TY - JOUR AU - Wilkinson, B. H. P. AB - ABSTRACT The objective of this study was to evaluate the effect of dietary manipulations on the fatty acid composition, Se content, and vitamin E content of pork. Sixty Duroc-cross gilts were randomly allocated at weaning to 1 of 4 dietary treatment groups (n = 15 per group). The 4 experimental diets were based on animal plus plant components or plant components only, with or without the inclusion of a dietary supplement (0.614%) containing CLA, Se, and vitamin E. The growth performance to approximately 100 kg of BW was similar with diets containing animal plus plant components or only plant components. Growth was also similar when either of these diets included the supplement. Inclusion of the supplement led to expected increases in Se and vitamin E contents (P < 0.001) of the LM. The differences found in the fatty acid profile of the lipid in LM, loin subcutaneous fat, and the belly cut (pork belly) between the groups with and without animal components in their diets largely reflected differences in the diet composition. Inclusion of the supplement led to greater CLA contents in all 3 tissues (P < 0.001), and also to lower contents of oleic acid (P < 0.001) and greater contents of stearic acid (P < 0.05), possibly due to an inhibition of stearoyl-CoA desaturase enzyme. The supplement also led to an increase in LM intramuscular fat (P < 0.05), but did not affect P2 fat depths (65 mm lateral to the midline of the spine at the last rib; mean depth of 11.8 mm). It is concluded that changing from a part animal component diet to an all plant diet will not change the growth performance of pigs but changes in the fatty acid profile of pork are likely to occur. It is further concluded that the nutritional value of pork may be successfully enhanced by simultaneously supplementing the diet with CLA, selenium, and vitamin E. INTRODUCTION Consumers are becoming increasingly aware of, and concerned about, the composition of food items both in terms of the nutrients present (Verbeke et al., 1999), and bioactive non-nutritive component that confer benefits for health and well-being (Pennington, 2002). For pork, many studies have shown that diet modifications can lead to changes in the composition of both the lean and fat portions in term of PUFA (Raes et al., 2004; Teye et al., 2006), CLA (Ostrowska et al., 2003), selenium (Mahan et al., 1999; Wolter et al., 1999), and vitamin E (Jensen et al., 1997). Generally, the degrees of such changes have been demonstrated in separate experiments, but the feasibility of achieving a range of desirable changes simultaneously in the same animal has seldom been evaluated. A recent trend in pig production in many countries, the aftermath of the bovine spongi-form encephalopathy (BSE) experience, has been to decrease the dietary content of animal-derived protein and increase protein from plant sources because of concerns about feeding animal proteins to animals (Taylor et al., 1995). However, few direct comparisons of the effects of plant versus animal protein in the diet on the performance of pigs or on the composition and quality of the pork produced (Shelton et al., 2001) have been conducted. The objectives of the current study were to evaluate the composition of the lean and fat portions of pork from female pigs that had received diets with or without animal protein, and with or without a supplement containing CLA, Se, and vitamin E. MATERIALS AND METHODS Animal Management and Dietary Treatments All animals were managed according to the Massey University Animal Ethics Committee and the New Zealand Code of Practice for the Care and Use of Animals for Scientific Purposes. Sixty-four female, Duroc × (Large White × Landrace) pigs from 16 litters, with 4 litters per sire, were obtained from a single commercial operation in the North Island of New Zealand. At weaning (approximately 23 d; mean BW of 6.7 ± 1.5 kg) the piglets were transported to the Massey University Pig Biology Research Unit. For the first 2 wk postweaning, all piglets received a commercial weaner diet (Table 1) on an ad libitum basis, with fresh water available at all times. After this acclimation period, the experimental diets (Table 1) were fed, with 1 piglet per litter randomly allocated to each of the 4 treatments. Pigs were initially housed in groups of 4 from different litters, and the experimental weaner diets were fed ad libitum for 4 wk to an average BW of 29.5 ± 4.6 kg. The pigs were then moved to grower-finisher facilities, where they were penned in groups of 8 (2 per treatment) and fed individually 0.11 kg of feed per kg of BW0.75 daily. Grower diets were fed until the pigs reached an average BW of 68.1 ± 2.2 kg, and the finisher diet was fed until an average slaughter weight of 101.9 ± 3.8 kg was achieved. Table 1. Ingredient composition on an as-fed basis for a commercial weaner diet and for diets during the weaner, grower, and finisher periods that contained animal and plant products (Animal) or plant products only (Plant)1     Growing period2      Weaner  Grower  Finisher  Ingredient, % of diet  Commercial weaner  Animal  Plant  Animal  Plant  Animal  Plant  Barley  20.00  31.55  29.83  55.30  65.21  63.38  67.35  Wheat  41.15  35.24  35.00  10.00  —  —  —  Wheat middlings  —  —  —  5.00  6.00  10.00  10.00  Soybean meal  5.00  5.00  —  6.50  16.45  6.50  14.00  Soy protein isolate  —  —  10.00  —  —  —  —  Blood meal  —  2.50  —  3.00  —  3.00  —  Fish meal  5.00  5.00  —  2.00  —  —  —  Meat and bone meal  5.0  5.00  —  13.00  —  13.00  —  Skim milk powder  18.00  10.00  —  —  —  —  —  Tallow  —  —  —  4.60  —  3.50  —  Peas  —  —  15.00  —  2.00  —  —  Soybean oil  4.00  4.00  3.50  —  3.00  —  1.90  Linseed oil  —  —  1.50  —  1.00  —  0.60  L-Lysine·HCl  0.15  0.06  0.40  —  0.35  —  0.35  DL -Methionine  0.20  0.15  0.25  0.15  0.22  0.16  0.22  L-Threonine  0.15  0.10  0.22  0.05  0.17  0.06  0.18  Dicalcium phosphate  1.00  1.00  3.00  —  3.20  —  3.20  Limestone  —  —  0.70  —  1.60  —  1.50  Sodium chloride  0.10  0.10  0.30  0.10  0.10  0.10  0.10  Disodium phosphate  —  —  —  —  0.40  —  0.30  Vitamin-mineral premix3  0.25  0.30  0.30  0.30  0.30  0.30  0.30      Growing period2      Weaner  Grower  Finisher  Ingredient, % of diet  Commercial weaner  Animal  Plant  Animal  Plant  Animal  Plant  Barley  20.00  31.55  29.83  55.30  65.21  63.38  67.35  Wheat  41.15  35.24  35.00  10.00  —  —  —  Wheat middlings  —  —  —  5.00  6.00  10.00  10.00  Soybean meal  5.00  5.00  —  6.50  16.45  6.50  14.00  Soy protein isolate  —  —  10.00  —  —  —  —  Blood meal  —  2.50  —  3.00  —  3.00  —  Fish meal  5.00  5.00  —  2.00  —  —  —  Meat and bone meal  5.0  5.00  —  13.00  —  13.00  —  Skim milk powder  18.00  10.00  —  —  —  —  —  Tallow  —  —  —  4.60  —  3.50  —  Peas  —  —  15.00  —  2.00  —  —  Soybean oil  4.00  4.00  3.50  —  3.00  —  1.90  Linseed oil  —  —  1.50  —  1.00  —  0.60  L-Lysine·HCl  0.15  0.06  0.40  —  0.35  —  0.35  DL -Methionine  0.20  0.15  0.25  0.15  0.22  0.16  0.22  L-Threonine  0.15  0.10  0.22  0.05  0.17  0.06  0.18  Dicalcium phosphate  1.00  1.00  3.00  —  3.20  —  3.20  Limestone  —  —  0.70  —  1.60  —  1.50  Sodium chloride  0.10  0.10  0.30  0.10  0.10  0.10  0.10  Disodium phosphate  —  —  —  —  0.40  —  0.30  Vitamin-mineral premix3  0.25  0.30  0.30  0.30  0.30  0.30  0.30  1 A dietary supplement (Sanovite) was added at 0.614% as fed in both the Animal and Plant diets for half of the pigs. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 The commercial weaner diet was fed for 2 wk postweaning; the experimental weaner diet was fed for a 4-wk period; grower diets were fed to an average BW of 68.1 ± 2.2 kg (n = 60 pigs), and finisher diets were fed to an average BW of 101.9 ± 3.7 kg (n = 60 pigs). 3 Vitamin-mineral premix provided the following (unit·kg−1 diet): 10,000 IU of vitamin A, 2,000 IU of vitamin D3, 50 mg of vitamin E, 2 mg of vitamin K, 1 mg of vitamin B1, 2.5 mg of vitamin B2, 2 mg of vitamin B6, 10 μg of vitamin B12, 10 mg of calcium pantothenate, 15 mg of niacin, 10 μg of biotin, 0.5 mg of folic acid, 100 mg of choline, 100 mg of iron (sulfate), 45 mg of manganese (sulfate), 0.5 mg of cobalt (chloride), 0.3 mg of selenium (sodium selenite), 120 mg of zinc (oxide), 25 mg of copper (carbonate), and 1 mg of iodine (potassium iodate). View Large Table 1. Ingredient composition on an as-fed basis for a commercial weaner diet and for diets during the weaner, grower, and finisher periods that contained animal and plant products (Animal) or plant products only (Plant)1     Growing period2      Weaner  Grower  Finisher  Ingredient, % of diet  Commercial weaner  Animal  Plant  Animal  Plant  Animal  Plant  Barley  20.00  31.55  29.83  55.30  65.21  63.38  67.35  Wheat  41.15  35.24  35.00  10.00  —  —  —  Wheat middlings  —  —  —  5.00  6.00  10.00  10.00  Soybean meal  5.00  5.00  —  6.50  16.45  6.50  14.00  Soy protein isolate  —  —  10.00  —  —  —  —  Blood meal  —  2.50  —  3.00  —  3.00  —  Fish meal  5.00  5.00  —  2.00  —  —  —  Meat and bone meal  5.0  5.00  —  13.00  —  13.00  —  Skim milk powder  18.00  10.00  —  —  —  —  —  Tallow  —  —  —  4.60  —  3.50  —  Peas  —  —  15.00  —  2.00  —  —  Soybean oil  4.00  4.00  3.50  —  3.00  —  1.90  Linseed oil  —  —  1.50  —  1.00  —  0.60  L-Lysine·HCl  0.15  0.06  0.40  —  0.35  —  0.35  DL -Methionine  0.20  0.15  0.25  0.15  0.22  0.16  0.22  L-Threonine  0.15  0.10  0.22  0.05  0.17  0.06  0.18  Dicalcium phosphate  1.00  1.00  3.00  —  3.20  —  3.20  Limestone  —  —  0.70  —  1.60  —  1.50  Sodium chloride  0.10  0.10  0.30  0.10  0.10  0.10  0.10  Disodium phosphate  —  —  —  —  0.40  —  0.30  Vitamin-mineral premix3  0.25  0.30  0.30  0.30  0.30  0.30  0.30      Growing period2      Weaner  Grower  Finisher  Ingredient, % of diet  Commercial weaner  Animal  Plant  Animal  Plant  Animal  Plant  Barley  20.00  31.55  29.83  55.30  65.21  63.38  67.35  Wheat  41.15  35.24  35.00  10.00  —  —  —  Wheat middlings  —  —  —  5.00  6.00  10.00  10.00  Soybean meal  5.00  5.00  —  6.50  16.45  6.50  14.00  Soy protein isolate  —  —  10.00  —  —  —  —  Blood meal  —  2.50  —  3.00  —  3.00  —  Fish meal  5.00  5.00  —  2.00  —  —  —  Meat and bone meal  5.0  5.00  —  13.00  —  13.00  —  Skim milk powder  18.00  10.00  —  —  —  —  —  Tallow  —  —  —  4.60  —  3.50  —  Peas  —  —  15.00  —  2.00  —  —  Soybean oil  4.00  4.00  3.50  —  3.00  —  1.90  Linseed oil  —  —  1.50  —  1.00  —  0.60  L-Lysine·HCl  0.15  0.06  0.40  —  0.35  —  0.35  DL -Methionine  0.20  0.15  0.25  0.15  0.22  0.16  0.22  L-Threonine  0.15  0.10  0.22  0.05  0.17  0.06  0.18  Dicalcium phosphate  1.00  1.00  3.00  —  3.20  —  3.20  Limestone  —  —  0.70  —  1.60  —  1.50  Sodium chloride  0.10  0.10  0.30  0.10  0.10  0.10  0.10  Disodium phosphate  —  —  —  —  0.40  —  0.30  Vitamin-mineral premix3  0.25  0.30  0.30  0.30  0.30  0.30  0.30  1 A dietary supplement (Sanovite) was added at 0.614% as fed in both the Animal and Plant diets for half of the pigs. