TY - JOUR AU1 - Tsukahara, Y. AU2 - Puchala, R. AU3 - Sahlu, T. AU4 - Goetsch, A. L. AB - ABSTRACT Twenty Boer (6.1 mo old and 21.3 kg) and 20 Spanish (6.6 mo old and 19.7 kg) goat wethers were used to determine effects of brackish water on feed intake, digestion, heat energy, and blood constituents. Brackish water had 6,900 mg/L total dissolved salts, 1,885 mg/L Na, 75 mg/L Mg, 1,854 mg/L chloride, 2,478 mg/L sulfate, and 9 mg/L boron. Water treatments were 100% tap water (control), 100% of a brackish water source (100-BR), 33% control and 67% brackish water (67-BR), and 67% control and 33% brackish water (33-BR). Water and a moderate-quality grass hay (8.5% CP and 68% NDF) were offered free choice. The experiment consisted of 14 d of adaptation, 5 d for metabolizability measures, and 2 d for determining gas exchange and heat energy. There were no interactions (P > 0.05) between breed and water treatment. Water intake (931, 942, 949, and 886 g/d [SE 59.1] for the control, 33-BR, 67-BR, and 100-BR, respectively) and DM intake (525, 556, 571, and 527 g/d [SE 31.0] for the control, 33-BR, 67-BR, and 100-BR, respectively) were similar among treatments (P = 0.876 and P = 0.667, respectively). Urinary water was greater for brackish water treatments than for the control (P = 0.003; 211, 317, 319, and 285 g/d [SE 25.6] for the control, 33-BR, 67-BR, and 100-BR, respectively) and fecal water content was similar among treatments (P = 0.530; 247, 251, 276, and 257 g/d [SE 19.0] for the control, 33-BR, 67-BR, and 100-BR, respectively), implying less water loss by other means such as evaporation when brackish water was consumed. Total tract OM digestibility was lower (P = 0.049) for treatments with brackish water than for treatments without brackish water (64.2, 61.5, 58.6, and 59.3% [SE 1.86] for the control, 33-BR, 67-BR, and 100-BR, respectively), although ME intake was similar among treatments (P = 0.940; 4.61, 4.57, 4.60, and 4.31 MJ/d [SE 0.394] for the control, 33-BR, 67-BR, and 100-BR, respectively). Daily heat energy in kilojoules per kilogram BW0.75 was less with brackish water than without brackish water (P = 0.001; 474, 436, 446, and 445 kJ/kg BW0.75 [SE 7.7] for the control, 33-BR, 67-BR, and 100-BR, respectively), although values in megajoules were similar among treatments (P = 0.588; 4.36, 4.12, 4.22, and 4.18 MJ [SE 0.124] for the control, 33-BR, 67-BR, and 100-BR, respectively). Body weight of wethers consuming brackish water decreased less than that of wethers consuming the control water (P = 0.006; −37, −14, −7, and −16 g [SE 7.2] for the control, 33-BR, 67-BR, and 100-BR, respectively), but recovered energy was similar among treatments (P = 0.923; 0.25, 0.45, 0.38, and 0.13 MJ/d [SE 0.356] for the control, 33-BR, 67-BR, and 100-BR, respectively). In conclusion, brackish water inclusion in drinking water had a number of effects, but it does not appear that consumption of this source would adversely impact performance of growing meat goats. INTRODUCTION Many livestock ruminants consume water moderate to high in total dissolved salts (TDS). This includes areas in countries such as Egypt (Assad and El-Sherif, 2002) and Australia (McGregor, 2004) and also the central United States (Androwski et al., 2011). High intake of salt through drinking water as well as halophytic and salt-tolerant plants can adversely affect performance, primarily because of decreased feed intake (Wilson, 1966; Olsson and McKinley, 1980; Assad and El-Sherif, 2002; McGregor, 2004). In addition, ruminal microbial activity can be impacted (Durand and Kawashima, 1980; Mackie and Therion, 1984), and there is a report of a decreased efficiency of energy utilization by sheep consuming saltbush (Atriplex barclayana), high in ash, and a diet very high in sodium chloride (Arieli et al., 1989). However, a complicating factor in many studies of effects of high salt consumption is the form of salt. Effects of brackish or saline water would not necessarily be the same as those of diets or fresh water with added sodium chloride mainly because of differences in levels of other minerals (Rossi et al., 1998). If adverse effects of consumption by ruminant livestock of a source of drinking water moderate to high in TDS are sufficiently severe, in some instances, management practices can be altered to lessen the effects, the most obvious examples being change to another water source or dilution the water source. Moreover, differences among species exist, such as greater salt tolerance by goats than by sheep, and breed differences within species are possible (McGregor, 2004). Therefore, the objectives of this experiment were to determine the effects of brackish water on feed intake, digestion, heat energy, and blood constituents of growing Boer and Spanish goat wethers. MATERIALS AND METHODS Animals, Housing, and Phases The experimental protocol was approved by the Langston University Animal Care and Use Committee. Twenty Boer (186 ± 3.7 d initial age and 21.3 ± 0.44 kg BW) and 20 Spanish (200 ± 2.2 d initial age and 19.7 ± 0.52 kg BW) goat wethers were used. They had been previously vaccinated against clostridial organisms and treated for internal parasites and were adapted over a 2-wk period to individual housing in 1.05 by 0.55 m elevated pens with a plastic-coated expanded metal floor. Natural photoperiod was mimicked by use of fluorescent lights. A coarsely ground (3.8-cm screen) grass hay was fed free choice at approximately 125% of the amount consumed on the preceding few days at 0800 and 1600 h, and tap (i.e., low in TDS) water was offered free choice at these times as well. Hay refusals were collected, weighed, and discarded before the morning meal. There was 1 d for each of 4 wethers when there were no refusals, and refusals averaged 26.8 ± 2.02% of intake. During the adaptation period, wethers spent 2 d in metabolism cages and an additional 2 d in ones fitted with training head boxes to become accustomed to later measurement conditions. Each breed was divided into 5 sets consisting of 4 animals, with one assigned to each of the 4 water treatments. Sets began the experiment every 2 d, alternating between breeds. The 21-d experimental period consisted of 14 d for adjustment to treatments, 5 d for determining metabolizability (e.g., hay and water intake measurements and urine and fecal sample collection), and 2 d for gas exchange measurement as described later. Body weight was measured before the morning meal at the beginning of adjustment, digestibility, and calorimetry phases and the last day of the period. The weighing increment was 50 g and the balance was calibrated before the experiment and periodically thereafter. Average daily gain was estimated by regressing BW against time. The experiment occurred between November 1 and December 9, 2012, when the outside ambient temperature ranged from −3.9 to 30°C and averaged 12.8°C. However, supplemental heat was provided in the housing facility when the outside temperature was low, so that thermoneutral conditions were maintained at all times. Temperature (20–23°C) in the calorimetry room was maintained with a window air condition/heating unit (Carrier Corp., Farmington, CT), and humidity was maintained at 50 to 55% through use of a dehumidifier (Whirlpool Corp., Benton Harbor, MI). Ambient temperature and relative humidity were determined every 30 min with a Hobo Temperature/RH Data Logger (model U12-011; Onset Computer Corp., Bourne, MA) in the room with elevated pens and metabolism crates, with an average hourly temperature of 17.0 ± 0.10°C. The thermoneutral zone of goats has not been extensively studied; however, Lu (1989) stated that the upper critical temperature of goats consuming feed for maintenance is 25 to 30°C. Toussaint (1997) proposed a thermal comfort range for lactating goats of 6 to 27°C with 60 to 80% humidity and also optimal conditions of 10 to 18°C. Moreover, Patra et al. (2009) found little to no effect of nonextreme changes in temperature and humidity in central Oklahoma throughout the year on the maintenance energy requirement of yearling Boer and Spanish doelings. Based on these reports and conditions in the present experiment, it would seem that the wethers were in a thermoneutral zone without excessive moisture loss due to high respiration rate to dissipate heat. Treatments The experiment was a completely randomized design and the treatment arrangement was a 2 × 4 factorial. Five wethers of each breed were subjected to 1 of 4 drinking water treatments, which were 100% tap water (control), 100% of a brackish water source (100-BR), 33% control and 67% brackish water (67-BR), and 67% control and 33% brackish water (33-BR). Brackish water was from a well providing water for goats and sometimes sheep grazing during summer periods and occasionally for goat bucks most of the year. Water was collected, sampled, and placed in large containers weekly, and the 2 mixtures (i.e., 67-BR and 33-BR) were prepared daily. Composition of the control and brackish water sources determined at the Oklahoma State University Soil, Water, & Forage Analytical Laboratory (Stillwater, OK) is shown in Table 1. The same ground hay as in the preliminary period was offered for ad libitum consumption, and 2 L of water was offered for 15 min at each time or slightly longer if a wether had not finished drinking. There was free access to a small piece of mineral salt block (American Stockman Big 6 Mineral Salt; ingredients: 96–99% NaCl, 2,400 mg/kg Mn, 2,400 mg/kg Fe, 260–380 mg/kg, 70 mg/kg I, and 40 mg/kg Co; Compass Minerals, Overland Park, KS) placed in the bottom of each feeder. Table 1. Composition of control and brackish well water consumed by Boer and Spanish yearling wether goats   Water source  Item  Control  Brackish  Sodium, mg/kg  57  1,885  Calcium, mg/kg  27  369  Magnesium, mg/kg  42.6  75.0  Potassium, mg/kg  5.0  4.6  Chloride, mg/kg  111  1,854  Sulfate, mg/kg  27  2,478  Boron, mg/kg  0.10  9.00  