Search ADS PubMed WorldCat Itoh N , Kariya S, Kurokawa J. Efficient PCR-based amplification of diverse alcohol dehydrogenase genes from metagenomes for improving biocatalysis: screening of gene-specific amplicons from metagenomes . Appl Environ Microb 2014 ; 80 : 6280 – 9 . Google Scholar Crossref Search ADS WorldCat Jeon JH , Lee HS, Lee JHet al. . A novel family VIII carboxylesterase hydrolyzing third- and fourth-generation cephalosporins . Springerplus 2016 ; 5 : 525 . Google Scholar Crossref Search ADS PubMed WorldCat Jordan DB , Braker JD, Wagschal Ket al. . Isolation and divalent-metal activation of a β-xylosidase, RUM630-BX . Enzyme Microb Technol 2016 ; 82 : 158 – 63 . Google Scholar Crossref Search ADS PubMed WorldCat Kanokratana P , Eurwilaichtr L, Pootanakit Ket al. . Identification of glycosyl hydrolase from a metagenomic library of microflora in sugarcane bagasse collection site and their cooperative action on cellulose degradation . J Biosci Bioeng 2015 ; 119 : 384 – 91 . Google Scholar Crossref Search ADS PubMed WorldCat Katz M , Hover BM, Brady SF. Culture-independent discovery of natural products from soil metagenomes . J Ind Microbiol Biot 2016 ; 43 : 129 – 41 . Google Scholar Crossref Search ADS WorldCat Katzke N , Knapp A, Loeschcke Aet al. . Novel tools for the functional expression of metagenomic DNA . Methods Mol Biol 2017 ; 1539 : 159 – 96 . Google Scholar Crossref Search ADS PubMed WorldCat Kellner H , Luis P, Portetelle Det al. . Screening of a soil metatranscriptomic library by functional complementation of Saccharomyces cerevisiae mutants . Microbiol Res 2011 ; 166 : 360 – 8 . Google Scholar Crossref Search ADS PubMed WorldCat Khan M , Kumar A. Computational modelling and protein-ligand interaction studies of SMlipA lipase cloned from forest metagenome . J Mol Graph Model 2016 ; 70 : 212 – 25 . Google Scholar Crossref Search ADS PubMed WorldCat Kim HJ , Jeong YS, Jung WKet al. . Characterization of novel family IV esterase and family I.3 lipase from an oil-polluted mud flat metagenome . Mol Biotechnol 2015 ; 57 : 781 – 92 . Google Scholar Crossref Search ADS PubMed WorldCat Kim NH , Park JH, Chung Eet al. . Characterization of a soil metagenome-derived gene encoding wax ester synthase . J Microbial Biotech 2016a ; 26 : 248 – 54 . Google Scholar Crossref Search ADS WorldCat Kim SY , Oh DB, Kwon O. Characterization of a lichenase isolated from soil metagenome . J Microbiol Biotech 2014 ; 24 : 1699 – 706 . Google Scholar Crossref Search ADS WorldCat Kim YJ , Kim H, Kim SHet al. . Improved metagenome screening efficiency by random insertion of T7 promoters . J Biotechnol 2016b ; 230 : 47 – 53 . Google Scholar Crossref Search ADS WorldCat Kimura N , Kamagata Y. A thermostable bilirubin-oxidizing enzyme from activated sludge isolated by a metagenomic approach . Microbes Environ 2016 ; 31 : 435 – 41 . Google Scholar Crossref Search ADS PubMed WorldCat Klippel B , Sahm K, Basner Aet al. . Carbohydrate-active enzymes identified by metagenomic analysis of deep-sea sediment bacteria . Extremophiles 2014 ; 18 : 853 – 63 . Google Scholar Crossref Search ADS PubMed WorldCat Kumar R , Banoth L, Banerjee UCet al. . Enantiomeric separation of pharamaceutically important drug intermediates using a metagenomic lipase and optimization of its large scale production . Int J Biol Macromol 2017 ; 95 : 995 – 1003 . Google Scholar Crossref Search ADS PubMed WorldCat Kumar S , Krishnani KK, Bhushan Bet al. . Metagenomics: retrospect and prospects in high throughput age . Biotechnol Res Int 2015 ; 2015 : 121735 . Google Scholar Crossref Search ADS PubMed WorldCat Lam KN , Charles TC. Strong spurious transcription likely contributes to DNA insert bias in typical metagenomic clone libraries . Microbiome 2015 ; 3 : 22 . Google Scholar Crossref Search ADS PubMed WorldCat Lee CM , Lee YS, Seo SHet