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 The commercial weaner diet was fed for 2 wk postweaning; the experimental weaner diet was fed for a 4-wk period; grower diets were fed to an average BW of 68.1 ± 2.2 kg (n = 60 pigs), and finisher diets were fed to an average BW of 101.9 ± 3.7 kg (n = 60 pigs). 3 Vitamin-mineral premix provided the following (unit·kg−1 diet): 10,000 IU of vitamin A, 2,000 IU of vitamin D3, 50 mg of vitamin E, 2 mg of vitamin K, 1 mg of vitamin B1, 2.5 mg of vitamin B2, 2 mg of vitamin B6, 10 μg of vitamin B12, 10 mg of calcium pantothenate, 15 mg of niacin, 10 μg of biotin, 0.5 mg of folic acid, 100 mg of choline, 100 mg of iron (sulfate), 45 mg of manganese (sulfate), 0.5 mg of cobalt (chloride), 0.3 mg of selenium (sodium selenite), 120 mg of zinc (oxide), 25 mg of copper (carbonate), and 1 mg of iodine (potassium iodate). View Large The 4 dietary treatments were defined by diet base, either a combination of animal and plant feedstuffs or plant feedstuffs only, and according to the presence or absence of the nutritional supplement (Sanovite, 0.614% of the diet), which contained CLA and vitamin E (BASF, Auckland, New Zealand) and organic Se (Alltech Inc., Nicholasville, KY). The supplement was formulated based on information published in the literature and the product label recommendations. The supplement was first combined with the vitamin-mineral premix before being mixed with the remaining ingredients. The protein deposition potential of pig genotypes in New Zealand has been determined in the past, and the diets were formulated accordingly (Morel et al., 1993; Moughan et al., 2006). Digestible energy and digestible lysine for all diets were appropriate for New Zealand pig genotypes (Moughan et al., 2006). All other amino acids were in excess of the ideal balance (Baker and Chung, 1991), and the vitamin-mineral premix exceeded NRC (1998) requirements. Feed refusals were measured daily throughout the experiment, and BW was measured weekly. During the weaner phase, feed intake and growth efficiency were determined on a pen basis (n = 4), but were measured individually during the grower and finisher phases. Slaughter and Carcass Processing On the morning of each of 6 slaughter days, groups of 6 to 12 pigs (total n = 60) were delivered to a commercial processing plant. After a minimum of 1 h of lairage, the pigs were processed according to commercial standards, with the exception that each carcass was split and the head was removed after HCW was recorded. Each side was moved to the cooler (approximately 2°C), and at 45 min postmortem, the pH (Orion glass pH electrode, Model 8163; Orion Research Inc., Beverly, MA) and temperature (digital temperature probe; DeltaTRAK, Pleasanton, CA) were measured at a depth of approximately 20 mm in the left-side LM by making a cut at the P2 site (65 mm lateral to the midline of the spine at the last rib). After an overnight chilling period (approximately 18 h), a 300-mm length of the left side of each LM (including the associated bone, fat, and skin) was removed cranially from the last lumbar vertebra; in addition, all the left side semimembranosus muscle, and a sample of the belly cut (i.e., the pork belly) 150 mm in length and 100 mm in width from just below the lateral edge of the LM and caudal to the last rib were taken from each carcass. These 3 samples were vacuum-packed and transported under refrigeration to the Massey University meat laboratory, where they were processed at approximately 48 h postmortem. Subcutaneous fat thickness, including the skin, was measured at the midpoint of the superficial surface at the cranial end of each LM section, which corresponded to the site over the last rib. The area of a tracing of the LM made at this site was measured with a digital planimeter (KP-90NK, Placom, Koizumi, Tokyo, Japan). All visible external fat and connective tissue was removed from each LM sample, and a 150-mm length from the cranial end was minced twice through a 4.5-mm plate (Kenwood, MG 450 Mincer, Havant, Hampshire, UK). Approximately 100 g of the subcutaneous fat from the loin section was trimmed of skin and sliced into 2-to 3-mm-thick pieces. The belly cut sample was skinned, diced, and minced once through the 4.5-mm plate. The minced belly cut and LM and the sliced fat were stored frozen (approximately −20°C) until analysis. Laboratory Analyses A sample of each diet was analyzed for DM, CP (N × 6.25), and fat content (925.10, 968.06, and 991.36, respectively; AOAC, 2000). Selenium content in each diet was analyzed by an external laboratory (SpectraChem Analytical Ltd., Wellington, New Zealand) using the powder briquette/x-ray spectrometry method of Hunt and Kennedy (1992), with a minimum detection limit of 0.5 mg·kg−1. Vitamin E content in the diet samples was determined after saponification with ethanolic potassium hydroxide and extraction into light petroleum. After evaporation to remove the petroleum, the residue was dissolved in methanol and the vitamin E content of the solution was determined by HPLC according to ISO method 6867 (ISO, 2000). The fatty acid profile of each diet was determined after an initial fat extraction step with chloroform:methanol (2:1, vol/vol) according to the method of Folch et al. (1957). Approximately 20 mg of extracted fat was weighed into a screw-top tube with methyl pentadecanoate (Sigma, P6250, Sigma Chemical, St. Louis, MO) added as an internal standard. An alkaline transesterification was performed using 0.5 M sodium methoxide in anhydrous methanol at 50°C for 20 min (Shantha et al., 1993), and the methyl esters were extracted with hexane and dried over anhydrous sodium sulfate. The fatty acid composition was then determined by gas chromatography (Shimadzu GC-17A, capillary column Supelco SP-2560, 100-m × 0.25-mm i.d., and 0.2-μm film; Shimadzu Corporation, Kyoto, Japan) with a flame ionization detector, hydrogen as the carrier gas, and the following standards: Supelco 37 component fatty acid methyl esters mix, Supelco cis-11-vaccenic methyl ester, Supelco trans-11-vaccenic methyl ester (Sigma-Aldrich New Zealand, Auckland, New Zealand), methyl 9-cis, 11-trans-octadecadienoate, and methyl 10-trans, 12-cis-octadecadienoate (Matreya LLC, Pleasant Gap, PA). The analyzed diet composition is presented in Table 2. Table 2. Analyzed composition of the weaner, grower, and finisher diets that contained animal and plant products (Animal) or plant products only (Plant) with or without a dietary supplement (Suppl)1   Growing period    Weaner (11 to 30 kg of BW)  Grower (30 to 69 kg of BW)  Finisher (69 to 102 kg of BW)    Animal  Plant  Animal  Plant  Animal  Plant  Item  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Diet composition, as-fed basis      DM, %  90.8  90.9  91.2  91.2  90.1  91.2  90.1  90.0  91.0  90.9  90.6  90.2      CP, %  21.9  21.5  20.5  20.0  23.2  23.0  16.9  16.2  20.6  19.9  15.2  15.1      DE,2 MJ·kg−1  14.95  14.95  14.92  14.92  13.89  13.89  13.90  13.90  13.35  13.35  13.32  13.32      IDL:DE,3 g·MJ  0.77  0.77  0.77  0.77  0.71  0.71  0.71  0.71  0.69  0.69  0.68  0.68      Vitamin E, mg·kg−1  43.19  156.96  42.22  179.84  42.54  183.44  41.52  169.94  26.74  129.57  34.80  166.78      Selenium, mg·kg−1  nd6  0.6  nd  0.6  nd  0.5  nd  1.0  nd  0.6  nd  0.6      Fat, %  5.8  6.2  6.4  6.7  7.3  7.7  5.2  5.5  6.5  6.7  3.8  4.3      Fatty acids, %  4.51  5.13  5.38  5.17  5.75  6.06  4.45  4.28  5.27  5.33  3.28  3.86  Fatty acids (FA), % total fatty acids      Total saturated FA  22.08  22.46  16.48  16.30  49.02  49.68  17.07  17.10  48.17  46.26  19.27  18.93      Total monounsaturated FA  19.78  19.43  17.05  17.57  27.82  29.23  16.46  16.61  31.71  29.84  15.39  15.91      CLA, C18:2-cis-9, trans-11  0.06  0.76  0.00  0.55  0.61  1.40  0.01  0.71  0.57  1.23  0.01  1.00      CLA, C18:2-trans-10, cis-12  0.00  0.63  0.00  0.50  0.04  0.69  0.00  0.67  0.01  0.75  0.01  0.92      C18:3-cis Linolenic  6.47  5.77  19.74  19.57  3.56  3.11  18.12  17.36  2.87  3.01  16.20  15.20      C20:5-cis EPA4  1.08  1.05  0.02  0.01  0.44  0.43  0.00  0.02  0.13  0.10  0.00  0.02      C22:6-cis DHA5  2.68  2.86  0.01  0.05  0.92  0.99  0.03  0.04  0.08  0.09  0.02  0.05      Total polyunsaturated FA  58.14  58.11  66.47  66.13  23.16  21.06  66.47  66.29  20.12  23.90  65.33  65.17      PUFA:SFA ratio  2.63  2.59  4.03  4.06  0.47  0.42  3.89  3.88  0.42  0.52  3.39  3.44      Linoleic:Linolenic ratio  7.15  7.86  2.34  2.30  4.78  4.47  2.64  2.72  5.57  6.04  3.00  3.13    Growing period    Weaner (11 to 30 kg of BW)  Grower (30 to 69 kg of BW)  Finisher (69 to 102 kg of BW)    Animal  Plant  Animal  Plant  Animal  Plant  Item  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Diet composition, as-fed basis      DM, %  90.8  90.9  91.2  91.2  90.1  91.2  90.1  90.0  91.0  90.9  90.6  90.2      CP, %  21.9  21.5  20.5  20.0  23.2  23.0  16.9  16.2  20.6  19.9  15.2  15.1      DE,2 MJ·kg−1  14.95  14.95  14.92  14.92  13.89  13.89  13.90  13.90  13.35  13.35  13.32  13.32      IDL:DE,3 g·MJ  0.77  0.77  0.77  0.77  0.71  0.71  0.71  0.71  0.69  0.69  0.68  0.68      Vitamin E, mg·kg−1  43.19  156.96  42.22  179.84  42.54  183.44  41.52  169.94  26.74  129.57  34.80  166.78      Selenium, mg·kg−1  nd6  0.6  nd  0.6  nd  0.5  nd  1.0  nd  0.6  nd  0.6      Fat, %  5.8  6.2  6.4  6.7  7.3  7.7  5.2  5.5  6.5  6.7  3.8  4.3      Fatty acids, %  4.51  5.13  5.38  5.17  5.75  6.06  4.45  4.28  5.27  5.33  3.28  3.86  Fatty acids (FA), % total fatty acids      Total saturated FA  22.08  22.46  16.48  16.30  49.02  49.68  17.07  17.10  48.17  46.26  19.27  18.93      Total monounsaturated FA  19.78  19.43  17.05  17.57  27.82  29.23  16.46  16.61  31.71  29.84  15.39  15.91      CLA, C18:2-cis-9, trans-11  0.06  0.76  0.00  0.55  0.61  1.40  0.01  0.71  0.57  1.23  0.01  1.00      CLA, C18:2-trans-10, cis-12  0.00  0.63  0.00  0.50  0.04  0.69  0.00  0.67  0.01  0.75  0.01  0.92      C18:3-cis Linolenic  6.47  5.77  19.74  19.57  3.56  3.11  18.12  17.36  2.87  3.01  16.20  15.20      C20:5-cis EPA4  1.08  1.05  0.02  0.01  0.44  0.43  0.00  0.02  0.13  0.10  0.00  0.02      C22:6-cis DHA5  2.68  2.86  0.01  0.05  0.92  0.99  0.03  0.04  0.08  0.09  0.02  0.05      Total polyunsaturated FA  58.14  58.11  66.47  66.13  23.16  21.06  66.47  66.29  20.12  23.90  65.33  65.17      PUFA:SFA ratio  2.63  2.59  4.03  4.06  0.47  0.42  3.89  3.88  0.42  0.52  3.39  3.44      Linoleic:Linolenic ratio  7.15  7.86  2.34  2.30  4.78  4.47  2.64  2.72  5.57  6.04  3.00  3.13  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 DE calculated from the dietary ingredients (Morel et al., 1999). 