Bicarbonate, mg/kg  211  233  pH  8.44  8.30  Electrical conductivity, dS/m  0.765  9.788  Fe, mg/kg  0.0038  0.0032  Total soluble salts, mg/kg  505  6,900  Sodium adsorption ratio  1.6  23.4  Hardness, mg/kg  244  1,230  Alkalinity, mg/kg as CaCO3  180  192    Water source  Item  Control  Brackish  Sodium, mg/kg  57  1,885  Calcium, mg/kg  27  369  Magnesium, mg/kg  42.6  75.0  Potassium, mg/kg  5.0  4.6  Chloride, mg/kg  111  1,854  Sulfate, mg/kg  27  2,478  Boron, mg/kg  0.10  9.00  Bicarbonate, mg/kg  211  233  pH  8.44  8.30  Electrical conductivity, dS/m  0.765  9.788  Fe, mg/kg  0.0038  0.0032  Total soluble salts, mg/kg  505  6,900  Sodium adsorption ratio  1.6  23.4  Hardness, mg/kg  244  1,230  Alkalinity, mg/kg as CaCO3  180  192  View Large Table 1. Composition of control and brackish well water consumed by Boer and Spanish yearling wether goats   Water source  Item  Control  Brackish  Sodium, mg/kg  57  1,885  Calcium, mg/kg  27  369  Magnesium, mg/kg  42.6  75.0  Potassium, mg/kg  5.0  4.6  Chloride, mg/kg  111  1,854  Sulfate, mg/kg  27  2,478  Boron, mg/kg  0.10  9.00  Bicarbonate, mg/kg  211  233  pH  8.44  8.30  Electrical conductivity, dS/m  0.765  9.788  Fe, mg/kg  0.0038  0.0032  Total soluble salts, mg/kg  505  6,900  Sodium adsorption ratio  1.6  23.4  Hardness, mg/kg  244  1,230  Alkalinity, mg/kg as CaCO3  180  192    Water source  Item  Control  Brackish  Sodium, mg/kg  57  1,885  Calcium, mg/kg  27  369  Magnesium, mg/kg  42.6  75.0  Potassium, mg/kg  5.0  4.6  Chloride, mg/kg  111  1,854  Sulfate, mg/kg  27  2,478  Boron, mg/kg  0.10  9.00  Bicarbonate, mg/kg  211  233  pH  8.44  8.30  Electrical conductivity, dS/m  0.765  9.788  Fe, mg/kg  0.0038  0.0032  Total soluble salts, mg/kg  505  6,900  Sodium adsorption ratio  1.6  23.4  Hardness, mg/kg  244  1,230  Alkalinity, mg/kg as CaCO3  180  192  View Large Measures Wethers resided in metabolism crates (0.7 by 1.2 m; plastic-coated expanded metal floor) on d 15 to 19 for total collection of feces and urine. Urine was acidified with 20 mL of 20% (vol/vol) H2SO4 placed in collection vessels to maintain pH below 3.0. Composite samples of feces and urine were formed by collecting 10% daily aliquots. Feed and refusal samples were also collected daily on Day 15 to 19 to form composite samples. Samples were analyzed for DM (ID 967.03; AOAC, 2006) , ash (ID 942.05; AOAC, 2006), nitrogen (Leco TruMac CN; LECO Corp., St. Joseph, MI), NDF with use of heat-stable amylase (Van Soest et al., 1991) and containing residual ash (using the filter bag technique of ANKOM Technology Corp., Fairport, NY), and GE using a bomb calorimeter (Parr 6300; Parr Instrument Co., Inc., Moline, IL). Composition of grass hay used in the study and refusals is shown in Table 2. Urine samples were analyzed for DM (lyophilization), and nitrogen and GE concentrations in lyophilized urine samples were determined as described above. Table 2. Composition of grass hay consumed by Boer and Spanish yearling wether goats and refusals Item  Hay  Refusals  Ash, % DM  7.7  8.2  CP, % DM  8.5  7.0  GE, MJ/kg DM  17.7  17.3  NDF, % DM  67.8  74.5  Item  Hay  Refusals  Ash, % DM  7.7  8.2  CP, % DM  8.5  7.0  GE, MJ/kg DM  17.7  17.3  NDF, % DM  67.8  74.5  View Large Table 2. Composition of grass hay consumed by Boer and Spanish yearling wether goats and refusals Item  Hay  Refusals  Ash, % DM  7.7  8.2  CP, % DM  8.5  7.0  GE, MJ/kg DM  17.7  17.3  NDF, % DM  67.8  74.5  Item  Hay  Refusals  Ash, % DM  7.7  8.2  CP, % DM  8.5  7.0  GE, MJ/kg DM  17.7  17.3  NDF, % DM  67.8  74.5  View Large On d 20 and 21, wethers were situated in a room with 4 metabolism cages fitted with head boxes of an indirect, open-circuit respiration calorimetry system (Sable Systems International, Las Vegas, NV). Heat energy and heart rate were determined as in other studies (Puchala et al., 2007, 2009). Oxygen concentration was analyzed using a fuel cell FC-1B O2 analyzer (Sable Systems International), and CH4 and CO2 concentrations were measured with infrared analyzers (CA-1B for CO2 and MA-1 for CH4; Sable Systems International). Prior to gas exchange measurements for each wether set, analyzers were calibrated with gases of known concentrations. Ethanol combustion tests were performed to ensure complete recovery of O2 and CO2 produced with the same flow rates as used during measurements. Heat energy was determined according to the Brouwer (1965) equation. Intake of DE was calculated as the difference between GE intake and fecal energy, energy lost as CH4 was total CH4 emitted in L/day × 39.5388 kJ/L (Brouwer, 1965), and ME was the difference between DE and the sum of energy in urine and methane. Recovered energy was the difference between ME and heat energy. Jugular blood samples were collected at 1100 h on the first day of the adaptation period (d 1) and at the end of the calorimetry phase (d 21). Immediately after sampling, hemoglobin concentration and oxygen saturation were determined with a OSM 3 Hemoximeter (Radiometer