TY - JOUR AU - Beni, Y. T. AB - Nonlinear formulation of isotropic piezoelectric Euler-Bernoulli nano-beam is developed based on consistent size-dependent piezoelectricity theory. By considering geometrically nonlinear and axial displacement of the centroid of beam sections, basic nonlinear equations of piezoelectric nanobeam are derived using Hamilton's principle and variational method. Afterwards, in the special case for the formulation derived, hinged-hinged piezoelectric nanobeam is studied, and static deflection as well as free vibrations of the nanobeam under mechanical loads is determined. In this case, results of the linear formulation of the size-dependent theory are compared to those of the linear and nonlinear classical continuum theory. Nonlinear analysis, Piezoelectricity, Flexoelectricity, Consistent couple stress theory References 1. Huang Y. , Duan X. F. , Cui Y. and Lieber C. M. , “ Gallium nitride nanowire nanodevices ,” Nano Letters , 2 , pp. 101 – 104 ( 2002 ). Google Scholar Crossref Search ADS WorldCat 2. Chen X. , Xu S.Y. , Yao N. and Shi Y. , “ 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers ,” Nano Letters , 10 , pp. 2133 – 2137 ( 2010 ). Google Scholar Crossref Search ADS PubMed WorldCat 3. Yamano A. , Takata K. and Kozuka H. , “ Ferroelectric domain structures of 0.4-μm-thick Pb(Zr,Ti)O3 films prepared by polyvinylpyrrolidone-assisted Sol-Gel method ,” Journal of Applied Physics , 111 , pp. 054109-1 -054109-5 ( 2102 ). OpenURL Placeholder Text WorldCat 4. Xu S. Y. , Shi Y. and Kim S. G. , “ Fabrication and mechanical property of nano piezoelectric fibres ,” Nanotechnology , 17 , pp. 4497 – 4501 ( 2006 ). Google Scholar Crossref Search ADS WorldCat 5. Minary-Jolandan M. , Bernal R. A. , Kuljanishvili I. , Parpoil V. and Espinosa H. D. , “ Individual GaN nanowires exhibit strong piezoelectricity in 3D ,” Nano Letters , 12 , pp. 970 – 976 ( 2012 ). Google Scholar Crossref Search ADS PubMed WorldCat 6. Kulkarni A. J. , Zhou M. and Ke F. J. , “ Orientation and size dependence of the elastic properties of zinc oxide nanobelts ,” Nanotechnology , 16 , pp. 2749 – 2756 ( 2005 ). Google Scholar Crossref Search ADS WorldCat 7. Zhang Y. H. , Liu B. and Fang D. N. , “ Stress-induced phase transition and deformation behavior of BaTiO3 nanowires ,” Journal of Applied Physics , 110 , pp. 054109-1 -054109-5 ( 2011 ). OpenURL Placeholder Text WorldCat 8. Xiang H. J. , Yang J. L. , Hou J. G. and Zhu Q. S. , “ Piezoelectricity in ZnO nanowires: A first-principles study ,” Applied Physics Letters , 89 , pp. 223111-1 -223111-3 ( 2006 ). OpenURL Placeholder Text WorldCat 9. Zeighampour H. and Tadi Beni Y. , “ Size-dependent vibration of fluid-conveying double-walled carbon nanotubes using couple stress shell theory ,” Physica E , 61 , pp. 28 – 39 ( 2014 ). Google Scholar Crossref Search ADS WorldCat 10. Zeighampour H. and Tadi Beni Y. , “ Analysis of conical shells in the framework of coupled stresses theory ,” Internaional Journal of Engineering Scince , 81 , pp. 107 – 122 ( 2014 ). OpenURL Placeholder Text WorldCat 11. Dashtaki P. M. and Tadi Beni Y. , “ Effects of Casimir Force and Thermal Stresses on the Buckling of Electrostatic Nanobridges Based on Couple Stress Theory ,” Arabian Journal for Science and Engineering , pp. 1 – 11 ( 2014 ). OpenURL Placeholder Text WorldCat 12. Tadi Beni Y. , Mehralian F. and Razavi H. , “ Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory ,” Composite Structures , 120 , pp. 65 – 78 ( 2015 ). Google Scholar Crossref Search ADS WorldCat 13. Tadi Beni Y. and Karimi Zeverdejani M. , “ Free vibration of microtubules as elastic shell model based on modified couple stress theory ,” Journal of Mechanics in Medicine and Biology , 15 , pp. 1550037-1 -1550037-23 ( 2015 ). OpenURL Placeholder Text WorldCat 14. Tadi Beni Y. , Karimipour I. and Abadyan M. , “ Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory ,” Journal of Mechanical Science and Technology , 28 , pp. 3749 – 3757 ( 2014 ). Google Scholar Crossref Search ADS WorldCat 15. Tadi Beni Y. and Abadyan M. , “ Size-dependent pull-in instability of torsional nano-actuator ,” Physica Scripta , 88 , pp. 055801-1 -055801-10 ( 2013 ). OpenURL Placeholder Text WorldCat 16. Tadi Beni Y. and Abadyan