al. . Screening and characterization of a novel cellulase gene from the gut microflora of Hermetia illucens using metagenomic library . J Microbiol Biotech 2014 ; 24 : 1196 – 206 . Google Scholar Crossref Search ADS WorldCat Lee DH , Choi SL, Rha Eet al. . A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments . BMC Biotechnol 2015 ; 15 : 1 . Google Scholar Crossref Search ADS PubMed WorldCat Lee HW , Jung WK, Kim YHet al. . Characterization of a novel alkaline family VIII esterase with S-enantiomer preference from a compost metagenomic library . J Microbiol Biotech 2016a ; 26 : 315 – 25 . Google Scholar Crossref Search ADS WorldCat Lee YS , Seo SH, Yoon SHet al. . Identification of a novel alkaline amylopullulanase from a gut metagenome of Hermetia illucens . Int J Biol Macromol 2016b ; 82 : 514 – 21 . Google Scholar Crossref Search ADS WorldCat Leis B , Angelov A, Mientus Met al. . Identification of novel esterase-active enzymes from hot environments by use of the host bacterium Thermus thermophilus . Front Microbiol 2015 ; 6 : 275 . Google Scholar Crossref Search ADS PubMed WorldCat Lezyk M , Jers C, Kjaerulff Let al. . Novel α-L-fucosidases from a soil metagenome for production of fucosydated human milk oligosaccharides . PLoS One 2016 ; 11 : e0147438 . Google Scholar Crossref Search ADS PubMed WorldCat Li L , Li G, Cao LCet al. . Characterization of the cross-linked enzyme aggregates of a novel β-galactosidase, a potential catalyst for the synthesis of galacto-oligosaccharides . J Agr Food Chem 2015 ; 63 : 894 – 901 . Google Scholar Crossref Search ADS WorldCat Li PY , Ji P, Li CYet al. . Structural basis for dimerization and catalysis of a novel esterase from the GTSAG motif subfamily of the bacterial hormone-sensitive lipase family . J Biol Chem 2014a ; 289 : 19031 – 41 . Google Scholar Crossref Search ADS WorldCat Li Y , Liu N, Yang Het al. . Cloning and characterization of a new β-glucosidase from a metagenomic library of rumen of cattle feeding with Miscanthus sinensis . BMC Biotechnol 2014b ; 2 : 14 – 85 . OpenURL Placeholder Text WorldCat Liebl W , Angelov A, Juergensen Jet al. . Alternative hosts for functional (meta)genome analysis . Appl Microbiol Biot 2014 ; 98 : 8099 – 109 . Google Scholar Crossref Search ADS WorldCat Liu J , Jia Z, Li Set al. . Identification and characterization of a chitin deacetylase from a metagenomic library of deep-sea sediments of the Arctic Ocean . Gene 2016 ; 590 : 79 – 84 . Google Scholar Crossref Search ADS PubMed WorldCat Liu Y , Yan Q, Yang Set al. . Novel protease-resistant exochitinase (Echi47) from pig fecal environment DNA with application potentials in the food and feed industries . J Agr Food Chem 2015a ; 63 : 6262 – 70 . Google Scholar Crossref Search ADS WorldCat Liu Z , Zhao C, Deng Yet al. . Characterization of a thermostable recombinant β-galactosidase from a thermophilic anaerobic bacterial consortium YTY-70 . Biotechnol Biotec Eq 2015b ; 29 : 547 – 54 . Google Scholar Crossref Search ADS WorldCat Loaces I , Amarelle V, Muñoz-Gutierrez Iet al. . Improved ethanol production from biomass by a rumen metagenomic DNA fragment expressed in Escherichia coli MS04 during fermentation . Appl Microbiol Biot 2015 ; 99 : 9049 – 60 . Google Scholar Crossref Search ADS WorldCat Lombard N , Prestat E, van Elsas JDet al. . Soil-specific limitations for access and analysis of soil microbial communities by metagenomics . FEMS Microbiol Ecol 2011 ; 78 : 31 – 49 . Google Scholar Crossref Search ADS PubMed WorldCat López-López O , Cerdán ME, González Siso MI. New extremophilic lipases and esterases from metagenomics . Curr Protein Pept Sci 2014 ; 15 : 445 – 55 . Google Scholar Crossref Search ADS PubMed WorldCat López-López O , Knapik K, Cerdán MEet al. . Metagenomics of an alkaline hot spring in Galicia (Spain): microbial diversity analysis and screening for novel lipolytic enzymes . Front Microbiol 2015 ; 6 : 1291 . Google Scholar Crossref Search ADS PubMed WorldCat Lorenz P , Eck J. Metagenomics and industrial applications . Nat Rev Microbiol 2005 ; 3 : 510 – 16 . Google Scholar Crossref Search ADS PubMed WorldCat Maester TC , Pereira MR, Machado Sierra EGet al. . Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications . Appl Microbiol Biot 2016 ; 100 : 5815 – 27 . Google Scholar Crossref Search ADS WorldCat Magnuson JK , Lasure LL. Fungal Diversity in Soils As Assessed by Direct Culture and Molecular Techniques . Salt Lake : Abstract from the 102nd General Meeting of the American Society for Microbiology . 2002 , 19 – 23 . Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC Mai Z , Su H, Yang Jet al. . Cloning and characterization of a novel GH44 family endoglucanase from mangrove soil metagenomic library . Biotechnol Lett 2014 ; 36 : 1701 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat Mai Z , Su H, Zhang S. Isolation and characterization of a glycosyl hydrolase family 16 β-agarase from a mangrove soil metagenomic library . Int J Mol Sci 2016 ; 17 : E1360 . OpenURL Placeholder Text WorldCat Mair P , Gielen F, Hollfelder F. Exploring sequence space in search of functional enzymes using microfluidic droplets . Curr Opin Chem Biol 2017 ; 37 : 137 – 44 . Google Scholar Crossref Search ADS PubMed WorldCat Martin M , Biver S, Steels Set al. . Identification and characterization of a halotolerant, cold-active marine endo-β-1,4-glucanase by using functional metagenomics of seaweed-associated microbiota . Appl Environ Microb 2014 ; 80 : 4958 – 67 . Google Scholar Crossref Search ADS WorldCat Martini VP , Glogauer A, Müller-Santos Met al. . First co-expression of a lipase and its specific foldase obtained by metagenomics . Microb Cell Fact 2014 ; 13 : 171 . Google Scholar Crossref Search ADS PubMed WorldCat Maruthamuthu M , Jiménez DJ, Stevens Pet al. . A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes . BMC Genomics 2016 ; 17 : 86 . Google Scholar Crossref Search ADS PubMed WorldCat Masuch T , Kusnezowa A, Nilewski Set al. . A combined bioinformatics and functional metagenomics approach to discovering lipolytic biocatalysts . Front Microbiol 2015 ; 6 : 1110 . Google Scholar Crossref Search ADS PubMed WorldCat Matsuzawa T , Kaneko S, Yaoi K. Screening, identification, and characterization of a GH43 family β-xylosidase/α-arabinofuranosidase from a compost microbial metagenome . Appl Microbiol Biot 2015 ; 99 : 8943 – 54 . Google Scholar Crossref Search ADS WorldCat Matsuzawa T , Kimura N, Suenaga Het al. . Screening, identification, and characterization of α-xylosidase from a soil metagenome . J Biosci Bioeng 2016 ; 122 : 393 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat Matsuzawa T , Yaoi K. Screening, identification, and characterization of a novel saccharide-stimulated β-glycosidase from a soil metagenomic library . Appl Microbiol Biot 2017 ; 101 : 633 – 46 . Google Scholar Crossref Search ADS WorldCat Meneses C , Silva B, Medeiros Bet al. . A metagenomic advance for the cloning and characterization of a cellulase from red rice crop residues . Molecules 2016 ; 21 : E831 . OpenURL Placeholder Text WorldCat Milshteyn A , Schneider JS, Brady SF. Mining the metabiome: identifying novel natural products from microbial communities . Chem Biol 2014 ; 21 : 1211 – 23 . Google Scholar Crossref Search ADS PubMed WorldCat Mirete S , Morgante V, Gonzàlez-Pastor JE. Functional metagenomics of extreme environments . Curr Opin Biotechnol 2016 ; 38 : 143 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat Montella S , Amore A, Faraco V. Metagenomics for the development of new biocatalysts to advance lignocellulose saccharification for bioeconomic development . Crit Rev Biotechnol 2016 ; 36 : 998 – 1009 . Google Scholar Crossref Search