3 IDL = ileal digestible lysine, calculated based on the data of Morel et al. (1999). 4 EPA = eicosapentaenoic acid. 5 DHA = docosahexaenoic acid. 6 nd = not detectable. Based on the Se content of the premix and the supplement, the calculated concentration of Se in the nonsupplemented diet was 0.3 ppm and in the supplemented diet was 0.7 ppm. View Large Table 2. Analyzed composition of the weaner, grower, and finisher diets that contained animal and plant products (Animal) or plant products only (Plant) with or without a dietary supplement (Suppl)1   Growing period    Weaner (11 to 30 kg of BW)  Grower (30 to 69 kg of BW)  Finisher (69 to 102 kg of BW)    Animal  Plant  Animal  Plant  Animal  Plant  Item  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Diet composition, as-fed basis      DM, %  90.8  90.9  91.2  91.2  90.1  91.2  90.1  90.0  91.0  90.9  90.6  90.2      CP, %  21.9  21.5  20.5  20.0  23.2  23.0  16.9  16.2  20.6  19.9  15.2  15.1      DE,2 MJ·kg−1  14.95  14.95  14.92  14.92  13.89  13.89  13.90  13.90  13.35  13.35  13.32  13.32      IDL:DE,3 g·MJ  0.77  0.77  0.77  0.77  0.71  0.71  0.71  0.71  0.69  0.69  0.68  0.68      Vitamin E, mg·kg−1  43.19  156.96  42.22  179.84  42.54  183.44  41.52  169.94  26.74  129.57  34.80  166.78      Selenium, mg·kg−1  nd6  0.6  nd  0.6  nd  0.5  nd  1.0  nd  0.6  nd  0.6      Fat, %  5.8  6.2  6.4  6.7  7.3  7.7  5.2  5.5  6.5  6.7  3.8  4.3      Fatty acids, %  4.51  5.13  5.38  5.17  5.75  6.06  4.45  4.28  5.27  5.33  3.28  3.86  Fatty acids (FA), % total fatty acids      Total saturated FA  22.08  22.46  16.48  16.30  49.02  49.68  17.07  17.10  48.17  46.26  19.27  18.93      Total monounsaturated FA  19.78  19.43  17.05  17.57  27.82  29.23  16.46  16.61  31.71  29.84  15.39  15.91      CLA, C18:2-cis-9, trans-11  0.06  0.76  0.00  0.55  0.61  1.40  0.01  0.71  0.57  1.23  0.01  1.00      CLA, C18:2-trans-10, cis-12  0.00  0.63  0.00  0.50  0.04  0.69  0.00  0.67  0.01  0.75  0.01  0.92      C18:3-cis Linolenic  6.47  5.77  19.74  19.57  3.56  3.11  18.12  17.36  2.87  3.01  16.20  15.20      C20:5-cis EPA4  1.08  1.05  0.02  0.01  0.44  0.43  0.00  0.02  0.13  0.10  0.00  0.02      C22:6-cis DHA5  2.68  2.86  0.01  0.05  0.92  0.99  0.03  0.04  0.08  0.09  0.02  0.05      Total polyunsaturated FA  58.14  58.11  66.47  66.13  23.16  21.06  66.47  66.29  20.12  23.90  65.33  65.17      PUFA:SFA ratio  2.63  2.59  4.03  4.06  0.47  0.42  3.89  3.88  0.42  0.52  3.39  3.44      Linoleic:Linolenic ratio  7.15  7.86  2.34  2.30  4.78  4.47  2.64  2.72  5.57  6.04  3.00  3.13    Growing period    Weaner (11 to 30 kg of BW)  Grower (30 to 69 kg of BW)  Finisher (69 to 102 kg of BW)    Animal  Plant  Animal  Plant  Animal  Plant  Item  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Control  Suppl  Diet composition, as-fed basis      DM, %  90.8  90.9  91.2  91.2  90.1  91.2  90.1  90.0  91.0  90.9  90.6  90.2      CP, %  21.9  21.5  20.5  20.0  23.2  23.0  16.9  16.2  20.6  19.9  15.2  15.1      DE,2 MJ·kg−1  14.95  14.95  14.92  14.92  13.89  13.89  13.90  13.90  13.35  13.35  13.32  13.32      IDL:DE,3 g·MJ  0.77  0.77  0.77  0.77  0.71  0.71  0.71  0.71  0.69  0.69  0.68  0.68      Vitamin E, mg·kg−1  43.19  156.96  42.22  179.84  42.54  183.44  41.52  169.94  26.74  129.57  34.80  166.78      Selenium, mg·kg−1  nd6  0.6  nd  0.6  nd  0.5  nd  1.0  nd  0.6  nd  0.6      Fat, %  5.8  6.2  6.4  6.7  7.3  7.7  5.2  5.5  6.5  6.7  3.8  4.3      Fatty acids, %  4.51  5.13  5.38  5.17  5.75  6.06  4.45  4.28  5.27  5.33  3.28  3.86  Fatty acids (FA), % total fatty acids      Total saturated FA  22.08  22.46  16.48  16.30  49.02  49.68  17.07  17.10  48.17  46.26  19.27  18.93      Total monounsaturated FA  19.78  19.43  17.05  17.57  27.82  29.23  16.46  16.61  31.71  29.84  15.39  15.91      CLA, C18:2-cis-9, trans-11  0.06  0.76  0.00  0.55  0.61  1.40  0.01  0.71  0.57  1.23  0.01  1.00      CLA, C18:2-trans-10, cis-12  0.00  0.63  0.00  0.50  0.04  0.69  0.00  0.67  0.01  0.75  0.01  0.92      C18:3-cis Linolenic  6.47  5.77  19.74  19.57  3.56  3.11  18.12  17.36  2.87  3.01  16.20  15.20      C20:5-cis EPA4  1.08  1.05  0.02  0.01  0.44  0.43  0.00  0.02  0.13  0.10  0.00  0.02      C22:6-cis DHA5  2.68  2.86  0.01  0.05  0.92  0.99  0.03  0.04  0.08  0.09  0.02  0.05      Total polyunsaturated FA  58.14  58.11  66.47  66.13  23.16  21.06  66.47  66.29  20.12  23.90  65.33  65.17      PUFA:SFA ratio  2.63  2.59  4.03  4.06  0.47  0.42  3.89  3.88  0.42  0.52  3.39  3.44      Linoleic:Linolenic ratio  7.15  7.86  2.34  2.30  4.78  4.47  2.64  2.72  5.57  6.04  3.00  3.13  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 DE calculated from the dietary ingredients (Morel et al., 1999). 3 IDL = ileal digestible lysine, calculated based on the data of Morel et al. (1999). 4 EPA = eicosapentaenoic acid. 5 DHA = docosahexaenoic acid. 6 nd = not detectable. Based on the Se content of the premix and the supplement, the calculated concentration of Se in the nonsupplemented diet was 0.3 ppm and in the supplemented diet was 0.7 ppm. View Large Each carcass tissue (LM, belly cut, and subcutaneous fat) was subjected to similar analyses, with the exceptions that analysis of the CP in the subcutaneous fat and vitamin E and Se in the belly cut and the subcutaneous fat were not conducted, and the saponification/extraction method of Bayfield and Romalis (1979) was used for analysis of vitamin E content in the LM. Statistical Analysis Two animals were removed from the experiment before dietary treatment allocation, 2 were removed during the weaner phase (n = 60 pigs for the growth performance evaluation), and one carcass was removed from the processing line (n = 59 pigs for the meat composition assessments). Statistical analyses were performed using the GLM procedure (SAS Inst. Inc., Cary, NC). During the weaner phase, the piglets were kept and fed in pens of 4, and the experimental unit for feed intake and G:F was the pen. During the grower-finisher phase, the pigs were kept in pens of 8 but were fed individually so the experimental unit for all other data was the animal. The statistical model for all variables included a sire effect (n = 4), a treatment effect (n = 4), and a set of 3 orthogonal contrasts between treatments that included a comparison between the diet containing animal and plant components (the animal group) and that containing plant components only (the plant group), a comparison between the control and supplemented diets within the animal group, and a comparison between the control and supplemented diets within the plant group. For fatty acid concentrations, the model was the same except that the concentration of all fatty acids combined was fitted as a covariate before testing for sire and treatment effects. RESULTS AND DISCUSSION Growth Performance Generally differences in performance between the treatment groups were not large (Table 3), but those on the animal diet grew faster (P = 0.026) during the weaner period and had greater (P = 0.015) G:F during the grower period. As a result they reached the slaughter weight 3 d earlier. The greater performance of the pigs fed the animal diet during the weaner phase was likely due to the presence of blood meal (2.5%), fish meal (5%), meat and bone meal (5%), and skim milk power (10%) rather than soy protein isolate (10%) and peas (15%). It has been shown that legume proteins fed soon after weaning have a negative effect on nutrient digestibility, intestinal morphology, intestinal enzyme activities, and feed intake (Makkink et al., 1994; Salgado et al., 2002), thus causing a postweaning growth check as was observed in this study. Table 3. Least squares means for BW, growth performance, and carcass characteristics of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  15  15          Starting BW, kg  11.1  11.6  11.4  11.5  0.74  0.40  0.90  1.70  Age at slaughter, d  145  141  148  144  0.16  0.13  0.21  8.3  Final live BW, kg  101.3  101.7  102.8  101.8  0.47  0.78  0.48  3.9  ADG, g      Weaner  661  689  612  640  0.026  0.36  0.36  8.3      Grower  899  929  896  888  0.089  0.10  0.64  49      Finisher  891  958  894  952  0.95  0.06  0.11  96  Feed intake, kg·d−1      Weaner4  1.09  1.15  1.03  1.09  0.43  0.59  0.54  0.14      Grower  1.87  1.94  1.93  1.92  0.37  0.045  0.96  0.09      Finisher  2.89  2.94  2.96  3.00  0.036  0.20  0.39  0.12  G:F, kg·kg−1      Weaner4  0.607  0.607  0.596  0.588  0.50  1.00  0.80  0.043      Grower  0.481  0.480  0.465  0.462  0.015  0.90  0.70  0.026      Finisher  0.309  0.325  0.302  0.318  0.35  0.14  0.14  0.028  Carcass weight, kg  80.0  80.6  80.8  79.3  0.77  0.64  0.22  3.2  Dressing, %  78.9  79.2  78.6  77.9  0.11  0.69  0.37  2.0  Fat depth, mm  11.9  12.2  12.1  11.1  0.39  0.63  0.18  1.9  LM area, cm2  40.3  39.3  40.8  40.7  0.37  0.47  0.96  3.8    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  15  15          Starting BW, kg  11.1  11.6  11.4  11.5  0.74  0.40  0.90  1.70  Age at slaughter, d  145  141  148  144  0.16  0.13  0.21  8.3  Final live BW, kg  101.3  101.7  102.8  101.8  0.47  0.78  0.48  3.9  ADG, g      Weaner  661  689  612  640  0.026  0.36  0.36  8.3      Grower  899  929  896  888  0.089  0.10  0.64  49      Finisher  891  958  894  952  0.95  0.06  0.11  96  Feed intake, kg·d−1      Weaner4  1.09  1.15  1.03  1.09  0.43  0.59  0.54  0.14      Grower  1.87  1.94  1.93  1.92  0.37  0.045  0.96  0.09      Finisher  2.89  2.94  2.96  3.00  0.036  0.20  0.39  0.12  G:F, kg·kg−1      Weaner4  0.607  0.607  0.596  0.588  0.50  1.00  0.80  0.043      Grower  0.481  0.480  0.465  0.462  0.015  0.90  0.70  0.026      Finisher  0.309  0.325  0.302  0.318  0.35  0.14  0.14  0.028  Carcass weight, kg  80.0  80.6  80.8  79.3  0.77  0.64  0.22  3.2  Dressing, %  78.9  79.2  78.6  77.9  0.11  0.69  0.37  2.0  Fat depth, mm  11.9  12.2  12.1  11.1  0.39  0.63  0.18  1.9  LM area, cm2  40.3  39.3  40.8  40.7  0.37  0.47  0.96  3.8  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 For the weaner growth phase, feed intake and G:F were on a pen basis, with 4 pens per treatment group. View Large Table 3. Least squares means for BW, growth performance, and carcass characteristics of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  15  15          Starting BW, kg  11.1  11.6  11.4  11.5  0.74  0.40  0.90  1.70  Age at slaughter, d  145  141  148  144  0.16  0.13  0.21  8.3  Final live BW, kg  101.3  101.7  