America, Westlake, OH) and glucose and lactate concentrations were measured with a YSI 2300 Plus Glucose & Lactate Analyzer (YSI Inc., Yellow Springs, OH). Oxygen was calculated as described by Eisemann and Nienaber (1990). Packed cell volume (PCV) was determined with heparinized tubes (Clay Adams, Parsippany, NJ). Plasma was collected by centrifugation at 3,000 × g for 20 min at 10°C and used to determine osmolality with a model 2020 Osmometer (Advanced Instruments, Inc., Norwood, MA). Statistical Analysis Data were analyzed with a mixed effects model (Littell et al., 1998) consisting of breed, water treatment, and their interaction, with a random effect of animal within breed × water treatment. No interactions were significant. Breed means were separated by LSD, and orthogonal contrasts were performed for inclusion of brackish water (control vs. mean of 33-BR, 67-BR, and 100-BR) and linear and quadratic effects of level of brackish water with the 33-BR, 67-BR, and 100-BR treatments. Values in the adaptation period were used as covariates for blood measures. RESULTS Feed and Water Intake and Digestion and Energy Measures Water intake was similar among water treatments (P > 0.05; Table 3). Water intake in grams per day was greater (P = 0.031) by Boer wethers than by Spanish wethers, but this was due to greater BW of Boer wethers as addressed later. Intake of ash from water, based on the level of TDS, was greater with than without brackish water and linearly increased (P < 0.001) as the nonzero level of brackish water increased, with ash from water contributing approximately 13% of total ash intake. Intakes of DM, OM, and GE (Tables 3 and 4) were similar (P < 0.05) among water treatments and between breeds, although numerically, intakes were greater for Boer wethers than for Spanish wethers (P = 0.088, P = 0.088, P = 0.096, and P = 0.093 for feed DM, total DM, OM, and GE, respectively). Table 3. Intake of water and ash and intake and digestion of DM, OM, nitrogen, and NDF in Boer and Spanish yearling wether goats consuming different levels of brackish water   Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Water intake      Drinking, g/d  0.031  0.898  0.717  0.959  0.544  0.649  Boer  935  1,001  943  963  82.8  Spanish  859  815  889  751      Total          g/d  0.030  0.876  0.704  0.936  0.507  0.636  Boer  970  1,037  975  995  83.6  Spanish  892  847  922  777          g/kg BW0.75  0.209  0.832  0.666  0.669  0.541  0.587  Boer  102.1  106.8  100.8  103.0  9.24  Spanish  100.8  92.3  101.4  84.6          g/g DM intake  0.737  0.890  0.838  0.450  0.852  0.939  Boer  1.77  1.77  1.77  1.68  0.190  Spanish  1.86  1.59  1.61  1.75      Water loss, g/d          Urinary  0.184  0.019  0.657  0.003  0.383  0.570  Boer  257  328  325  291  36.2  Spanish  166  305  312  278          Fecal  0.365  0.713  0.379  0.530  0.832  0.343  Boer  234  263  279  290  26.9  Spanish  261  239  273  223      Water ash intake          g/d  0.029  <0.001  0.202  <0.001  <0.001  0.488  Boer  0.47  2.64  4.49  6.65  0.348  Spanish  0.43  2.15  4.24  5.18          Percent total ash intake  0.776  <0.001  0.886  <0.001  <0.001  0.978  Boer  1.1  5.5  9.5  12.7  0.82  Spanish  1.2  5.0  8.8  13.2      Feed DM          Intake, g/d  0.088  0.667  0.553  0.466  0.523  0.437  Boer  553  584  566  586  43.8  Spanish  497  527  577  469          Digestion, %  0.870  0.209  0.809  0.064  0.470  0.454  Boer  62.4  61.7  58.2  60.3  2.62  Spanish  64.8  60.3  58.4  57.9          Digestion, g/d  0.176  0.893  0.649  0.956  0.475  0.770  Boer  343  361  333  354  33.3  Spanish  322  319  340  278      Total DM          Intake, g/d  0.088  0.659  0.559  0.395  0.601  0.446  Boer  553  587  570  593  43.8                Spanish  498  529  581  477            Digestion, %  0.869  0.259  0.808  0.081  0.539  0.452  Boer  62.4  61.9  58.6  60.7  2.59                Spanish  64.8  60.4  58.7  58.4            Digestion, g/d  0.171  0.923  0.641  0.935  0.543  0.766  Boer  343  364  337  360  33.4                Spanish  323  321  345  284    OM      Intake, g/d  0.095  0.676  0.561  0.539  0.467  0.439  Boer  509  536  517  533  40.53                Spanish  459  484  528  428        Digestion, %  0.937  0.158  0.809  0.049  0.408  0.422  Boer  62.9  62.2  58.4  60.4  2.63                Spanish  65.5  60.9  58.7  58.2        Digestion, g/d  0.195  0.844  0.664  0.849  0.407  0.785  Boer  318  334  306  323  30.99                Spanish  301  296  313  255    Nitrogen      Intake, g/d  0.033  0.694  0.587  0.464  0.570  0.452  Boer  7.62  8.05  7.81  8.07  0.590                Spanish  6.69  7.05  7.74  6.35        Digestion, %  0.364  0.362  0.907  0.123  0.386  0.859  Boer  62.3  60.6  58.8  59.5  2.94                Spanish  62.1  59.1  57.4  55.0        Digestion, g/d  0.064  0.912  0.778  0.984  0.546  0.699  Boer  4.7  4.9  4.6  4.8  0.46                Spanish  4.2  4.2  4.5  3.7        Urinary, g/d  0.016  0.376  0.943  0.181  0.945  