ADS PubMed WorldCat Mootapally CS , Nathani NM, Patel AKet al. . Mining of ruminant microbial phytase (RPHY1) from metagenomic data of Meshani buffalo breed: identification, gene cloning, and characterization . J Mol Microb Biotech 2016 ; 26 : 252 – 60 . Google Scholar Crossref Search ADS WorldCat Mori T , Kamei I, Hirai Het al. . Identification of novel glycosyl hydrolases with cellulolytic activity against crystalline cellulose from metagenomic libraries constructed from bacterial enrichment cultures . Springerplus 2014 ; 3 : 365 . Google Scholar Crossref Search ADS PubMed WorldCat Morris LS , Marchesi JR. Current functional metagenomic approaches only expand the existing protease sequence space, but does not presently add any novelty to it . Curr Microbiol 2015 ; 70 : 19 – 26 . Google Scholar Crossref Search ADS PubMed WorldCat Müller CA , Perz V, Provasnek Cet al. . Discovery of polyesterases from moss-associated microorganisms . Appl Environ Microb 2017 ; 83 : e02641-16 . OpenURL Placeholder Text WorldCat Nagayama H , Sugawara T, Endo Ret al. . Isolation of oxygenase genes for indigo-forming activity from an artificially polluted soil metagenome by functional screening using Pseudomonas putida strains as hosts . Appl Microbiol Biot 2015 ; 99 : 4453 – 70 . Google Scholar Crossref Search ADS WorldCat Nyffenegger C , Nordvang RT, Zeuner Bet al. . Backbone structures in human milk oligosaccharides: trans-glycosylation by metagenomic β-N-acetylhexosaminidases . Appl Microbiol Biot 2015 ; 99 : 7997 – 8009 . Google Scholar Crossref Search ADS WorldCat O’Mahony MM , Henneberger R, Selvin Jet al. . Inhibition of the growth of Bacillus subtilis DSM10 by a newly discovered antibacterial protein from the soil metagenome . Bioengineered 2015 ; 6 : 89 – 98 . Google Scholar Crossref Search ADS PubMed WorldCat Okano H , Hong X, Kanaya Eet al. . Structural and biochemical characterization of a metagenome-derived esterase with a long N-Terminal extension . Protein Sci 2015a ; 24 : 93 – 104 . Google Scholar Crossref Search ADS WorldCat Okano H , Kanaya E, Ozaki Met al. . Structure, activity, and stability of metagenome-derived glycoside hydrolase family 9 endoglucanase with an N-terminal Ig-like domain . Protein Sci 2015b ; 24 : 408 – 19 . Google Scholar Crossref Search ADS WorldCat Okano H , Ozaki M, Kanaya Eet al. . Structure and stability of metagenome-derived glycoside hydrolase family 12 cellulase (LC-CelA) a homolog of Cel12A from Rhodothermus marinus . FEBS Open Bio 2014 ; 4 : 936 – 46 . Google Scholar Crossref Search ADS PubMed WorldCat Ou Q , Liu Y, Deng Jet al. . A novel d-amino acid oxidase from a contaminated agricultural soil metagenome and its characterization . Anton Leeuw 2015 ; 107 : 1615 – 23 . Google Scholar Crossref Search ADS WorldCat Patel AB , Patel AK, Shah MPet al. . Isolation and characterization of novel multifunctional recombinant family 26 glycoside hydrolase from Mehsani buffalo rumen metagenome . Biotechnol Appl Biochem 2016 ; 63 : 257 – 65 . Google Scholar Crossref Search ADS PubMed WorldCat Peng Q , Wang X, Shang Met al. . Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production . Microb Cell Fact 2014 ; 13 : 1 . Google Scholar Crossref Search ADS PubMed WorldCat Pereira MR , Mercaldi GF, Maester TCet al. . Est16, a new esterase isolated from a metagenomic library of a microbial consortium specializing in diesel oil degradation . PLoS One 2015 ; 10 : e0133723 . Google Scholar Crossref Search ADS PubMed WorldCat Petrovskaya LE , Novototskaya-Vlasova KA, Spirina EVet al. . Expression and characterization of a new esterase with GCSAG motif from a permafrost metagenomic library . FEMS Microbiol Ecol 2016 ; 92 : fiw046 . Google Scholar Crossref Search ADS PubMed WorldCat Pimentel AC , Ematsu GC, Liberato MVet al. . Biochemical and biophysical properties of a metagenome-derived GH5 endoglucanase displaying an unconventional domain architecture . Int J Biol Macromol 2017 ; 99 : 384 – 93 . Google Scholar Crossref Search ADS PubMed WorldCat Pindi PK , Srinath RR, Pavankumar TL. Isolation and characterization of novel lipase gene LipHim1 from the DNA isolated from soil samples . J Microbial 2014 ; 52 : 384 – 8 . Google Scholar Crossref Search ADS WorldCat Placido A , Hai T, Ferrer Met al. . Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase . Appl Microbiol Biot 2015 ; 99 : 10031 – 46 . Google Scholar Crossref Search ADS WorldCat Pooja S , Pushpanathan M, Yajashree Set al. . Identification of periplasmic α-amylase from cow dung metagenome by product induced gene expression profiling (Pigex) . Indian J Microbiol 2015 ; 55 : 57 – 65 . Google Scholar Crossref Search ADS WorldCat Popovic A , Hai T, Tchigvintsev Aet al. . Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families . Sci Rep 2017 ; 7 : 44103 . Google Scholar Crossref Search ADS PubMed WorldCat Preeti A , Hemalatha D, Rajendhran Jet al. . Cloning, expression and characterization of a lipase encoding gene from human oral metagenome . Indian J Microbiol 2014 ; 54 : 284 – 92 . Google Scholar Crossref Search ADS PubMed WorldCat Privé F , Newbold CJ, Kaderbhai NNet al. . Isolation and characterization of novel lipases/esterases from a bovine rumen metagenome . Appl Microbiol Biot 2015 ; 99 : 5475 – 85 . Google Scholar Crossref Search ADS WorldCat Qian C , Liu N, Yan Xet al. . Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability . Enzyme Microb Technol 2015 ; 70 : 35 – 41 . Google Scholar Crossref Search ADS PubMed WorldCat Rabausch U , Ilmberger N, Streit WR. The metagenome-derived enzyme RhaB opens a new subclass of bacterial B type α-L-rhamnosidases . J Biotechnol 2014 ; 191 : 38 – 45 . Google Scholar Crossref Search ADS PubMed WorldCat Rabausch U , Juergensen J, Ilmberger Net al. . Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes . Appl Environ Microb 2013 ; 79 : 4551 – 63 . Google Scholar Crossref Search ADS WorldCat Ramírez-Escudero M , Del Pozo MV, Marín-Navarro Jet al. . Structural and functional characterization of a ruminal β-glycosidase defines a novel subfamily of glycoside hydrolase family 3 with permuted domain topology . J Biol Chem 2016 ; 291 : 24200 – 14 . Google Scholar Crossref Search ADS PubMed WorldCat Rashamuse K , Ronneburg T, Sanyika Wet al. . Metagenomic mining of feruloyl esterases from termite enteric flora . Appl Microbiol Biot 2014 ; 98 : 727 – 37 . Google Scholar Crossref Search ADS WorldCat Rashamuse K , Sanyika Tendai W, Mathiba Ket al. . Metagenomic mining of glycoside hydrolases from the hindgut bacterial symbionts of a termite (Trinervitermes trinervoides) and the characterization of a multimodular β-1,4-xylanase (GH11) . Biotechnol Appl Biochem 2017 ; 64 : 174 – 86 . Google Scholar Crossref Search ADS PubMed WorldCat Rodríguez MC , Loaces I, Amarelle Vet al. . Est10: a novel alkaline esterase isolated from bovine rumen belonging to the new family XV of lipolytic enzymes . PLoS One 2015 ; 10 : e0126651 . Google Scholar Crossref Search ADS PubMed WorldCat Sae-Lee R , Boonmee A. Newly derived GH43 gene from compost metagenome showing dual xylanase and cellulase activities . Folia Microbiol (Praha) 2014 ; 59 : 409 – 17 . Google Scholar Crossref Search ADS PubMed WorldCat Sahoo RK , Kumar M, Sukla LBet al. . Bioprospecting hot spring metagenome: lipase for the production of biodiesel . Environ Sci Pollut R 2017 ; 24 : 3802 – 9 . Google Scholar Crossref Search ADS WorldCat Sánchez-Reyez A , Batista-García RA, Valdés-García Get al. . A family 13 thioesterase isolated from an activated sludge metagenome: insight into aromatic compounds metabolism . Proteins 2017 ; 85 : 1222 – 37 . Google Scholar Crossref Search ADS PubMed WorldCat Sathya TA , Jacob AM, Khan M. Cloning and