102.8  101.8  0.47  0.78  0.48  3.9  ADG, g      Weaner  661  689  612  640  0.026  0.36  0.36  8.3      Grower  899  929  896  888  0.089  0.10  0.64  49      Finisher  891  958  894  952  0.95  0.06  0.11  96  Feed intake, kg·d−1      Weaner4  1.09  1.15  1.03  1.09  0.43  0.59  0.54  0.14      Grower  1.87  1.94  1.93  1.92  0.37  0.045  0.96  0.09      Finisher  2.89  2.94  2.96  3.00  0.036  0.20  0.39  0.12  G:F, kg·kg−1      Weaner4  0.607  0.607  0.596  0.588  0.50  1.00  0.80  0.043      Grower  0.481  0.480  0.465  0.462  0.015  0.90  0.70  0.026      Finisher  0.309  0.325  0.302  0.318  0.35  0.14  0.14  0.028  Carcass weight, kg  80.0  80.6  80.8  79.3  0.77  0.64  0.22  3.2  Dressing, %  78.9  79.2  78.6  77.9  0.11  0.69  0.37  2.0  Fat depth, mm  11.9  12.2  12.1  11.1  0.39  0.63  0.18  1.9  LM area, cm2  40.3  39.3  40.8  40.7  0.37  0.47  0.96  3.8    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  15  15          Starting BW, kg  11.1  11.6  11.4  11.5  0.74  0.40  0.90  1.70  Age at slaughter, d  145  141  148  144  0.16  0.13  0.21  8.3  Final live BW, kg  101.3  101.7  102.8  101.8  0.47  0.78  0.48  3.9  ADG, g      Weaner  661  689  612  640  0.026  0.36  0.36  8.3      Grower  899  929  896  888  0.089  0.10  0.64  49      Finisher  891  958  894  952  0.95  0.06  0.11  96  Feed intake, kg·d−1      Weaner4  1.09  1.15  1.03  1.09  0.43  0.59  0.54  0.14      Grower  1.87  1.94  1.93  1.92  0.37  0.045  0.96  0.09      Finisher  2.89  2.94  2.96  3.00  0.036  0.20  0.39  0.12  G:F, kg·kg−1      Weaner4  0.607  0.607  0.596  0.588  0.50  1.00  0.80  0.043      Grower  0.481  0.480  0.465  0.462  0.015  0.90  0.70  0.026      Finisher  0.309  0.325  0.302  0.318  0.35  0.14  0.14  0.028  Carcass weight, kg  80.0  80.6  80.8  79.3  0.77  0.64  0.22  3.2  Dressing, %  78.9  79.2  78.6  77.9  0.11  0.69  0.37  2.0  Fat depth, mm  11.9  12.2  12.1  11.1  0.39  0.63  0.18  1.9  LM area, cm2  40.3  39.3  40.8  40.7  0.37  0.47  0.96  3.8  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 For the weaner growth phase, feed intake and G:F were on a pen basis, with 4 pens per treatment group. View Large The supplement containing Se, vitamin E, and CLA had no effect on growth performance, except feed intake between 30 and 69 kg of BW (P = 0.045). This is in general agreement with earlier reports. Mahan et al. (1999) did not find any effect of organic Se (Sel-Plex; Alltech, Nicholasville, KY) on growth performance of pigs. Vitamin E supplementation did not affect pig growth performance (Cannon et al., 1996; Hoving-Bolink et al., 1998; Eichenberger et al., 2004). The effect of CLA on pig growth performance is less clear. Improvements in ADG and G:F were reported by Thiel-Cooper et al. (2001) and G:F by Dugan et al. (1997). However, the latter research group did not find any effect of CLA supplementation on a growth performance in a subsequent study (Dugan et al., 2001). In several studies, the inclusion of CLA in the diet of pigs decreased backfat depth, but in reviewing those results, Dunshea et al. (2005) noted that this effect became more apparent with increasing backfat depth, and based on the depths of backfat shown in Table 3 (11 to 12 mm), the CLA effect can be expected to be negligible. There were no statistically significant sire effects or treatment effects on carcass weight, dressing percentage, fat depth, or LM area, and for the last 3 characteristics, the fitting of carcass weight as a covariate did not change these results. Longissimus Muscle Composition Intramuscular fat contents (Table 4) were greater in the animal group, and within both the animal and plant groups, the contents were greater in the groups receiving the supplement, although this difference was only a trend for the animal group (P = 0.10). Dunshea et al. (2005) reviewed results from several studies where the intramuscular fat content or marbling was greater in pork from pigs receiving CLA and commented that it was unusual for treatments to affect fat depth and intramuscular fat contents in the opposite directions. In absolute terms, the intramuscular fat contents in Table 4 are appreciably lower than the content of 2 to 3% reported to be optimal for pork eating quality (Verbeke et al., 1999). The treatment effects on water and CP content of LM (Table 4) appear to be largely a reflection of the expected reciprocal relationship between fat and other components of muscle. Table 4. Least squares means for composition characteristics of the LM on a fresh tissue basis and for total fatty acid concentration on a fresh weight basis for LM, subcutaneous fat, and a belly cut of pigs fed diets containing animal and plant products either with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Water, %  74.4  74.2  74.8  74.7  0.003  0.32  0.60  0.6  Crude protein, %  23.7  23.3  22.9  23.3  0.027  0.059  0.14  0.7  Intramuscular fat, %  1.37  1.65  1.06  1.44  0.036  0.10  0.032  0.46  Selenium, μg·g−1  nd4  0.16  nd  0.20  0.46  —  —  0.14  Vitamin E, μg·g−1  2.45  4.59  2.03  4.20  0.001  <0.001  <0.001  0.44  Total fatty acids, % of fresh weight      LM  1.00  1.30  0.83  1.00  0.096  0.044  0.06  0.39      Loin subcutaneous fat  70.3  73.0  71.7  64.9  0.028  0.20  0.002  5.7      Belly  23.6  21.2  24.9  21.2  0.58  0.14  0.028  4.4    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Water, %  74.4  74.2  74.8  74.7  0.003  0.32  0.60  0.6  Crude protein, %  23.7  23.3  22.9  23.3  0.027  0.059  0.14  0.7  Intramuscular fat, %  1.37  1.65  1.06  1.44  0.036  0.10  0.032  0.46  Selenium, μg·g−1  nd4  0.16  nd  0.20  0.46  —  —  0.14  Vitamin E, μg·g−1  2.45  4.59  2.03  4.20  0.001  <0.001  <0.001  0.44  Total fatty acids, % of fresh weight      LM  1.00  1.30  0.83  1.00  0.096  0.044  0.06  0.39      Loin subcutaneous fat  70.3  73.0  71.7  64.9  0.028  0.20  0.002  5.7      Belly  23.6  21.2  24.9  21.2  0.58  0.14  0.028  4.4  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 nd = not detectable (control groups were excluded from the analysis for selenium). View Large Table 4. Least squares means for composition characteristics of the LM on a fresh tissue basis and for total fatty acid concentration on a fresh weight basis for LM, subcutaneous fat, and a belly cut of pigs fed diets containing animal and plant products either with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Water, %  74.4  74.2  74.8  74.7  0.003  0.32  0.60  0.6  Crude protein, %  23.7  23.3  22.9  23.3  0.027  0.059  0.14  0.7  Intramuscular fat, %  1.37  1.65  1.06  1.44  0.036  0.10  0.032  0.46  Selenium, μg·g−1  nd4  0.16  nd  0.20  0.46  —  —  0.14  Vitamin E, μg·g−1  2.45  4.59  2.03  4.20  0.001  <0.001  <0.001  0.44  Total fatty acids, % of fresh weight      LM  1.00  1.30  0.83  1.00  0.096  0.044  0.06  0.39      Loin subcutaneous fat  70.3  73.0  71.7  64.9  0.028  0.20  0.002  5.7      Belly  23.6  21.2  24.9  21.2  0.58  0.14  0.028  4.4    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Water, %  74.4  74.2  74.8  74.7  0.003  0.32  0.60  0.6  Crude protein, %  23.7  23.3  22.9  23.3  0.027  0.059  0.14  0.7  Intramuscular fat, %  1.37  1.65  1.06  1.44  0.036  0.10  0.032  0.46  Selenium, μg·g−1  nd4  0.16  nd  0.20  0.46  —  —  0.14  Vitamin E, μg·g−1  2.45  4.59  2.03  4.20  0.001  <0.001  <0.001  0.44  Total fatty acids, % of fresh weight      LM  1.00  1.30  0.83  1.00  0.096  0.044  0.06  0.39      Loin subcutaneous fat  70.3  73.0  71.7  64.9  0.028  0.20  0.002  5.7      Belly  23.6  21.2  24.9  21.2  0.58  0.14  0.028  4.4  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 nd = not detectable (control groups were excluded from the analysis for selenium). View Large As expected, the groups receiving diets with supplement had greater concentrations of Se and vitamin E (P < 0.001) in LM than those did not receive the supplement (Table 4). Although dietary vitamin E concentrations and duration varied, similar results have been reported previously. Jensen et al. (1997) supplemented pig diets with vitamin E at 100, 200, or 700 mg·kg−1 and reported a positive relationship between supplementation and vitamin E deposition in both the LM and psoas major muscles. Although muscle concentration of vitamin E increased with an increased dietary concentration, the proportion of vitamin E retained by the LM ranged from 1.5 to 4.1% and seemed to decrease as the supplementation increased. Hoving-Bolink et al. (1998) supplemented pigs for 84 d at 200 mg of vitamin E·kg−1 (vs. basal diet with 8 mg·kg−1) and reported a 5-fold increase in vitamin E content of LM, whereas Eichenberger et al. (2004) reported a 3.5-fold increase after supplementation at the same concentration for 106 d. In the present study, the basal dietary vitamin E concentration was relatively high due to the use of tallow from grass-fed ruminant sources [an excellent source of naturally occurring vitamin E (Yang et al., 2002)] in the animal group, the provision of 50 mg·kg−1 diet from the premix, and the inclusion of plant materials in the diets. As such, vitamin E concentration in LM tissue from unsupplemented pork was also relatively high at 2.03 to 2.45 μg·g of tissue−1. By comparison, Cannon et al. (1996) achieved a 10-fold increase in longissimus vitamin E content after dietary supplementation for 84 d at 100 mg·kg−1, but the actual tissue concentration in the supplemented pork was only increased to 1.86 μg·g−1, whereas the concentration in the control group was practically devoid of vitamin E at 0.19 μg·g−1. Wood et al. (2003) suggested that a muscle tissue content near 3.5 μg·g−1 could be considered as the content above which additional dietary supplementation would not be expected to yield further improvement in meat color stability. The greater vitamin E contents of LM in the animal group relative to the plant group did reflect different concentrations in the diets. Vitamin E supplementation was not expected to affect carcass or tissue fatness. Hoving-Bolink et al. (1998) showed no effect of vitamin E supplementation at 200 mg·kg−1 for 84 d on intramuscular fat content in LM of pigs. Meat from unsupplemented pigs contained a non-detectable amount of Se, while the LM from supplemented pigs contained about 0.18 μg·g−1. Mahan and Magee (1991) incorporated inorganic Se into pig diets at the US FDA-approved concentration (0.3 μgg−1) and reported concentrations in LM of 0.29 and 0.24 μg·g−1 for sodium and calcium selenites, respectively, after 56 d of feeding. In a subsequent study (Mahan et al., 1999) demonstrated a positive dose-response relationship between dietary Se concentration and content of Se in LM. Again, Se content in LM closely matched, or exceeded, dietary provision, even though the