0.257  Boer  2.6  3.2  2.6  3.3  0.44                Spanish  1.8  2.4  2.2  2.3        Balance, g/d  0.717  0.501  0.983  0.338  0.618  0.280  Boer  2.1  1.6  2.0  1.5  0.62                Spanish  2.4  1.8  2.3  1.3    NDF      Intake, g/d  0.277  0.693  0.572  0.488  0.542  0.448  Boer  368  390  377  391  31.0                Spanish  344  363  398  324        Digestion, %  0.262  0.311  0.783  0.147  0.398  0.383  Boer  59.1  60.3  55.8  57.7  2.92                Spanish  65.0  60.8  58.3  58.4        Digestion, g/d  0.792  0.881  0.685  0.991  0.439  0.827  Boer  217  236  213  227  24.4  Spanish  225  222  235  193    Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Water intake      Drinking, g/d  0.031  0.898  0.717  0.959  0.544  0.649  Boer  935  1,001  943  963  82.8  Spanish  859  815  889  751      Total          g/d  0.030  0.876  0.704  0.936  0.507  0.636  Boer  970  1,037  975  995  83.6  Spanish  892  847  922  777          g/kg BW0.75  0.209  0.832  0.666  0.669  0.541  0.587  Boer  102.1  106.8  100.8  103.0  9.24  Spanish  100.8  92.3  101.4  84.6          g/g DM intake  0.737  0.890  0.838  0.450  0.852  0.939  Boer  1.77  1.77  1.77  1.68  0.190  Spanish  1.86  1.59  1.61  1.75      Water loss, g/d          Urinary  0.184  0.019  0.657  0.003  0.383  0.570  Boer  257  328  325  291  36.2  Spanish  166  305  312  278          Fecal  0.365  0.713  0.379  0.530  0.832  0.343  Boer  234  263  279  290  26.9  Spanish  261  239  273  223      Water ash intake          g/d  0.029  <0.001  0.202  <0.001  <0.001  0.488  Boer  0.47  2.64  4.49  6.65  0.348  Spanish  0.43  2.15  4.24  5.18          Percent total ash intake  0.776  <0.001  0.886  <0.001  <0.001  0.978  Boer  1.1  5.5  9.5  12.7  0.82  Spanish  1.2  5.0  8.8  13.2      Feed DM          Intake, g/d  0.088  0.667  0.553  0.466  0.523  0.437  Boer  553  584  566  586  43.8  Spanish  497  527  577  469          Digestion, %  0.870  0.209  0.809  0.064  0.470  0.454  Boer  62.4  61.7  58.2  60.3  2.62  Spanish  64.8  60.3  58.4  57.9          Digestion, g/d  0.176  0.893  0.649  0.956  0.475  0.770  Boer  343  361  333  354  33.3  Spanish  322  319  340  278      Total DM          Intake, g/d  0.088  0.659  0.559  0.395  0.601  0.446  Boer  553  587  570  593  43.8                Spanish  498  529  581  477            Digestion, %  0.869  0.259  0.808  0.081  0.539  0.452  Boer  62.4  61.9  58.6  60.7  2.59                Spanish  64.8  60.4  58.7  58.4            Digestion, g/d  0.171  0.923  0.641  0.935  0.543  0.766  Boer  343  364  337  360  33.4                Spanish  323  321  345  284    OM      Intake, g/d  0.095  0.676  0.561  0.539  0.467  0.439  Boer  509  536  517  533  40.53                Spanish  459  484  528  428        Digestion, %  0.937  0.158  0.809  0.049  0.408  0.422  Boer  62.9  62.2  58.4  60.4  2.63                Spanish  65.5  60.9  58.7  58.2        Digestion, g/d  0.195  0.844  0.664  0.849  0.407  0.785  Boer  318  334  306  323  30.99                Spanish  301  296  313  255    Nitrogen      Intake, g/d  0.033  0.694  0.587  0.464  0.570  0.452  Boer  7.62  8.05  7.81  8.07  0.590                Spanish  6.69  7.05  7.74  6.35        Digestion, %  0.364  0.362  0.907  0.123  0.386  0.859  Boer  62.3  60.6  58.8  59.5  2.94                Spanish  62.1  59.1  57.4  55.0        Digestion, g/d  0.064  0.912  0.778  0.984  0.546  0.699  Boer  4.7  4.9  4.6  4.8  0.46                Spanish  4.2  4.2  4.5  3.7        Urinary, g/d  0.016  0.376  0.943  0.181  0.945  0.257  Boer  2.6  3.2  2.6  3.3  0.44                Spanish  1.8  2.4  2.2  2.3        Balance, g/d  0.717  0.501  0.983  0.338  0.618  0.280  Boer  2.1  1.6  2.0  1.5  0.62                Spanish  2.4  1.8  2.3  1.3    NDF      Intake, g/d  0.277  0.693  0.572  0.488  0.542  0.448  Boer  368  390  377  391  31.0                Spanish  344  363  398  324        Digestion, %  0.262  0.311  0.783  0.147  0.398  0.383  Boer  59.1  60.3  55.8  57.7  2.92                Spanish  65.0  60.8  58.3  58.4        Digestion, g/d  0.792  0.881  0.685  0.991  0.439  0.827  Boer  217  236  213  227  24.4  Spanish  225  222  235  193  1Inclusion represents the inclusion of brackish water (control vs. mean of the 33-BR, 67-BR, and 100-BR treatments); Linear represents the linear effect of level of brackish water; Quadratic represents the quadratic effect of level of brackish water. 