molecular modelling of pectin degrading glycosyl hydrolase of family 28 from soil metagenomic library . Mol Biol Rep 2014 ; 41 : 2645 – 56 . Google Scholar Crossref Search ADS PubMed WorldCat Sayed A , Ghazy MA, Ferreira AJet al. . A novel mercuric reductase from the unique deep brine environment of Atlantis II in the Red Sea . J Biol Chem 2014 ; 289 : 1675 – 87 . Google Scholar Crossref Search ADS PubMed WorldCat Schröder C , Elleuche S, Blank Set al. . Characterization of a heat-active archaeal β-glucosidase from a hydrothermal spring metagenome . Enzyme Microb Technol 2014 ; 57 : 48 – 54 . Google Scholar Crossref Search ADS PubMed WorldCat Schröder C , Janzer VA, Schirrmacher Get al. . Characterization of two novel heat-active α-galactosidases from thermophilic bacteria . Extremophiles 2017 ; 21 : 85 – 94 . Google Scholar Crossref Search ADS PubMed WorldCat Seo S , Lee YS, Yoon SHet al. . Characterization of a novel cold-active esterase isolated from swamp sediment metagenome . World J Microb Biot 2014 ; 30 : 879 – 86 . Google Scholar Crossref Search ADS WorldCat Silva-Portela RC , Carvalho FM, Pereira CPet al. . ExoMeg1: a new exonuclease from metagenomic library . Sci Rep 2016 ; 6 : 19712 . Google Scholar Crossref Search ADS PubMed WorldCat Singh DN , Gupta A, Singh VSet al. . Identification and characterization of a novel phosphodiesterase from the metagenome of an Indian coalbed . PLoS One 2015a ; 10 : e0118075 . Google Scholar Crossref Search ADS WorldCat Singh R , Chopra C, Gupta VKet al. . Purification and characterization of CHpro1, a thermotolerant, alkali-stable and oxidation-resisting protease of Chumathang hotspring . Sci Bull 2015b ; 60 : 1252 . Google Scholar Crossref Search ADS WorldCat Sonbol SA , Ferreira AJ, Siam R. Red Sea Atlantis II brine pool nitrilase with unique thermostability profile and heavy metal tolerance . BMC Biotechnol 2016 ; 16 : 14 . Google Scholar Crossref Search ADS PubMed WorldCat Song YH , Lee KT, Baek JYet al. . Isolation and characterization of a novel glycosyl hydrolase family 74 (GH74) cellulase from the blackgoat rumen metagenomic library . Folia Microbiol (Praha) 2017 ; 62 : 175 – 81 . Google Scholar Crossref Search ADS PubMed WorldCat Speda J , Jonsson BH, Carlsson Uet al. . Metaproteomics-guided selection of targeted enzymes for bioprospecting of mixed microbial communities . Biotechnol Biofuels 2017 ; 10 : 128 . Google Scholar Crossref Search ADS PubMed WorldCat Stöveken J , Singh R, Kolkenbrock Set al. . Successful heterologous expression of a novel chitinase identified by sequence analyses of the metagenome from a chitin-enriched soil sample . J Biotechnol 2015 ; 201 : 60 – 8 . Google Scholar Crossref Search ADS PubMed WorldCat Strachan CR , Singh R, Vanlnsberghe Det al. . Metagenomic scaffold enable combinatorial lignin transformation . P Natl Acad Sci USA 2014 ; 111 : 10143 – 8 . Google Scholar Crossref Search ADS WorldCat Stroobants A , Portetelle D, Vandenbol M. New carbohydrate-active enzymes identified by screening two metagenomic libraries derived from the soil of a winter wheat field . J Appl Microbiol 2014 ; 117 : 1045 – 55 . Google Scholar Crossref Search ADS PubMed WorldCat Su J , Zhang F, Sun Wet al. . A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp . World J Microb Biot 2015 ; 31 : 1093 – 102 . Google Scholar Crossref Search ADS WorldCat Sudan AK , Vakhlu J. Isolation and in silico characterization of novel esterase gene with β-lactamase fold isolated from metagenome of north western Himalayas . 