basal diet resulted in as much as 0.08 μg·g−1. Recommended daily Se intakes for humans vary widely and have been reported to range from 0.07 to 0.085 mg·d−1 for Australians to 0.04 mg·d−1 for Europe-ans, whereas the requirements for US men and women have been set at 0.070 and 0.055 mg·d−1, respectively (Duffield et al., 1999). The authors suggested that these dietary standards for Se were available from habitual diets in each region, with a decreased estimate of 0.039 mg·d−1 being a realistic intake for New Zealanders. To achieve greater Se intake in New Zealand, the use of Se-enriched food was recommended. More recently recommended daily intakes of Se for Australia and New Zealand have been set at 70 ug·d−1 for men and 60 ug·d−1 for women (NHMRC, 2006), so that 100 g of pork from the supplemented plant group, for example, at 0.20 ug·g−1 would provide about one-third of the recommended daily intake. Fatty Acid Contents The results of total fatty acid contents are presented in Table 4, and the contents of individual fatty acids as a percentage of the total for LM, loin subcutaneous fat, and the belly cut samples are shown in Tables 5, 6, and 7, respectively. All fatty acids measured were included in the total, but with few exceptions, only those present at > 0.15% of the total are shown in the tables. Treatment effects on fatty acid composition were assessed after adjusting for differences in total fatty acid percentage and for sire effects. Total fatty acid percentage was fitted as a covariate because it is known that the pattern of fatty acids changes with increasing fat contents mainly because of a decrease in the proportion of polar structural phospholipids relative to neutral lipids (Marmer et al., 1984; De Smet et al., 2004). Table 5. Least squares means for the fatty acid profile of lipid from the LM of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.89  1.99  1.40  1.88  <0.001  0.38  <0.001  0.28      C16:0, palmitic  26.9  28.7  25.2  26.5  <0.001  <0.001  <0.001  0.8      C17:0, margaric  0.363  0.393  0.237  0.246  <0.001  0.31  0.77  0.008      C18:0, stearic  13.0  13.9  12.8  13.8  0.58  0.014  0.008  1.0      C20:0, arachidic  0.194  0.197  0.186  0.190  0.24  0.73  0.60  0.023      C16:1-cis-9, palmitoleic  4.97  5.76  3.98  4.10  <0.001  <0.001  0.43  0.42      C18:1-cis-9, oleic  40.7  36.8  38.1  33.3  <0.001  <0.001  <0.001  1.3      C18:1-trans-9, elaidic  0.173  0.170  0.105  0.103  <0.001  0.81  0.81  0.027      C18:1-trans-11, vaccenic  0.176  0.160  0.006  0.037  <0.001  0.77  0.11  0.050      C18:1-cis-11, vaccenic  3.64  3.42  3.37  2.95  <0.001  0.016  <0.001  0.23      C20:1-cis-11, eicosenoic  0.721  0.626  0.684  0.527  <0.001  <0.001  <0.001  0.149      C18:2n-6 cis, linoleic  4.17  4.37  7.80  9.35  <0.001  0.62  <0.001  1.04      C18:2-cis-9, trans-11, CLA  0.558  0.752  0.046  0.263  <0.001  <0.001  <0.001  0.078      C18:2-trans-10, cis-12, CLA  0.000  0.061  0.000  0.063  0.95  <0.001  <0.001  0.011      C18:3n-3 cis, linolenic  0.91  1.00  3.85  4.52  <0.001  0.64  0.001  0.50      C20:2-cis, eicosadienoic  0.182  0.183  0.393  0.379  <0.001  0.97  0.42  0.043      C20:3-cis, eicosatrienoic  0.072  0.068  0.216  0.204  <0.001  0.80  0.48  0.044      C20:4-cis, arachidonic  0.503  0.447  0.538  0.597  0.002  0.15  0.14  0.102      C20:5-cis, EPA4  0.106  0.092  0.117  0.124  0.017  0.28  0.57  0.033      C22:6-cis, DHA4  0.232  0.232  0.061  0.086  <0.001  0.99  0.047  0.033  PUFA:SFA ratio  0.162  0.162  0.332  0.368  <0.001  0.97  0.048  0.047  Linoleic:linolenic ratio  4.64  4.50  2.01  2.07  <0.001  0.21  0.59  0.29    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.89  1.99  1.40  1.88  <0.001  0.38  <0.001  0.28      C16:0, palmitic  26.9  28.7  25.2  26.5  <0.001  <0.001  <0.001  0.8      C17:0, margaric  0.363  0.393  0.237  0.246  <0.001  0.31  0.77  0.008      C18:0, stearic  13.0  13.9  12.8  13.8  0.58  0.014  0.008  1.0      C20:0, arachidic  0.194  0.197  0.186  0.190  0.24  0.73  0.60  0.023      C16:1-cis-9, palmitoleic  4.97  5.76  3.98  4.10  <0.001  <0.001  0.43  0.42      C18:1-cis-9, oleic  40.7  36.8  38.1  33.3  <0.001  <0.001  <0.001  1.3      C18:1-trans-9, elaidic  0.173  0.170  0.105  0.103  <0.001  0.81  0.81  0.027      C18:1-trans-11, vaccenic  0.176  0.160  0.006  0.037  <0.001  0.77  0.11  0.050      C18:1-cis-11, vaccenic  3.64  3.42  3.37  2.95  <0.001  0.016  <0.001  0.23      C20:1-cis-11, eicosenoic  0.721  0.626  0.684  0.527  <0.001  <0.001  <0.001  0.149      C18:2n-6 cis, linoleic  4.17  4.37  7.80  9.35  <0.001  0.62  <0.001  1.04      C18:2-cis-9, trans-11, CLA  0.558  0.752  0.046  0.263  <0.001  <0.001  <0.001  0.078      C18:2-trans-10, cis-12, CLA  0.000  0.061  0.000  0.063  0.95  <0.001  <0.001  0.011      C18:3n-3 cis, linolenic  0.91  1.00  3.85  4.52  <0.001  0.64  0.001  0.50      C20:2-cis, eicosadienoic  0.182  0.183  0.393  0.379  <0.001  0.97  0.42  0.043      C20:3-cis, eicosatrienoic  0.072  0.068  0.216  0.204  <0.001  0.80  0.48  0.044      C20:4-cis, arachidonic  0.503  0.447  0.538  0.597  0.002  0.15  0.14  0.102      C20:5-cis, EPA4  0.106  0.092  0.117  0.124  0.017  0.28  0.57  0.033      C22:6-cis, DHA4  0.232  0.232  0.061  0.086  <0.001  0.99  0.047  0.033  PUFA:SFA ratio  0.162  0.162  0.332  0.368  <0.001  0.97  0.048  0.047  Linoleic:linolenic ratio  4.64  4.50  2.01  2.07  <0.001  0.21  0.59  0.29  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 EPA = eicosapentaenoic acid; and DHA = docosahexaenoic acid. View Large Table 5. Least squares means for the fatty acid profile of lipid from the LM of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.89  1.99  1.40  1.88  <0.001  0.38  <0.001  0.28      C16:0, palmitic  26.9  28.7  25.2  26.5  <0.001  <0.001  <0.001  0.8      C17:0, margaric  0.363  0.393  0.237  0.246  <0.001  0.31  0.77  0.008      C18:0, stearic  13.0  13.9  12.8  13.8  0.58  0.014  0.008  1.0      C20:0, arachidic  0.194  0.197  0.186  0.190  0.24  0.73  0.60  0.023      C16:1-cis-9, palmitoleic  4.97  5.76  3.98  4.10  <0.001  <0.001  0.43  0.42      C18:1-cis-9, oleic  40.7  36.8  38.1  33.3  <0.001  <0.001  <0.001  1.3      C18:1-trans-9, elaidic  0.173  0.170  0.105  0.103  <0.001  0.81  0.81  0.027      C18:1-trans-11, vaccenic  0.176  0.160  0.006  0.037  <0.001  0.77  0.11  0.050      C18:1-cis-11, vaccenic  3.64  3.42  3.37  2.95  <0.001  0.016  <0.001  0.23      C20:1-cis-11, eicosenoic  0.721  0.626  0.684  0.527  <0.001  <0.001  <0.001  0.149      C18:2n-6 cis, linoleic  4.17  4.37  7.80  9.35  <0.001  0.62  <0.001  1.04      C18:2-cis-9, trans-11, CLA  0.558  0.752  0.046  0.263  <0.001  <0.001  <0.001  0.078      C18:2-trans-10, cis-12, CLA  0.000  0.061  0.000  0.063  0.95  <0.001  <0.001  0.011      C18:3n-3 cis, linolenic  0.91  1.00  3.85  4.52  <0.001  0.64  0.001  0.50      C20:2-cis, eicosadienoic  0.182  0.183  0.393  0.379  <0.001  0.97  0.42  0.043      C20:3-cis, eicosatrienoic  0.072  0.068  0.216  0.204  <0.001  0.80  0.48  0.044      C20:4-cis, arachidonic  0.503  0.447  0.538  0.597  0.002  0.15  0.14  0.102      C20:5-cis, EPA4  0.106  0.092  0.117  0.124  0.017  0.28  0.57  0.033      C22:6-cis, DHA4  0.232  0.232  0.061  0.086  <0.001  0.99  0.047  0.033  PUFA:SFA ratio  0.162  0.162  0.332  0.368  <0.001  0.97  0.048  0.047  Linoleic:linolenic ratio  4.64  4.50  2.01  2.07  <0.001  0.21  0.59  0.29    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.89  1.99  1.40  1.88  <0.001  0.38  <0.001  0.28      C16:0, palmitic  26.9  28.7  25.2  26.5  <0.001  <0.001  <0.001  0.8      C17:0, margaric  0.363  0.393  0.237  0.246  <0.001  0.31  0.77  0.008      C18:0, stearic  13.0  13.9  12.8  13.8  0.58  0.014  0.008  1.0      C20:0, arachidic  0.194  0.197  0.186  0.190  0.24  0.73  0.60  0.023      C16:1-cis-9, palmitoleic  4.97  5.76  3.98  4.10  <0.001  <0.001  0.43  0.42      C18:1-cis-9, oleic  40.7  36.8  38.1  33.3  <0.001  <0.001  <0.001  1.3      C18:1-trans-9, elaidic  0.173  0.170  0.105  0.103  <0.001  0.81  0.81  0.027      C18:1-trans-11, vaccenic  0.176  0.160  0.006  0.037  <0.001  0.77  0.11  0.050      C18:1-cis-11, vaccenic  3.64  3.42  3.37  2.95  <0.001  0.016  <0.001  0.23      C20:1-cis-11, eicosenoic  0.721  0.626  0.684  0.527  <0.001  <0.001  <0.001  0.149      C18:2n-6 cis, linoleic  4.17  4.37  7.80  9.35  <0.001  0.62  <0.001  1.04      C18:2-cis-9, trans-11, CLA  0.558  0.752  0.046  0.263  <0.001  <0.001  <0.001  0.078      C18:2-trans-10, cis-12, CLA  0.000  0.061  0.000  0.063  0.95  <0.001  <0.001  0.011      C18:3n-3 cis, linolenic  0.91  1.00  3.85  4.52  <0.001  0.64  0.001  0.50      C20:2-cis, eicosadienoic  0.182  0.183  0.393  0.379  <0.001  0.97  0.42  0.043      C20:3-cis, eicosatrienoic  0.072  0.068  0.216  0.204  <0.001  0.80  0.48  0.044      C20:4-cis, arachidonic  0.503  0.447  0.538  0.597  0.002  0.15  0.14  0.102      C20:5-cis, EPA4  0.106  0.092  0.117  0.124  0.017  0.28  0.57  0.033      C22:6-cis, DHA4  0.232  0.232  0.061  0.086  <0.001  0.99  0.047  0.033  PUFA:SFA ratio  0.162  0.162  0.332  0.368  <0.001  0.97  0.048  0.047  Linoleic:linolenic ratio  4.64  4.50  2.01  2.07  <0.001  0.21  0.59  0.29  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 EPA = eicosapentaenoic acid; and DHA = docosahexaenoic acid. View Large Table 6. Least squares means for the fatty acid profile of lipid from the loin subcutaneous fat of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.78  2.21  1.26  1.69  <0.001  <0.001  <0.001  0.12      C16:0, palmitic  24.6  26.4  21.7  23.5  <0.001  <0.001  <0.001  1.11      C17:0, margaric  0.78  0.90  0.39  0.41  <0.001  <0.001  0.49  0.08      C18:0, stearic  13.7  17.3  12.8  16.0  <0.001  <0.001  <0.001  1.10      C20:0, arachidic  0.226  0.236  0.231  0.245  0.42  0.43  0.26  0.233      C16:1-cis-9, palmitoleic  3.11  3.21  1.77  1.92  <0.001  0.40  0.24  0.309      C18:1-cis-9, oleic  39.6  33.2  30.7  25.5  <0.001  <0.001  <0.001  1.36      C18:1-trans-9, elaidic  0.261  0.235  0.068  0.068  <0.001  <0.001  0.94  0.017      C18:1-trans-11, vaccenic  0.529  0.689  0.020  0.035  <0.001  <0.001  0.49  0.050      C18:1-cis-11, vaccenic  2.24  1.81  1.71  1.48  <0.001  <0.001  0.001  0.164      C20:1-cis-11, eicosenoic  0.942  0.814  0.727  0.528  <0.001  0.002  <0.001  0.104      C18:2n-6 cis, linoleic  8.06  8.53  19.38  19.46  <0.001  0.38  0.89  1.42      C18:2-cis9, trans-11, CLA  1.27  1.56  0.06  0.51  <0.001  <0.001  <0.001  0.094      C18:2-trans-10, cis-12, CLA  0.001  0.192  0.001  0.182  0.36  <0.001  <0.001  0.019      C18:3n-3 cis, linolenic  1.32  1.38  6.39  6.07  <0.001  0.71  0.067  0.41      C20:2-cis, eicosadienoic  0.380  0.373  0.984  0.813  <0.001  0.75  <0.001  0.065      