2Control = 100% tap water; 33-BR = 67% control and 33% brackish water; 67-BR = 33% control and 67% brackish water; 100-BR = 100% of a brackish water source. View Large Table 3. Intake of water and ash and intake and digestion of DM, OM, nitrogen, and NDF in Boer and Spanish yearling wether goats consuming different levels of brackish water   Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Water intake      Drinking, g/d  0.031  0.898  0.717  0.959  0.544  0.649  Boer  935  1,001  943  963  82.8  Spanish  859  815  889  751      Total          g/d  0.030  0.876  0.704  0.936  0.507  0.636  Boer  970  1,037  975  995  83.6  Spanish  892  847  922  777          g/kg BW0.75  0.209  0.832  0.666  0.669  0.541  0.587  Boer  102.1  106.8  100.8  103.0  9.24  Spanish  100.8  92.3  101.4  84.6          g/g DM intake  0.737  0.890  0.838  0.450  0.852  0.939  Boer  1.77  1.77  1.77  1.68  0.190  Spanish  1.86  1.59  1.61  1.75      Water loss, g/d          Urinary  0.184  0.019  0.657  0.003  0.383  0.570  Boer  257  328  325  291  36.2  Spanish  166  305  312  278          Fecal  0.365  0.713  0.379  0.530  0.832  0.343  Boer  234  263  279  290  26.9  Spanish  261  239  273  223      Water ash intake          g/d  0.029  <0.001  0.202  <0.001  <0.001  0.488  Boer  0.47  2.64  4.49  6.65  0.348  Spanish  0.43  2.15  4.24  5.18          Percent total ash intake  0.776  <0.001  0.886  <0.001  <0.001  0.978  Boer  1.1  5.5  9.5  12.7  0.82  Spanish  1.2  5.0  8.8  13.2      Feed DM          Intake, g/d  0.088  0.667  0.553  0.466  0.523  0.437  Boer  553  584  566  586  43.8  Spanish  497  527  577  469          Digestion, %  0.870  0.209  0.809  0.064  0.470  0.454  Boer  62.4  61.7  58.2  60.3  2.62  Spanish  64.8  60.3  58.4  57.9          Digestion, g/d  0.176  0.893  0.649  0.956  0.475  0.770  Boer  343  361  333  354  33.3  Spanish  322  319  340  278      Total DM          Intake, g/d  0.088  0.659  0.559  0.395  0.601  0.446  Boer  553  587  570  593  43.8                Spanish  498  529  581  477            Digestion, %  0.869  0.259  0.808  0.081  0.539  0.452  Boer  62.4  61.9  58.6  60.7  2.59                Spanish  64.8  60.4  58.7  58.4            Digestion, g/d  0.171  0.923  0.641  0.935  0.543  0.766  Boer  343  364  337  360  33.4                Spanish  323  321  345  284    OM      Intake, g/d  0.095  0.676  0.561  0.539  0.467  0.439  Boer  509  536  517  533  40.53                Spanish  459  484  528  428        Digestion, %  0.937  0.158  0.809  0.049  0.408  0.422  Boer  62.9  62.2  58.4  60.4  2.63                Spanish  65.5  60.9  58.7  58.2        Digestion, g/d  0.195  0.844  0.664  0.849  0.407  0.785  Boer  318  334  306  323  30.99                Spanish  301  296  313  255    Nitrogen      Intake, g/d  0.033  0.694  0.587  0.464  0.570  0.452  Boer  7.62  8.05  7.81  8.07  0.590                Spanish  6.69  7.05  7.74  6.35        Digestion, %  0.364  0.362  0.907  0.123  0.386  0.859  Boer  62.3  60.6  58.8  59.5  2.94                Spanish  62.1  59.1  57.4  55.0        Digestion, g/d  0.064  0.912  0.778  0.984  0.546  0.699  Boer  4.7  4.9  4.6  4.8  0.46                Spanish  4.2  4.2  4.5  3.7        Urinary, g/d  0.016  0.376  0.943  0.181  0.945  0.257  Boer  2.6  3.2  2.6  3.3  0.44                Spanish  1.8  2.4  2.2  2.3        Balance, g/d  0.717  0.501  0.983  0.338  0.618  0.280  Boer  2.1  1.6  2.0  1.5  0.62                Spanish  2.4  1.8  2.3  1.3    NDF      Intake, g/d  0.277  0.693  0.572  0.488  0.542  0.448  Boer  368  390  377  391  31.0                Spanish  344  363  398  324        Digestion, %  0.262  0.311  0.783  0.147  0.398  0.383  Boer  59.1  60.3  55.8  57.7  2.92                Spanish  65.0  60.8  58.3  58.4        Digestion, g/d  0.792  0.881  0.685  0.991  0.439  0.827  Boer  217  236  213  227  24.4  Spanish  225  222  235  193    Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Water intake      Drinking, g/d  0.031  0.898  0.717  0.959  0.544  0.649  Boer  935  1,001  943  963  82.8  Spanish  859  815  889  751      Total          g/d  0.030  0.876  0.704  0.936  0.507  0.636  Boer  970  1,037  975  995  83.6  Spanish  892  847  922  777          g/kg BW0.75  0.209  0.832  0.666  0.669  0.541  0.587  Boer  102.1  106.8  100.8  103.0  9.24  Spanish  100.8  92.3  101.4  84.6          g/g DM intake  0.737  0.890  0.838  0.450  0.852  0.939  Boer  1.77  1.77  1.77  1.68  0.190  Spanish  1.86  1.59  1.61  1.75      Water loss, g/d          Urinary  0.184  0.019  0.657  0.003  0.383  0.570  Boer  257  328  325  291  36.2  Spanish  166  305  312  278          Fecal  0.365  0.713  0.379  0.530  0.832  0.343  Boer  234  263  279  290  26.9  Spanish  261  239  273  223      Water ash intake          g/d  0.029  <0.001  0.202  <0.001  <0.001  0.488  Boer  0.47  2.64  4.49  6.65  0.348  Spanish  0.43  2.15  4.24  5.18          Percent total ash intake  0.776  <0.001  0.886  <0.001  <0.001  0.978  Boer  1.1  5.5  9.5  12.7  0.82  Spanish  1.2  5.0  8.8  13.2      Feed DM          Intake, g/d  0.088  0.667  0.553  0.466  0.523  0.437  Boer  553  584  566  586  43.8  Spanish  497  527  577  469          Digestion, %  0.870  0.209  0.809  0.064  0.470  0.454  Boer  62.4  61.7  58.2  60.3  2.62  Spanish  64.8  60.3  58.4  57.9          Digestion, g/d  0.176  0.893  0.649  0.956  0.475  0.770  Boer  343  361  333  354  33.3  Spanish  322  319  340  278      Total DM          Intake, g/d  0.088  0.659  0.559  0.395  0.601  0.446  Boer  553  587  570  593  43.8                Spanish  498  529  581  477            Digestion, %  0.869  