M. , “ Use of strain gradient theory for modeling the size-dependent pull-in of rotational nano-mirror in the presence of molecular force ,” International Journal of Modern Physics B , 27 , pp. 1350083-1 -1350083-18 ( 2013 ). OpenURL Placeholder Text WorldCat 17. Zeighampour H. and Tadi Beni Y. , “ Cylindrical thin-shell model based on modified strain gradient theory ,” Internaional Journal of Engineering Scince , 78 , pp. 27 – 47 ( 2014 ). OpenURL Placeholder Text WorldCat 18. Zeverdejani M. K. and Tadi Beni Y. , “ The nano scale vibration of protein microtubules based on modified strain gradient theory ,” Current Applied Physics , 13 , pp. 1566 – 1576 ( 2013 ). Google Scholar Crossref Search ADS WorldCat 19. Liang F. and Su Y. , “ Stability analysis of a single-walled carbon nanotube conveying pulsating and viscous fluid with nonlocal effect ,” Applied. Mathematical Modelling , 37 , pp. 6821 – 6828 ( 2013 ). Google Scholar Crossref Search ADS WorldCat 20. Ansari R. , Mohammadi V. , Faghih Shojaei M. , Gholami R. and Sahmani S. , “ Postbuckling characteristics of nanobeams based on the surface elasticity theory ,” Composite Part B: Engineering , 55 , pp. 240 – 246 ( 2013 ). Google Scholar Crossref Search ADS WorldCat 21. Voigt W. , “ Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals)” , Abhandlungen zur Geschichte der mathematischen Wissenschaften , 34 ( 1887 ). OpenURL Placeholder Text WorldCat 22. Cosserat E. and Cosserat F. , Théorie des corps déformables (Theory of Deformable Bodies) , Librairie Scientifique A. Hermann et fils , Paris ( 1909 ). Google Scholar Google Preview OpenURL Placeholder Text WorldCat COPAC 23. Toupin R. A. , “ Elastic materials with couple-stresses ,” Archive for Rational Mechanics and Analysis , 11 , pp. 385 – 414 ( 1962 ). Google Scholar Crossref Search ADS WorldCat 24. Mindlin R. D. , Tiersten H. F. , “ Effects of couple-stresses in linear elasticity ,” Archive for Rational Mechanics and Analysis , 11 , pp. 415 – 488 ( 1962 ). Google Scholar Crossref Search ADS WorldCat 25. Koiter W. T. , “ Couple stresses in the theory of elasticity, I and II ,” Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen. Series B: Physical Sciences , 67 , pp. 17 – 44 ( 1964 ). OpenURL Placeholder Text WorldCat 26. Hadjesfandiari A. R. and Dargush F. G. , “ Couple stress theory for solids ,” International Journal of Solids and Structures , 48 , pp. 2496 – 2510 ( 2011 ). Google Scholar Crossref Search ADS WorldCat 27. Lazar M. , Maugin G. A. and Aifantis E. C. , “ On dislocations in a special class of generalized elasticity ,” Physica Status Solidi (b) , 242 , pp. 2365 – 2390 ( 2005 ). Google Scholar Crossref Search ADS WorldCat 28. Wang G.-F. , Yu S.-W. and Feng X.-Q. , “ A piezoelectric constitutive theory with rotation gradient effects ,” European Journal of Mechanics A/Solid , 23 , pp. 455 – 466 ( 2004 ). Google Scholar Crossref Search ADS WorldCat 29. Hadjesfandiari A. R. , “ Size-dependent piezoelectricity ,” International Journal of Solids and Structures , 50 , pp. 2781 – 2791 ( 2013 ). Google Scholar Crossref Search ADS WorldCat 30. Maranganti R. , Sharma N. D. and Sharma P. , “ Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions ,” Physical Review B , 74 , pp. 14110-1 -14110-14 ( 2006 ). OpenURL Placeholder Text WorldCat 31. Yan Z. and Jiang L. , “ Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity ,” Journal of Physics D: Applied Physics , 46 , pp. 355502-1 -355502-7 ( 2013 ). OpenURL Placeholder Text WorldCat 32. Lam D. C. C. , Yang F. , Chong A. C. M. , Wang J. and Tong P. , “ Experiments and theory in strain gradient elasticity ,” Journal of the Mechanics and Physics of Solids , 51 , pp. 1477 – 1508 ( 2003 ). Google Scholar Crossref Search ADS WorldCat 33. Stölken J. and Evans A. , “ A microbend test method for measuring the plasticity length scale ,” Acta Materialla , 46 , pp. 5109 – 5115 ( 1998 ). Google Scholar Crossref Search ADS WorldCat 34. Nix W. D. and Gao H. , “ Indentation size effects in crystalline materials: a law for strain gradient plasticity ,” Journal of the Mechanics and Physics of Solids , 46 , pp. 411 – 425 ( 1998 ). Google Scholar Crossref Search ADS WorldCat 35. McElhaney K. , Vlassak J. and Nix W. , “ Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments ,” Journal of Materials Research , 13 , pp. 1300 – 1306 ( 1998 ). Google Scholar Crossref Search ADS WorldCat 36. Chong A. and Lam D. C. , “ Strain gradient plasticity effect in indentation hardness of polymers ,” Journal of Materials Research , 14 , pp. 4103 – 4110 ( 1999 ). Google Scholar Crossref Search ADS WorldCat 37. Cao Y. , Nankivil D. , Allameh S. and Soboyejo W. , “ Mechanical properties of Au films on silicon substrates ,” Materials and Manufacturing Processes , 22 , pp. 187 – 194 ( 2007 ). Google Scholar Crossref Search ADS WorldCat 38. Son D. , Jeong J.