C20:3-cis, eicosatrienoic  0.223  0.220  1.112  0.680  <0.001  0.94  <0.001  0.105      C20:4-cis, arachidonic  0.222  0.181  0.246  0.176  0.30  0.0007  <0.001  0.030      C20:5-cis, EPA4  0.061  0.047  0.073  0.061  0.002  0.015  0.060  0.015      C22:6-cis, DHA4  0.240  0.200  0.053  0.054  <0.001  0.023  0.96  0.045  PUFA:SFA ratio  0.290  0.279  0.782  0.672  <0.001  0.68  <0.001  0.074  Linoleic:linolenic ratio  6.10  6.44  3.05  3.18  <0.001  0.002  0.26  0.28    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.78  2.21  1.26  1.69  <0.001  <0.001  <0.001  0.12      C16:0, palmitic  24.6  26.4  21.7  23.5  <0.001  <0.001  <0.001  1.11      C17:0, margaric  0.78  0.90  0.39  0.41  <0.001  <0.001  0.49  0.08      C18:0, stearic  13.7  17.3  12.8  16.0  <0.001  <0.001  <0.001  1.10      C20:0, arachidic  0.226  0.236  0.231  0.245  0.42  0.43  0.26  0.233      C16:1-cis-9, palmitoleic  3.11  3.21  1.77  1.92  <0.001  0.40  0.24  0.309      C18:1-cis-9, oleic  39.6  33.2  30.7  25.5  <0.001  <0.001  <0.001  1.36      C18:1-trans-9, elaidic  0.261  0.235  0.068  0.068  <0.001  <0.001  0.94  0.017      C18:1-trans-11, vaccenic  0.529  0.689  0.020  0.035  <0.001  <0.001  0.49  0.050      C18:1-cis-11, vaccenic  2.24  1.81  1.71  1.48  <0.001  <0.001  0.001  0.164      C20:1-cis-11, eicosenoic  0.942  0.814  0.727  0.528  <0.001  0.002  <0.001  0.104      C18:2n-6 cis, linoleic  8.06  8.53  19.38  19.46  <0.001  0.38  0.89  1.42      C18:2-cis9, trans-11, CLA  1.27  1.56  0.06  0.51  <0.001  <0.001  <0.001  0.094      C18:2-trans-10, cis-12, CLA  0.001  0.192  0.001  0.182  0.36  <0.001  <0.001  0.019      C18:3n-3 cis, linolenic  1.32  1.38  6.39  6.07  <0.001  0.71  0.067  0.41      C20:2-cis, eicosadienoic  0.380  0.373  0.984  0.813  <0.001  0.75  <0.001  0.065      C20:3-cis, eicosatrienoic  0.223  0.220  1.112  0.680  <0.001  0.94  <0.001  0.105      C20:4-cis, arachidonic  0.222  0.181  0.246  0.176  0.30  0.0007  <0.001  0.030      C20:5-cis, EPA4  0.061  0.047  0.073  0.061  0.002  0.015  0.060  0.015      C22:6-cis, DHA4  0.240  0.200  0.053  0.054  <0.001  0.023  0.96  0.045  PUFA:SFA ratio  0.290  0.279  0.782  0.672  <0.001  0.68  <0.001  0.074  Linoleic:linolenic ratio  6.10  6.44  3.05  3.18  <0.001  0.002  0.26  0.28  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 EPA = eicosapentaenoic acid; and DHA = docosahexaenoic acid. View Large Table 6. Least squares means for the fatty acid profile of lipid from the loin subcutaneous fat of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.78  2.21  1.26  1.69  <0.001  <0.001  <0.001  0.12      C16:0, palmitic  24.6  26.4  21.7  23.5  <0.001  <0.001  <0.001  1.11      C17:0, margaric  0.78  0.90  0.39  0.41  <0.001  <0.001  0.49  0.08      C18:0, stearic  13.7  17.3  12.8  16.0  <0.001  <0.001  <0.001  1.10      C20:0, arachidic  0.226  0.236  0.231  0.245  0.42  0.43  0.26  0.233      C16:1-cis-9, palmitoleic  3.11  3.21  1.77  1.92  <0.001  0.40  0.24  0.309      C18:1-cis-9, oleic  39.6  33.2  30.7  25.5  <0.001  <0.001  <0.001  1.36      C18:1-trans-9, elaidic  0.261  0.235  0.068  0.068  <0.001  <0.001  0.94  0.017      C18:1-trans-11, vaccenic  0.529  0.689  0.020  0.035  <0.001  <0.001  0.49  0.050      C18:1-cis-11, vaccenic  2.24  1.81  1.71  1.48  <0.001  <0.001  0.001  0.164      C20:1-cis-11, eicosenoic  0.942  0.814  0.727  0.528  <0.001  0.002  <0.001  0.104      C18:2n-6 cis, linoleic  8.06  8.53  19.38  19.46  <0.001  0.38  0.89  1.42      C18:2-cis9, trans-11, CLA  1.27  1.56  0.06  0.51  <0.001  <0.001  <0.001  0.094      C18:2-trans-10, cis-12, CLA  0.001  0.192  0.001  0.182  0.36  <0.001  <0.001  0.019      C18:3n-3 cis, linolenic  1.32  1.38  6.39  6.07  <0.001  0.71  0.067  0.41      C20:2-cis, eicosadienoic  0.380  0.373  0.984  0.813  <0.001  0.75  <0.001  0.065      C20:3-cis, eicosatrienoic  0.223  0.220  1.112  0.680  <0.001  0.94  <0.001  0.105      C20:4-cis, arachidonic  0.222  0.181  0.246  0.176  0.30  0.0007  <0.001  0.030      C20:5-cis, EPA4  0.061  0.047  0.073  0.061  0.002  0.015  0.060  0.015      C22:6-cis, DHA4  0.240  0.200  0.053  0.054  <0.001  0.023  0.96  0.045  PUFA:SFA ratio  0.290  0.279  0.782  0.672  <0.001  0.68  <0.001  0.074  Linoleic:linolenic ratio  6.10  6.44  3.05  3.18  <0.001  0.002  0.26  0.28    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  No. of pigs  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.78  2.21  1.26  1.69  <0.001  <0.001  <0.001  0.12      C16:0, palmitic  24.6  26.4  21.7  23.5  <0.001  <0.001  <0.001  1.11      C17:0, margaric  0.78  0.90  0.39  0.41  <0.001  <0.001  0.49  0.08      C18:0, stearic  13.7  17.3  12.8  16.0  <0.001  <0.001  <0.001  1.10      C20:0, arachidic  0.226  0.236  0.231  0.245  0.42  0.43  0.26  0.233      C16:1-cis-9, palmitoleic  3.11  3.21  1.77  1.92  <0.001  0.40  0.24  0.309      C18:1-cis-9, oleic  39.6  33.2  30.7  25.5  <0.001  <0.001  <0.001  1.36      C18:1-trans-9, elaidic  0.261  0.235  0.068  0.068  <0.001  <0.001  0.94  0.017      C18:1-trans-11, vaccenic  0.529  0.689  0.020  0.035  <0.001  <0.001  0.49  0.050      C18:1-cis-11, vaccenic  2.24  1.81  1.71  1.48  <0.001  <0.001  0.001  0.164      C20:1-cis-11, eicosenoic  0.942  0.814  0.727  0.528  <0.001  0.002  <0.001  0.104      C18:2n-6 cis, linoleic  8.06  8.53  19.38  19.46  <0.001  0.38  0.89  1.42      C18:2-cis9, trans-11, CLA  1.27  1.56  0.06  0.51  <0.001  <0.001  <0.001  0.094      C18:2-trans-10, cis-12, CLA  0.001  0.192  0.001  0.182  0.36  <0.001  <0.001  0.019      C18:3n-3 cis, linolenic  1.32  1.38  6.39  6.07  <0.001  0.71  0.067  0.41      C20:2-cis, eicosadienoic  0.380  0.373  0.984  0.813  <0.001  0.75  <0.001  0.065      C20:3-cis, eicosatrienoic  0.223  0.220  1.112  0.680  <0.001  0.94  <0.001  0.105      C20:4-cis, arachidonic  0.222  0.181  0.246  0.176  0.30  0.0007  <0.001  0.030      C20:5-cis, EPA4  0.061  0.047  0.073  0.061  0.002  0.015  0.060  0.015      C22:6-cis, DHA4  0.240  0.200  0.053  0.054  <0.001  0.023  0.96  0.045  PUFA:SFA ratio  0.290  0.279  0.782  0.672  <0.001  0.68  <0.001  0.074  Linoleic:linolenic ratio  6.10  6.44  3.05  3.18  <0.001  0.002  0.26  0.28  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 EPA = eicosapentaenoic acid; and DHA = docosahexaenoic acid. View Large Table 7. Least squares means for the fatty acid profile of lipid from the belly cut of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  Number  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.91  2.35  1.44  1.80  <0.001  <0.001  <0.001  0.10      C16:0, palmitic  26.6  29.1  23.8  25.7  <0.001  <0.001  <0.001  0.9      C17:0, margaric  0.79  0.83  0.39  0.47  <0.001  0.08  <0.001  0.08      C18:0, stearic  15.1  17.9  13.9  17.2  <0.001  <0.001  <0.001  1.04      C20:0, arachidic  0.241  0.229  0.218  0.235  0.25  0.23  0.11  0.027      C16:1-cis-9, palmitoleic  3.26  3.53  2.03  2.12  <0.001  0.017  0.426  0.29      C18:1-cis-9, oleic  37.8  31.9  30.7  24.6  <0.001  <0.001  <0.001  1.34      C18:1-trans-9, elaidic  0.264  0.210  0.082  0.056  <0.001  <0.001  0.009  0.025      C18:1-trans-11, vaccenic  0.582  0.675  0.029  0.094  <0.001  <0.001  0.003  0.053      C18:1-cis-11, vaccenic  2.37  1.91  1.93  1.55  <0.001  <0.001  <0.001  0.14      C20:1-cis-11, eicosenoic  0.816  0.658  0.645  0.470  <0.001  <0.001  <0.001  0.065      C18:2n-6 cis, linoleic  6.91  6.91  17.01  17.59  <0.001  0.99  0.24  1.23      C18:2-cis-9, trans-11, CLA  0.98  1.23  0.06  0.48  <0.001  <0.001  <0.001  0.081      C18:2-trans-10, cis-12, CLA  0.000  0.175  0.000  0.167  0.28  <0.001  <0.001  0.014      C18:3n-3 cis, linolenic  1.09  1.01  5.32  5.25  <0.001  0.54  0.62  0.36      C20:2-cis, eicosadienoic  0.280  0.271  0.750  0.650  <0.001  0.69  <0.001  0.059      C20:3-cis, eicosatrienoic  0.182  0.170  0.927  0.0677  <0.001  0.68  <0.001  0.079      C20:4-cis, arachidonic  0.208  0.210  0.249  0.231  0.007  0.87  0.29  0.042      C20:5-cis, EPA4  0.054  0.050  0.061  0.058  0.014  0.27  0.55  0.011      C22:6-cis, DHA4  0.173  0.186  0.051  0.053  <0.001  0.29  0.85  0.032  PUFA:SFA ratio  0.225  0.201  0.613  0.556  <0.001  0.20  0.003  0.047  Linoleic:linolenic ratio  6.63  6.74  3.19  3.39  <0.001  0.46  0.24  0.41    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  Number  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.91  2.35  1.44  1.80  <0.001  <0.001  <0.001  0.10      C16:0, palmitic  26.6  29.1  23.8  25.7  <0.001  <0.001  <0.001  0.9      C17:0, margaric  0.79  0.83  0.39  0.47  <0.001  0.08  <0.001  0.08      C18:0, stearic  15.1  17.9  13.9  17.2  <0.001  <0.001  <0.001  1.04      C20:0, arachidic  0.241  0.229  0.218  0.235  0.25  0.23  0.11  0.027      C16:1-cis-9, palmitoleic  3.26  3.53  2.03  2.12  <0.001  0.017  0.426  0.29      C18:1-cis-9, oleic  37.8  31.9  30.7  24.6  <0.001  <0.001  <0.001  1.34      C18:1-trans-9, elaidic  0.264  0.210  0.082  0.056  <0.001  <0.001  0.009  0.025      C18:1-trans-11, vaccenic  0.582  0.675  0.029  0.094  <0.001  <0.001  0.003  0.053      C18:1-cis-11, vaccenic  2.37  1.91  1.93  1.55  <0.001  <0.001  <0.001  0.14      C20:1-cis-11, eicosenoic  0.816  0.658  0.645  0.470  <0.001  <0.001  <0.001  0.065      C18:2n-6 cis, linoleic  6.91  6.91  17.01  17.59  <0.001  0.99  0.24  1.23      C18:2-cis-9, trans-11, CLA  0.98  1.23  0.06  0.48  <0.001  <0.001  <0.001  0.081      C18:2-trans-10, cis-12, CLA  0.000  0.175  0.000  0.167  0.28  <0.001  <0.001  0.014      C18:3n-3 cis, linolenic  1.09  1.01  5.32  5.25  <0.001  0.54  0.62  0.36      C20:2-cis, eicosadienoic  0.280  0.271  0.750  0.650  <0.001  0.69  <0.001  0.059      C20:3-cis, eicosatrienoic  0.182  0.170  0.927  0.0677  <0.001  0.68  <0.001  0.079      C20:4-cis, arachidonic  0.208  0.210  0.249  0.231  0.007  0.87  0.29  0.042      C20:5-cis, EPA4  0.054  0.050  0.061  0.058  0.014  0.27  0.55  0.011      C22:6-cis, DHA4  0.173  0.186  0.051  0.053  <0.001  0.29  0.85  0.032  PUFA:SFA ratio  0.225  0.201  0.613  0.556  <0.001  0.20  0.003  0.047  Linoleic:linolenic ratio  6.63  6.74  3.19  3.39  <0.001  0.46  0.24  0.41  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 EPA = eicosapentaenoic acid; and DHA = docosahexaenoic acid. View Large Table 7. Least squares means for the fatty acid profile of lipid from the belly cut of pigs fed diets containing animal and plant products with (Suppl) or without (Control) a dietary supplement1   Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  Number  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.91  2.35  1.44  1.80  <0.001  <0.001  <0.001  0.10      C16:0, palmitic  26.6  29.1  23.8  25.7  <0.001  <0.001  <0.001  0.9      C17:0, margaric  0.79  0.83  0.39  0.47  <0.001  0.08  <0.001  0.08      C18:0, stearic  