0.259  0.808  0.081  0.539  0.452  Boer  62.4  61.9  58.6  60.7  2.59                Spanish  64.8  60.4  58.7  58.4            Digestion, g/d  0.171  0.923  0.641  0.935  0.543  0.766  Boer  343  364  337  360  33.4                Spanish  323  321  345  284    OM      Intake, g/d  0.095  0.676  0.561  0.539  0.467  0.439  Boer  509  536  517  533  40.53                Spanish  459  484  528  428        Digestion, %  0.937  0.158  0.809  0.049  0.408  0.422  Boer  62.9  62.2  58.4  60.4  2.63                Spanish  65.5  60.9  58.7  58.2        Digestion, g/d  0.195  0.844  0.664  0.849  0.407  0.785  Boer  318  334  306  323  30.99                Spanish  301  296  313  255    Nitrogen      Intake, g/d  0.033  0.694  0.587  0.464  0.570  0.452  Boer  7.62  8.05  7.81  8.07  0.590                Spanish  6.69  7.05  7.74  6.35        Digestion, %  0.364  0.362  0.907  0.123  0.386  0.859  Boer  62.3  60.6  58.8  59.5  2.94                Spanish  62.1  59.1  57.4  55.0        Digestion, g/d  0.064  0.912  0.778  0.984  0.546  0.699  Boer  4.7  4.9  4.6  4.8  0.46                Spanish  4.2  4.2  4.5  3.7        Urinary, g/d  0.016  0.376  0.943  0.181  0.945  0.257  Boer  2.6  3.2  2.6  3.3  0.44                Spanish  1.8  2.4  2.2  2.3        Balance, g/d  0.717  0.501  0.983  0.338  0.618  0.280  Boer  2.1  1.6  2.0  1.5  0.62                Spanish  2.4  1.8  2.3  1.3    NDF      Intake, g/d  0.277  0.693  0.572  0.488  0.542  0.448  Boer  368  390  377  391  31.0                Spanish  344  363  398  324        Digestion, %  0.262  0.311  0.783  0.147  0.398  0.383  Boer  59.1  60.3  55.8  57.7  2.92                Spanish  65.0  60.8  58.3  58.4        Digestion, g/d  0.792  0.881  0.685  0.991  0.439  0.827  Boer  217  236  213  227  24.4  Spanish  225  222  235  193  1Inclusion represents the inclusion of brackish water (control vs. mean of the 33-BR, 67-BR, and 100-BR treatments); Linear represents the linear effect of level of brackish water; Quadratic represents the quadratic effect of level of brackish water. 2Control = 100% tap water; 33-BR = 67% control and 33% brackish water; 67-BR = 33% control and 67% brackish water; 100-BR = 100% of a brackish water source. View Large Table 4. Energy intake, digestion, losses, and related measures in Boer and Spanish wether goats consuming different levels of brackish water   Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Energy      Intake, MJ/d  0.093  0.669  0.559  0.468  0.523  0.438  Boer  9.75  10.31  9.99  10.33  0.780  Spanish  8.78  9.31  10.19  8.28      Digestion, %  0.889  0.191  0.797  0.055  0.506  0.446  Boer  60.2  59.3  55.7  58.0  2.78  Spanish  62.9  57.9  55.9  55.4      Digestion, MJ/d  0.196  0.904  0.664  0.889  0.490  0.813  Boer  5.83  6.13  5.63  6.02  0.586  Spanish  5.52  5.43  5.75  4.72      Urinary, MJ/d  0.019  0.356  0.739  0.116  0.652  0.470  Boer  0.29  0.40  0.30  0.37  0.051  Spanish  0.20  0.28  0.28  0.25      Methane, MJ/d  0.503  0.389  0.678  0.803  0.091  0.946  Boer  0.81  0.92  0.78  0.79  0.071  Spanish  0.83  0.82  0.82  0.70      Metabolizable          MJ/d  0.291  0.940  0.750  0.794  0.643  0.746  Boer  4.73  4.81  4.55  4.85  0.558  Spanish  4.50  4.33  4.65  3.77          kJ/kg BW0.75  0.686  0.889  0.663  0.598  0.599  0.806  Boer  499  497  460  503  56.1  Spanish  501  475  507  411      Heat          MJ/d  0.002  0.588  0.763  0.206  0.736  0.680  Boer  4.58  4.33  4.33  4.49  0.176  Spanish  4.14  3.92  4.10  3.88          kJ/kg BW0.75  0.040  0.010  0.270  0.001  0.418  0.586  Boer  482  444  443  464  10.9  Spanish  465  428  449  426      Tissue, MJ/d  0.992  0.923  0.855  0.875  0.528  0.830  Boer  0.15  0.49  0.22  0.37  0.503  Spanish  0.36  0.41  0.55  −0.11  Respiratory quotient  0.700  0.503  0.826  0.968  0.160  0.573  Boer  1.012  1.037  1.002  1.013  0.0191  Spanish  1.026  1.033  1.023  1.003  Heart rate, beats/min  0.677  0.164  0.709  0.386  0.650  0.042  Boer  82.4  81.8  86.0  80.4  2.18  Spanish  84.6  80.4  83.2  79.8  Heat energy/heart rate3  0.183  0.079  0.215  0.038  0.320  0.196  Boer  5.90  5.44  5.15  5.77  0.173  Spanish  5.52  5.33  5.40  5.35    Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Energy      Intake, MJ/d  0.093  0.669  0.559  0.468  0.523  0.438  Boer  9.75  10.31  9.99  10.33  0.780  Spanish  8.78  9.31  10.19  8.28      Digestion, %  0.889  0.191  0.797  0.055  0.506  0.446  Boer  60.2  59.3  55.7  58.0  2.78  Spanish  62.9  57.9  55.9  55.4      Digestion, MJ/d  0.196  0.904  0.664  0.889  0.490  0.813  Boer  5.83  6.13  5.63  6.02  0.586  Spanish  5.52  5.43  5.75  4.72      Urinary, MJ/d  0.019  0.356  0.739  0.116  0.652  0.470  Boer  0.29  0.40  0.30  0.37  0.051  Spanish  0.20  0.28  0.28  0.25      Methane, MJ/d  0.503  0.389  0.678  0.803  0.091  0.946  Boer  0.81  0.92  0.78  0.79  0.071  Spanish  0.83  0.82  0.82  0.70      Metabolizable          MJ/d  0.291  0.940  0.750  0.794  0.643  0.746  Boer  4.73  4.81  4.55  4.85  0.558  Spanish  