3 Biotech 2015 ; 5 : 553 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat Sukul P , Schäkermann S, Bandow JEet al. . Simple discovery of bacterial biocatalysts from environmental samples through functional metaproteomics . Microbiome 2017 ; 5 : 28 . Google Scholar Crossref Search ADS PubMed WorldCat Sun MZ , Zheng HC, Meng LCet al. . Direct cloning, expression of a thermostable xylanase gene from the metagenomic DNA of cow dung compost and enzymatic production of xylooligosaccharides from corncob . Biotechnol Lett 2015 ; 37 : 1877 – 86 . Google Scholar Crossref Search ADS PubMed WorldCat Takasaki K , Miura T, Kanno Met al. . Discovery of glycoside hydrolase enzymes in an avicel-adapted forest soil fungal community by a metatranscriptomic approach . PLoS One 2013 ; 8 : e55485 . Google Scholar Crossref Search ADS PubMed WorldCat Tan H , Mooij MJ, Barret Met al. . Identification of novel phytase genes from an agricultural soil-derived metagenome . J Microbiol Biotech 2014 ; 24 : 113 – 8 . Google Scholar Crossref Search ADS WorldCat Tan H , Wu X, Xie Let al. . Cloning, overexpression, and characterization of a metagenome-derived phytase with optimal activity at low pH . J Microbiol Biotech 2015 ; 25 : 930 – 5 . Google Scholar Crossref Search ADS WorldCat Tan H , Wu X, Xie Let al. . A novel phytase derived from an acidic peat-soil microbiome showing high stability under acidic plus pepsin conditions . J Mol Microb Biotech 2016a ; 26 : 291 – 301 . Google Scholar Crossref Search ADS WorldCat Tan H , Wu X, Xie Let al. . Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome . Appl Microbiol Biot 2016b ; 100 : 2225 – 41 . Google Scholar Crossref Search ADS WorldCat Tchigvintsev A , Tran H, Popovic Aet al. . The environment shapes microbial enzymes: five cold-active and salt-resistance carboxylesterases from marine metagenomes . Appl Microbiol Biot 2015 ; 99 : 2165 – 78 . Google Scholar Crossref Search ADS WorldCat Thimoteo SS , Glogauer A, Faoro Het al. . A broad pH range and processive chitinase from a metagenomic library . Braz J Med Biol Res 2017 ; 50 : e5658 . Google Scholar Crossref Search ADS PubMed WorldCat Uchiyama T , Abe T, Ikemura Tet al. . Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes . Nat Biotechnol 2005 ; 23 : 88 – 93 . Google Scholar Crossref Search ADS PubMed WorldCat Uchiyama T , Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomics libraries for enzyme-encoding genes . Appl Environ Microb 2010 ; 76 : 7029 – 35 . Google Scholar Crossref Search ADS WorldCat Uchiyama T , Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome . Front Microbiol 2015 ; 6 : 548 . Google Scholar Crossref Search ADS PubMed WorldCat Ufarté L , Bozonnet S, Laville Eet al. . Functional metagenomics: construction and high-throughput screening of fosmid libraries for discovery of novel carbohydrate-active enzymes . Methods Mol Biol 2016 ; 1399 : 257 – 71 . Google Scholar Crossref Search ADS PubMed WorldCat Verastegui Y , Cheng J, Engel Ket al. . Multisubstrate isotope labelling and metagenomic analysis of active soil bacterial communities . MBio 2014 ; 5 : e01157 – 14 . Google Scholar Crossref Search ADS PubMed WorldCat Vester JK , Glaring MA, Stougaard P. Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing . Microb Cell Fact 2014 ; 13 : 72 . Google Scholar Crossref Search ADS PubMed WorldCat Wang M , Lai GL, Nie Yet al. . Synergistic function of four novel thermostable glycoside hydrolases from a long-term enriched thermophilic methanogenic digester . Front Microbiol 2015a ; 6 : 509 . OpenURL Placeholder Text WorldCat Wang Q , Luo Y, He Bet al. . Characterization of a novel xylanase gene from rumen content of Hu sheep . Appl Biochem Biotech 2015b ; 177 : 1424 – 36 . Google Scholar Crossref Search ADS WorldCat Wang SD , Guo GS, Li Let al. . Identification and characterization of an unusual glycosyltransferase-like enzyme with β-galactosidase activity from a soil metagenomic library . Enzyme Microb Technol 2014 ; 57 : 26 – 35 . Google Scholar Crossref Search ADS PubMed WorldCat Wang Y , Ren H, Pan Het al. . Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase . J Hazard Mater 2015c ; 286 : 269 – 75 . Google Scholar Crossref Search ADS WorldCat Wasaki J , Taguchi H, Senoura Tet al. . Identification and distribution of cellobiose 2-epimerase genes by a PCR-based metagenomic approach . Appl Microbiol Biot 2015 ; 99 : 4287 – 95 . Google Scholar Crossref Search ADS WorldCat Wei Y , Zhou H, Zhang Jet al. . Insight into dominant cellulolytic bacteria from two biogas digesters and their glycoside hydrolase genes . PLoS One 2015 ; 10 : e0129921 . Google Scholar Crossref Search ADS PubMed WorldCat Williamson LL , Borlee BR, Schloss PDet al. . Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing sensor . Appl Environ Microb 2005 ; 71 : 6335 – 44 . Google Scholar Crossref Search ADS WorldCat Wilmes P , Heintz-Buschart A, Bond PL. A decade of metaproteomics: where we stand and what the future holds . Proteomics 2015 ; 15 : 3409 – 17 . Google Scholar Crossref Search ADS PubMed WorldCat Xiang L , Li A, Tian Cet al. . Identification and characterization of a new acid-stable endoglucanase from a metagenomic library . Protein Expres Purif 2014 ; 102 : 20 – 6 . Google Scholar Crossref Search ADS WorldCat Xing MN , Zhang XZ, Huang H. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis . Biotechnol Adv 2012 ; 304 : 920 – 9 . Google Scholar Crossref Search ADS WorldCat Xu B , Yang F, Xiong Cet al. . Cloning and characterization of a novel α-amylase from a fecal microbial metagenome . J Microbiol Biot 2014 ; 24 : 447 – 52 . Google Scholar Crossref Search ADS WorldCat Yan W , Li F, Wang Let al. . Discovery and characterization of a novel lipase with transesterification activity from hot spring metagenomic library . Biotechnol Rep (Amst) 2017 ; 14 : 27 – 33 . Google Scholar Crossref Search ADS PubMed WorldCat Yang C , Xia Y, Qu Het al. . Discovery of new cellulases from the metagenome by a metagenomics-guided strategy . Biotechnol Biofuels 2016 ; 9 : 138 . Google Scholar Crossref Search ADS PubMed WorldCat Zarafeta D , Moschidi D, Ladoukakis Eet al. . Metagenomic mining for thermostable esterolytic enzymes: uncovers a new family of bacterial esterases . Sci Rep 2016 ; 6 : 38886 . Google Scholar Crossref Search ADS PubMed WorldCat Zhang M , Liu N, Qian Cet al. . Phylogenetic and functional analysis of gut microbiota of a fungus-growing higher termite: Bacteroidetes from higher termites are a rich source of β-glucosidase genes . Microb Ecol 2014a ; 68 : 416 – 25 . Google Scholar Crossref Search ADS WorldCat Zhang Q , Xu H, Zhao Jet al. . Expression and characterization of a thermostable penicillin G acylase from an environmental metagenomics library . Biotechnol Lett 2014b ; 36 : 617 – 25 . Google Scholar Crossref Search ADS WorldCat Zhang Y , Hao J, Zhang YQet al. . Identification and characterization of a novel salt-tolerant esterase from the deep-sea sediment of the South China sea . Front Microbiol 2017 ; 8 : 441 . Google Scholar PubMed OpenURL Placeholder Text WorldCat Zhao C , Chu Y, Li Yet al. . High-throughput pyrosequencing used for the discovery of a novel cellulase from a thermophilic cellulose-degrading microbial consortium . Biotechnol Lett 2017 ; 39 : 123 – 31 . Google Scholar Crossref Search ADS PubMed WorldCat Zhou Y , Wang X, Wei Wet al. . A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities . Biotechnol Biofuels 2016 ; 9 : 36 . Google Scholar Crossref Search ADS PubMed WorldCat Zottig X , Meddeb-Mouelhi F, Beauregard M. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B . Anal Biochem 2016 ; 496 : 25 – 9 . Google Scholar Crossref Search ADS PubMed WorldCat © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com TI - Metagenomics: novel enzymes from non-culturable microbes JF - FEMS Microbiology Letters DO - 10.1093/femsle/fnx211 DA - 2017-11-15 UR - https://www.deepdyve.com/lp/oxford-university-press/metagenomics-novel-enzymes-from-non-culturable-microbes-CvsR4VjNB3 VL - 364 IS - 21 DP - DeepDyve ER -