15.1  17.9  13.9  17.2  <0.001  <0.001  <0.001  1.04      C20:0, arachidic  0.241  0.229  0.218  0.235  0.25  0.23  0.11  0.027      C16:1-cis-9, palmitoleic  3.26  3.53  2.03  2.12  <0.001  0.017  0.426  0.29      C18:1-cis-9, oleic  37.8  31.9  30.7  24.6  <0.001  <0.001  <0.001  1.34      C18:1-trans-9, elaidic  0.264  0.210  0.082  0.056  <0.001  <0.001  0.009  0.025      C18:1-trans-11, vaccenic  0.582  0.675  0.029  0.094  <0.001  <0.001  0.003  0.053      C18:1-cis-11, vaccenic  2.37  1.91  1.93  1.55  <0.001  <0.001  <0.001  0.14      C20:1-cis-11, eicosenoic  0.816  0.658  0.645  0.470  <0.001  <0.001  <0.001  0.065      C18:2n-6 cis, linoleic  6.91  6.91  17.01  17.59  <0.001  0.99  0.24  1.23      C18:2-cis-9, trans-11, CLA  0.98  1.23  0.06  0.48  <0.001  <0.001  <0.001  0.081      C18:2-trans-10, cis-12, CLA  0.000  0.175  0.000  0.167  0.28  <0.001  <0.001  0.014      C18:3n-3 cis, linolenic  1.09  1.01  5.32  5.25  <0.001  0.54  0.62  0.36      C20:2-cis, eicosadienoic  0.280  0.271  0.750  0.650  <0.001  0.69  <0.001  0.059      C20:3-cis, eicosatrienoic  0.182  0.170  0.927  0.0677  <0.001  0.68  <0.001  0.079      C20:4-cis, arachidonic  0.208  0.210  0.249  0.231  0.007  0.87  0.29  0.042      C20:5-cis, EPA4  0.054  0.050  0.061  0.058  0.014  0.27  0.55  0.011      C22:6-cis, DHA4  0.173  0.186  0.051  0.053  <0.001  0.29  0.85  0.032  PUFA:SFA ratio  0.225  0.201  0.613  0.556  <0.001  0.20  0.003  0.047  Linoleic:linolenic ratio  6.63  6.74  3.19  3.39  <0.001  0.46  0.24  0.41    Animal  Plant  Orthogonal contrast,2P-value    Item  Control  Suppl  Control  Suppl  A vs. P  S within A  S within P  √MSE3  Number  15  15  14  15          Fatty acids, % of total fatty acids      C14:0, myristic  1.91  2.35  1.44  1.80  <0.001  <0.001  <0.001  0.10      C16:0, palmitic  26.6  29.1  23.8  25.7  <0.001  <0.001  <0.001  0.9      C17:0, margaric  0.79  0.83  0.39  0.47  <0.001  0.08  <0.001  0.08      C18:0, stearic  15.1  17.9  13.9  17.2  <0.001  <0.001  <0.001  1.04      C20:0, arachidic  0.241  0.229  0.218  0.235  0.25  0.23  0.11  0.027      C16:1-cis-9, palmitoleic  3.26  3.53  2.03  2.12  <0.001  0.017  0.426  0.29      C18:1-cis-9, oleic  37.8  31.9  30.7  24.6  <0.001  <0.001  <0.001  1.34      C18:1-trans-9, elaidic  0.264  0.210  0.082  0.056  <0.001  <0.001  0.009  0.025      C18:1-trans-11, vaccenic  0.582  0.675  0.029  0.094  <0.001  <0.001  0.003  0.053      C18:1-cis-11, vaccenic  2.37  1.91  1.93  1.55  <0.001  <0.001  <0.001  0.14      C20:1-cis-11, eicosenoic  0.816  0.658  0.645  0.470  <0.001  <0.001  <0.001  0.065      C18:2n-6 cis, linoleic  6.91  6.91  17.01  17.59  <0.001  0.99  0.24  1.23      C18:2-cis-9, trans-11, CLA  0.98  1.23  0.06  0.48  <0.001  <0.001  <0.001  0.081      C18:2-trans-10, cis-12, CLA  0.000  0.175  0.000  0.167  0.28  <0.001  <0.001  0.014      C18:3n-3 cis, linolenic  1.09  1.01  5.32  5.25  <0.001  0.54  0.62  0.36      C20:2-cis, eicosadienoic  0.280  0.271  0.750  0.650  <0.001  0.69  <0.001  0.059      C20:3-cis, eicosatrienoic  0.182  0.170  0.927  0.0677  <0.001  0.68  <0.001  0.079      C20:4-cis, arachidonic  0.208  0.210  0.249  0.231  0.007  0.87  0.29  0.042      C20:5-cis, EPA4  0.054  0.050  0.061  0.058  0.014  0.27  0.55  0.011      C22:6-cis, DHA4  0.173  0.186  0.051  0.053  <0.001  0.29  0.85  0.032  PUFA:SFA ratio  0.225  0.201  0.613  0.556  <0.001  0.20  0.003  0.047  Linoleic:linolenic ratio  6.63  6.74  3.19  3.39  <0.001  0.46  0.24  0.41  1 A dietary supplement (Sanovite) was added at 0.614% as fed. Sanovite is a trademarked dietary supplement containing CLA, vitamin E (BASF, Auckland, New Zealand), and organic Se (Alltech Inc., Nicholasville, KY). 2 A = animal; P = plant products only; and S = supplement. 3 √MSE = the square root of the model mean square error. 4 EPA = eicosapentaenoic acid; and DHA = docosahexaenoic acid. View Large Treatment differences in fatty acid concentrations were mainly for the animal versus plant comparisons for all 3 tissues, and these can in almost all cases be attributed to differences in the fatty acid concentrations in the diets, with the plant diet containing decreased concentrations of SFA and MUFA and greater concentrations of PUFA. Consequently, the PUFA:SFA ratio was greater for the plant diets. Two important exceptions to the above generalization were the greater concentrations of the polyunsaturated fatty acids CLA and docosahexaenoic acid (DHA) in both the animal diets as well as the tissues of pigs receiving those diets. Each of these acids has beneficial effects in the human diet, the former because of its anti-cancer properties (Pariza, 2004), and the latter because of its cardioprotective effects as a very-long-chain n-3 fatty acid (Ruxton et al., 2005). Direct effects of the supplement were shown in all 3 tissues with greater contents of CLA, although the increase was evident for the plant diet group (Figure 1) for both the subcutaneous and intramuscular fat. The plant control group had very low CLA contents; however, the increase with the supplemented plant diet resulted in CLA concentrations that were still only about half those for the unsupplemented group on the animal diet. This was true for both the subcutaneous fat and intramuscular fat (Figure 1), and the pattern for the belly cut (Table 7) was similar to that of the subcutaneous fat. Dunshea et al. (2005) reviewed other studies in which dietary CLA led to elevated contents of these acids in pork and fat, and noted that the transfer of CLA from the diet to subcutaneous fat was more efficient than to intramuscular fat, and that the transfer of the cis-9, trans-11 isomer was more efficient than the trans-10, cis-12 isomer. Both of these effects were demonstrated in the current study (Tables 2, 5, 6, and 7, and Figure 1). Figure 2 presents results for linolenic acid (C18:3, n-3) as an example of a fatty acid where the plant versus animal diet effect was very large due to diet composition, but the supplement effect was relatively small. As with CLA, the diet effect was more marked for subcutaneous fat than intramuscular fat. Figure 1. View largeDownload slide Changes in the concentration of conjugated linoleic acid (C18:2-cis-9, trans-11) with increasing lipid content of the loin subcutaneous fat (A) and within the LM (B) for the 4 dietary treatment groups. Figure 1. View largeDownload slide Changes in the concentration of conjugated linoleic acid (C18:2-cis-9, trans-11) with increasing lipid content of the loin subcutaneous fat (A) and within the LM (B) for the 4 dietary treatment groups. Figure 2. View largeDownload slide Changes in the concentration of linolenic acid (C18:3n-3) with increasing lipid content of the loin subcutaneous fat (A) and within the LM (B) for the 4 dietary treatment groups. Figure 2. View largeDownload slide Changes in the concentration of linolenic acid (C18:3n-3) with increasing lipid content of the loin subcutaneous fat (A) and within the LM (B) for the 4 dietary treatment groups. Indirect effects of the supplement on other fatty acids are also shown by results presented in Tables 5, 6, and 7, and it is assumed that these are the results of the effect of CLA in the supplement, although it is not possible to rule out effects of other constituents in the supplement. Support for the contribution of CLA is provided by the results of other studies reviewed by Dunshea et al. (2005) where CLA administration has been the only treatment. Thus, for all 3 tissues the supplement groups had decreased proportions of C18:1 and C20:1 (but not C16:1), and generally greater proportions of C14:0, C16:0, and C18:0. This increase in concentrations of saturated fatty acids at the expense of monounsaturated fatty acids has been attributed to an inhibitory effect of CLA on the enzyme stearoyl-CoA desaturase, an effect that has been shown in laboratory studies to be mainly due to the trans-10, cis-12 isomer (Lee et al., 1998). The ratios of PUFA:SFA and of linoleic acid to linolenic acid (as an index of n-6 to n-3 fatty acids) were both markedly different for all 3 tissues (Tables 5, 6, and 7) with the former being greater in the plant groups and the latter greater in the animal groups. Wood et al. (2003) noted that the recommended PUFA:SFA ratio for the health of humans consuming pork was 0.4, which means that pork from pigs on the animal diet was too low for all 3 tissues, whereas that from the plant diets was slightly low for LM and well above 0.4 for the other 2 tissues. The effects of the supplement on the PUFA:SFA ratio were small compared with the main diet effects. Wood et al. (2003) also discussed the evidence that a reduction in the risk of certain cancers and coronary heart disease could be expected when the ratio of n-6 to n-3 acids was reduced to less than 4. The linoleic to linolenic acid ratio is usually greater than the n-6 to n-3 ratio (Wood et al., 2003), so the values shown in Tables 5, 6, and 7 can be considered satisfactory, especially for the plant group. Pork from the animal-diet group had greater values, but it should be noted that the linoleic to linolenic acid ratio is only indicative of the overall ratio of n-6 to n-3 fatty acids, and that the main long-chain n-3 fatty acid is DHA (Ruxton et al., 2005), which was at concentrations at least 3 times greater in the animal group than the plant group for all 3 tissues. In contrast, the concentration of eicosapentaenoic acid was greater in the plant group than the animal group possibly due to the greater concentrations of linolenic acid (Burdge and Wootton, 2002). With the DHA concentration in the LM of the animal group being 0.232% of total fatty acid (Table 5), the total content of this acid in 100 g of pork containing 1.5% fatty acid would be 3.48 mg. This is well below the adequate intake for long chain omega-3 fatty acids of 160 and 90 mg·d−1 specified for men and women, respectively (NHMRC, 2006), and even further below intakes of up to 650 mg·d−1 that have been recommended (Kris-Etherton et al., 2000). The 0.232% is also much less than concentrations of over 18% of total fatty acids that have been reported for DHA for Rainbow trout (Testi et al., 2006). Female pigs fed diets with and without animal-derived components had similar growth rates and efficiency of growth, and produced carcasses with similar contents of fat, but the composition of muscle and fat differed in ways that largely reflected differences in diet composition. Adding a supplement containing CLA, Se, and vitamin E successfully produced greater contents of all of these desirable components in the resulting pork, which, therefore, had several nutritional benefits as a human food. Changes in some other mineral and fatty acid composition characteristics of the pork and fat as a result of the supplement are unlikely to affect its overall nutritional quality. LITERATURE CITED AOAC 2000. Official Methods of Analysis.  