-H. and Kwon D. , “ Film-thickness considerations in microcantilever-beam test in measuring mechanical properties of metal thin film ,” Thin Solid Films , 437 , pp. 182 – 187 ( 2003 ). Google Scholar Crossref Search ADS WorldCat 39. Maranganti R. and Sharma P. , “ A novel atomistic approach to determine strain-gradient elasticity constants: Tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies ,” Journal of the Mechanics and Physics of Solids , 55 , pp. 1823 – 1852 ( 2007 ). Google Scholar Crossref Search ADS WorldCat 40. Liu J. F. , “ He's variational approach for nonlinear oscillators with high nonlinearity ,” Computers and Mathematics with Applications , 58 , pp. 2423 – 2426 ( 2009 ). Google Scholar Crossref Search ADS WorldCat 41. Fallah A. and Aghdam M. M. , “ Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation ,” Composites Part B , 43 , pp. 1523 – 1530 ( 2012 ). OpenURL Placeholder Text WorldCat 42. He J. H. , “ Variational approach for nonlinear oscillators ,” Chaos, Solitons Fractals , 34 , pp. 1430 – 1439 ( 2007 ). Google Scholar Crossref Search ADS WorldCat 43. Xia W. , Wang L. and Yin L. , “ Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration ,” International Journal of Engineering Science , 48 , pp. 2044 – 2053 ( 2010 ). Google Scholar Crossref Search ADS WorldCat 44. Odibat Z. M. and Momani S. , “ Application of variational iteration method to Nonlinear differential equations of fractional order ,” International Journal of Nonlinear Science and Numerical Simulations , 7 , pp. 27 – 34 ( 2006 ). OpenURL Placeholder Text WorldCat 45. Bildik N. and Konuralp A. , “ The use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for solving different types of nonlinear partial differential equations ,” International Journal of Nonlinear Science and Numerical Simulations , 7 , pp. 65 – 70 ( 2006 ). OpenURL Placeholder Text WorldCat 46. Momani S. and Abuasad S. , “ Application of He's variational iteration method to Helmholtz equation ,” Chaos, Solitons & Fractals , 27 , pp. 1119 – 1123 ( 2006 ). Google Scholar Crossref Search ADS WorldCat 47. Catalan G. , Lubk A. , Vlooswijk A. H. G. , Snoeck E. , Magen C. , Janssens A. , Rispens G. , Rijnders G. , Blank D. H. and Noheda A. B. , “ Flexoelectric rotation of polarization in ferroelectric thin films ,” Nature Materials , 10 , pp. 963 – 967 ( 2011 ). Google Scholar Crossref Search ADS PubMed WorldCat 48. Bradley T. D. , Hadjesfandiari A. R. and Dargush G. F. , “ Size-dependent piezoelectricity: A 2D finite element formulation for electric field-mean curvature coupling in dielectrics ,” European Journal of Mechanics A/Solid , 49 , pp. 308 – 320 ( 2015 ). Google Scholar Crossref Search ADS WorldCat 49. Nowacki W. , “ Mathematical models of phenomenological piezoelectricity ,” Banach center publications , 15 , pp. 593 – 607 ( 1985 ). Google Scholar Crossref Search ADS WorldCat 50. Tagantsev A. K. , “ Piezoelectricity and flexoelectricity in crystalline dielectrics ,” Physical Review B , 34 , pp. 5883 – 5889 ( 1986 ). Google Scholar Crossref Search ADS WorldCat This content is only available as a PDF. Author notes * (tadi@eng.sku.ac.ir) © The Society of Theoretical and Applied Mechanics 2017 The Society of Theoretical and Applied Mechanics © The Society of Theoretical and Applied Mechanics 2017 TI - A Nonlinear Electro-Mechanical Analysis of Nanobeams Based on the Size-Dependent Piezoelectricity Theory JO - Journal of Mechanics DO - 10.1017/jmech.2016.65 DA - 2017-06-01 UR - https://www.deepdyve.com/lp/oxford-university-press/a-nonlinear-electro-mechanical-analysis-of-nanobeams-based-on-the-size-5wPDkTR3nn SP - 289 EP - 301 VL - 33 IS - 3 DP - DeepDyve ER -