TY - JOUR AU - Paternostro, Mauro AB - Abstract: We model the dynamics of a closed quantum system brought out of mechanical equilibrium, undergoing a non-driven, spontaneous, thermodynamic transformation. In particular, we consider a quantum particle in a box with a moving and insulating wall, subjected to a constant external pressure. Under the assumption that the wall undergoes classical dynamics, we obtain a system of differential equations that describes the evolution of the quantum system and the motion of the wall. We study the dynamics of such system and the thermodynamics of the process of compression and expansion of the box. Our approach is able to capture several properties of the thermodynamic transformations considered and goes beyond a description in terms of an ad-hoc time-dependent Hamiltonian, considering instead the mutual interactions between the dynamics of the quantum system and the parameters of its Hamiltonian. TI - Modelling mechanical equilibration processes of closed quantum systems: a case-study JF - Quantum Physics DO - 10.1103/PhysRevE.105.014127 DA - 2021-09-27 UR - https://www.deepdyve.com/lp/arxiv-cornell-university/modelling-mechanical-equilibration-processes-of-closed-quantum-systems-965nhNlC75 VL - 2022 IS - 2109 DP - DeepDyve ER -