17th ed. Assoc. Off. Anal. Chem., Gaithersburg, MD. Baker, D. H., and T. K. Chung 1991. Ideal Protein for Swine and Poultry.  4th rev. ed. Biokyowa Inc., Chesterfield, MO. Bayfield, R. F., and L. F. Romalis 1979. An improved method for the determination of α-tocopherol in sheep liver. Anal. Biochem.  97: 264– 268. Google Scholar CrossRef Search ADS PubMed  Burdge, G. C., and S. E. Wootton 2002. Conversion of alpha-linolenic acid to eicopentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr.  88: 411– 420. Google Scholar CrossRef Search ADS PubMed  Cannon, J. E., J. B. Morgan, G. R. Schmidt, J. D. Tatum, J. N. Sofos, G. C. Smith, R. J. Delmore, and S. N. Williams 1996. Growth and fresh meat quality characteristics of pigs supplemented with Vitamin E. J. Anim. Sci.  74: 98– 105. Google Scholar CrossRef Search ADS PubMed  De Smet, S., K. Raes, and D. Demeyer 2004. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res.  53: 81– 98. Google Scholar CrossRef Search ADS   Duffield, A. J., C. D. Thomson, K. E. Hill, and S. Williams 1999. An estimation of selenium requirements for New Zealanders. Am. J. Clin. Nutr.  70: 896– 903. Google Scholar PubMed  Dugan, M. E. R., J. L. Aalhus, K. A. Lein, A. L. Schaefer, and J. K. G. Kramer 2001. Effects of feeding different levels of conjugated linoleic acid and total oil to pigs on live animal performance and carcass composition. Can. J. Anim. Sci.  81: 505– 510. Google Scholar CrossRef Search ADS   Dugan, M. E. R., J. L. Aalhus, A. L. Schaefer, and J. K. G. Kramer 1997. The effect of conjugated linoleic acid on fat to lean repartitioning and feed conversion in pigs. Can. J. Anim. Sci.  77: 723– 725. Google Scholar CrossRef Search ADS   Dunshea, F. R., D. N. D'Souza, D. W. Pethick, G. S. Harper, and R. D. Warner 2005. Effects of dietary factors and other metabolic modifiers on quality and nutritional value of meat. Meat Sci.  71: 8– 38. Google Scholar CrossRef Search ADS PubMed  Eichenberger, B., H. P. Pfirter, C. Wenk, and S. Gegert 2004. Influence of dietary vitamin E and C supplementation on vitamin E and C content and thiobarbituric acid reactive substances (TBARS) in different tissue of growing pigs. Arch. Anim. Nutr.  58: 195– 208. Google Scholar CrossRef Search ADS PubMed  Folch, J., M. Lees, and G. H. Sloane-Stanley 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem.  226: 497– 509. Google Scholar PubMed  Hoving-Bolink, A. H., G. Eikelenboom, J. Th. M. van Diepen, A. W. Jongbloed, and J. H. Houben 1998. Effect of dietary vitamin E supplementation on pork quality. Meat Sci.  49: 205– 212. Google Scholar CrossRef Search ADS PubMed  Hunt, J. L., and P. C. Kennedy 1992. DSIR Land Resources Technical Record 34: The Analysis of Biological Materials by Wavelength-dispersive X-ray Spectrometry: Major and Trace Elements.  Department of Scientific and Industrial Research, Lower Hutt, New Zealand. ISO 2000. ISO 6867:2000(E) Animal feeding stuffs—Determination of vitamin E content—Method using high-performance liquid chromatography.  ISO, Geneva, Switzerland. Jensen, C., J. Guidera, I. M. Skovgaard, H. Staun, L. H. Skibsted, S. K. Jensen, A. J. Møller, J. Buckley, and G. Bertelsen 1997. Effects of dietary α-tocopheryl acetate supplementation on α-tocopherol deposition in porcine m. psoas major and m. longissimus dorsi and on drip loss, colour stability and oxidative stability of pork meat. Meat Sci.  45: 491– 500. Google Scholar CrossRef Search ADS PubMed  Kris-Etherton, P. M., D. S. Taylor, S. Yu-Poth, P. Huth, K. Moriaty, V. Fishell, R. L. Hargrove, G. Zhao, and T. D. Etherton 2000. Polyunsaturated fatty acids in the food chain in the United States. Am. J. Clin. Nutr.  71: 179S– 188S. Google Scholar PubMed  Lee, K. N., M. W. Pariza, and J. M. Ntambi 1998. Conjugated linoleic acid decreases hepatic stearoyl-CoA desaturase mRNA expression. Biochem. Biophys. Res. Commun.  248: 817– 821. Google Scholar CrossRef Search ADS PubMed  Mahan, D. C., T. R. Cline, and B. Richert 1999. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. J. Anim. Sci.  77: 2172– 2179. Google Scholar CrossRef Search ADS PubMed  Mahan, D. C., and P. L. Magee 1991. Efficacy of dietary sodium selenite and calcium selenite provided in the diet at approved, marginally toxic, and toxic levels to growing swine. J. Anim. Sci.  69: 4722– 4725. Google Scholar CrossRef Search ADS PubMed  Makkink, C. A., G. P. Negulescu, G. X. Qin, and M. W. A. Verstegen 1994. Effect of dietary protein source on feed intake, growth, pancreatic enzyme activities and jejunal morphology in newly-weaned piglets. Br. J. Nutr.  72: 353– 368. Google Scholar CrossRef Search ADS PubMed  Marmer, W. N., R. J. Maxwell, and J. E. Williams 1984. Effects of dietary regimen and tissue site on bovine fatty acid profiles. J. Anim. Sci.  59: 109– 121. Google Scholar CrossRef Search ADS   Morel, P. C. H., G. Pearson, H. Derix, B. Schutte, and P. J. Moughan 1993. On-farm determination of the upper-limit for body protein deposition in growing pigs. Page 221 in Manipulating Pig Production IV.  E. S. Batterham ed. Morel, P. C. H., J. Pluske, G. Pearson, and P. J. Moughan 1999. A Standard Nutrient Matrix for New Zealand Feedstuffs.  Massey University, Palmerston North, New Zealand. Moughan, P. J., L. H. Jacobson, and P. C. H. Morel 2006. A genetic upper limit to whole-body protein deposition in a strain of growing pig. J. Anim. Sci.  84: 3301– 3309. Google Scholar CrossRef Search ADS PubMed  NHMRC 2006. Nutrient reference values for Australia and New Zealand – Executive summary.  National Health and Medical Research Council, Canberra, Australia. http://www.nhmrc.gov.au/publications/synopses/_files/n36.pdf Accessed May 10, 2007. NRC 1998. Nutrient Requirements of Swine.  10th rev. ed. Natl. Acad. Press, Washington, DC. Ostrowska, E., R. F. Cross, M. Muralitharan, D. E. Bauman, and F. R. Dunshea 2003. Dietary conjugated linoleic acid differentially alters fatty acid composition and increases conjugated linoleic acid content on porcine adipose tissue. Br. J. Nutr.  90: 915– 928. Google Scholar CrossRef Search ADS PubMed  Pariza, M. W. 2004. Perspective on the safety and effectiveness of conjugated linoleic acid. Am. J. Clin. Nutr.  79: 1132S– 1136S. Google Scholar PubMed  Pennington, J. A. T. 2002. Food composition databases for bioactive food components. J. Food Compos. Anal.  15: 419– 434. Google Scholar CrossRef Search ADS   Raes, K., S. De Smet, and D. Demeyer 2004. Effect of dietary fatty acids on incorporation of long chain polyunsaturated fatty acids and conjugated linoleic acid in lamb, beef and pork meat: A review. Anim. Feed Sci. Technol.  113: 199– 221. Google Scholar CrossRef Search ADS   Ruxton, C. H. S., P. C. Calder, S. C. Reed, and M. J. A. Simpson 2005. The impact of long-chain n-3 polyunsaturated fatty acids on human health. Nutr. Res. Rev.  18: 113– 129. Google Scholar CrossRef Search ADS PubMed  Salgado, P., J. P. B. Freire, M. Mourato, F. Cabral, R. Toullec, and J. P. Lalles 2002. Comparative effects of different legume protein sources in weaned piglets: Nutrient digestibility, intestinal morphology and digestive enzymes. Livest. Prod. Sci.  74: 191– 202. Google Scholar CrossRef Search ADS   Shantha, N. C., E. A. Decker, and B. Henning 1993. Comparison of methylation methods for the quantitation of conjugated linoleic acid isomers. J. AOAC Int.  76: 644– 649. Shelton, J. L., M. D. Henmann, R. M. Strode, G. I. Brashear, M. Ellis, F. K. McKeith, T. D. Bidner, and L. L. Southern 2001. Effect of different protein sources on growth and carcass traits in growing finishing pigs. J. Anim. Sci.  79: 2428– 2435. Google Scholar CrossRef Search ADS PubMed  Taylor, D. M., S. L. Woodgate, and M. J. Atkinson 1995. Inactivation of the bovine spongiform encephalopathy agent by rendering procedures. Vet. Rec.  137: 605– 610. Google Scholar PubMed  Testi, S., A. Bonaldo, P. P. Gatta, and A. Badiani 2006. Nutritional traits of dorsal and ventral fillets from three farmed fish species. Food Chem.  98: 104– 111. Google Scholar CrossRef Search ADS   Teye, G. A., P. R. Sheard, F. M. Whittington, G. R. Nute, A. Stewart, and J. D. Wood 2006. Influence of dieary oils and protein level on pork quality. 1. Effects on muscle fatty acid composition, carcass, meat and eating quality. Meat Sci.  73: 157– 165. Google Scholar CrossRef Search ADS PubMed  Thiel-Cooper, R. L., F. C. Parrish Jr., J. C. Sparks, B. R. Wiegand, and R. C. Ewan 2001. Conjugated linoleic acid changes swine performance and carcass composition. J. Anim. Sci.  79: 1821– 1828. Google Scholar CrossRef Search ADS PubMed  Verbeke, W., M. J. Van Oeckel, N. Warnants, J. Viaene, and C. V. Boucque 1999. Consumer perception, facts and possibilities to improve acceptability of health and sensory characteristics of pork. Meat Sci.  53: 7– 99. Google Scholar CrossRef Search ADS   Wolter, B. F., M. Ellis, F. K. McKeith, K. D. Miller, and D. C. Mahan 1999. Influence of dietary selenium source on growth performance, and carcass and meat quality characteristics in pigs. Can. J. Anim. Sci.  79: 119– 121. Google Scholar CrossRef Search ADS   Wood, J. D., R. I. Richardson, G. R. Nute, A. V. Fisher, M. M. Campo, E. Kasapidou, P. R. Sheard, and M. Ensor 2003. Effect of fatty acids on meat quality: A review. Meat Sci.  66: 21– 32. Google Scholar CrossRef Search ADS   Yang, A., M. J. Brewter, M. C. Lanari, and R. K. Tume 2002. Effect of vitamin E supplementation on α-tocopherol and β-carotene concentrations in tissues from pasture- and grain-fed cattle. Meat Sci.  60: 35– 40. Google Scholar CrossRef Search ADS PubMed  Footnotes 1 Funding for this work was provided by the Foundation for Research, Science and Technology and the New Zealand Pork Industry Board. The skilled assistance of the technical staff at the Massey University Institute of Food, Nutrition and Human Health Nutrition Lab is greatly appreciated. Thanks are extended to Land Meat, Wan-ganui, New Zealand for carcass processing, and to M. Dugan and D. Rolland at the Agriculture and Agri-Food Canada Lacombe Research Centre for advice on CLA analysis. Copyright 2008 Journal of Animal Science TI - The influence of diets supplemented with conjugated linoleic acid, selenium, and vitamin E, with or without animal protein, on the composition of pork from female pigs JO - Journal of Animal Science DO - 10.2527/jas.2007-0358 DA - 2008-05-01 UR - https://www.deepdyve.com/lp/oxford-university-press/the-influence-of-diets-supplemented-with-conjugated-linoleic-acid-9FPhpeg3r0 SP - 1145 EP - 1155 VL - 86 IS - 5 DP - DeepDyve ER -