4.50  4.33  4.65  3.77          kJ/kg BW0.75  0.686  0.889  0.663  0.598  0.599  0.806  Boer  499  497  460  503  56.1  Spanish  501  475  507  411      Heat          MJ/d  0.002  0.588  0.763  0.206  0.736  0.680  Boer  4.58  4.33  4.33  4.49  0.176  Spanish  4.14  3.92  4.10  3.88          kJ/kg BW0.75  0.040  0.010  0.270  0.001  0.418  0.586  Boer  482  444  443  464  10.9  Spanish  465  428  449  426      Tissue, MJ/d  0.992  0.923  0.855  0.875  0.528  0.830  Boer  0.15  0.49  0.22  0.37  0.503  Spanish  0.36  0.41  0.55  −0.11  Respiratory quotient  0.700  0.503  0.826  0.968  0.160  0.573  Boer  1.012  1.037  1.002  1.013  0.0191  Spanish  1.026  1.033  1.023  1.003  Heart rate, beats/min  0.677  0.164  0.709  0.386  0.650  0.042  Boer  82.4  81.8  86.0  80.4  2.18  Spanish  84.6  80.4  83.2  79.8  Heat energy/heart rate3  0.183  0.079  0.215  0.038  0.320  0.196  Boer  5.90  5.44  5.15  5.77  0.173  Spanish  5.52  5.33  5.40  5.35  1Inclusion = inclusion of brackish water (control vs. mean of the 33-BR, 67-BR, and 100-BR treatments); Linear = linear effect of level of brackish water; Quadratic = quadratic effect of level of brackish water. 2Control = 100% tap water; 33-BR = 67% control and 33% brackish water; 67-BR = 33% control and 67% brackish water; 100-BR = 100% of a brackish water source. 3Kilojoules per kilogram BW0.75 per heart beat/min. View Large Table 4. Energy intake, digestion, losses, and related measures in Boer and Spanish wether goats consuming different levels of brackish water   Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Energy      Intake, MJ/d  0.093  0.669  0.559  0.468  0.523  0.438  Boer  9.75  10.31  9.99  10.33  0.780  Spanish  8.78  9.31  10.19  8.28      Digestion, %  0.889  0.191  0.797  0.055  0.506  0.446  Boer  60.2  59.3  55.7  58.0  2.78  Spanish  62.9  57.9  55.9  55.4      Digestion, MJ/d  0.196  0.904  0.664  0.889  0.490  0.813  Boer  5.83  6.13  5.63  6.02  0.586  Spanish  5.52  5.43  5.75  4.72      Urinary, MJ/d  0.019  0.356  0.739  0.116  0.652  0.470  Boer  0.29  0.40  0.30  0.37  0.051  Spanish  0.20  0.28  0.28  0.25      Methane, MJ/d  0.503  0.389  0.678  0.803  0.091  0.946  Boer  0.81  0.92  0.78  0.79  0.071  Spanish  0.83  0.82  0.82  0.70      Metabolizable          MJ/d  0.291  0.940  0.750  0.794  0.643  0.746  Boer  4.73  4.81  4.55  4.85  0.558  Spanish  4.50  4.33  4.65  3.77          kJ/kg BW0.75  0.686  0.889  0.663  0.598  0.599  0.806  Boer  499  497  460  503  56.1  Spanish  501  475  507  411      Heat          MJ/d  0.002  0.588  0.763  0.206  0.736  0.680  Boer  4.58  4.33  4.33  4.49  0.176  Spanish  4.14  3.92  4.10  3.88          kJ/kg BW0.75  0.040  0.010  0.270  0.001  0.418  0.586  Boer  482  444  443  464  10.9  Spanish  465  428  449  426      Tissue, MJ/d  0.992  0.923  0.855  0.875  0.528  0.830  Boer  0.15  0.49  0.22  0.37  0.503  Spanish  0.36  0.41  0.55  −0.11  Respiratory quotient  0.700  0.503  0.826  0.968  0.160  0.573  Boer  1.012  1.037  1.002  1.013  0.0191  Spanish  1.026  1.033  1.023  1.003  Heart rate, beats/min  0.677  0.164  0.709  0.386  0.650  0.042  Boer  82.4  81.8  86.0  80.4  2.18  Spanish  84.6  80.4  83.2  79.8  Heat energy/heart rate3  0.183  0.079  0.215  0.038  0.320  0.196  Boer  5.90  5.44  5.15  5.77  0.173  Spanish  5.52  5.33  5.40  5.35    Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Energy      Intake, MJ/d  0.093  0.669  0.559  0.468  0.523  0.438  Boer  9.75  10.31  9.99  10.33  0.780  Spanish  8.78  9.31  10.19  8.28      Digestion, %  0.889  0.191  0.797  0.055  0.506  0.446  Boer  60.2  59.3  55.7  58.0  2.78  Spanish  62.9  57.9  55.9  55.4      Digestion, MJ/d  0.196  0.904  0.664  0.889  0.490  0.813  Boer  5.83  6.13  5.63  6.02  0.586  Spanish  5.52  5.43  5.75  4.72      Urinary, MJ/d  0.019  0.356  0.739  0.116  0.652  0.470  Boer  0.29  0.40  0.30  0.37  0.051  Spanish  0.20  0.28  0.28  0.25      Methane, MJ/d  0.503  0.389  0.678  0.803  0.091  0.946  Boer  0.81  0.92  0.78  0.79  0.071  Spanish  0.83  0.82  0.82  0.70      Metabolizable          MJ/d  0.291  0.940  0.750  0.794  0.643  0.746  Boer  4.73  4.81  4.55  4.85  0.558  Spanish  4.50  4.33  4.65  3.77          kJ/kg BW0.75  0.686  0.889  0.663  0.598  0.599  0.806  Boer  499  497  460  503  56.1  Spanish  501  475  507  411      Heat          MJ/d  0.002  0.588  0.763  0.206  0.736  0.680  Boer  4.58  4.33  4.33  4.49  0.176  Spanish  4.14  3.92  4.10  3.88          kJ/kg BW0.75  0.040  0.010  0.270  0.001  0.418  0.586  Boer  482  444  443  464  10.9  Spanish  465  428  449  426      Tissue, MJ/d  0.992  0.923  0.855  0.875  0.528  0.830  Boer  0.15  0.49  0.22  0.37  0.503  Spanish  0.36  0.41  0.55  −0.11  Respiratory quotient  0.700  0.503  0.826  0.968  0.160  0.573  Boer  1.012  1.037  1.002  1.013  0.0191  Spanish  1.026  1.033  1.023  1.003  Heart rate, beats/min  0.677  0.164  0.709  0.386  0.650  0.042  Boer  82.4  81.8  86.0  80.4  2.18  Spanish  84.6  80.4  83.2  79.8  Heat energy/heart rate3  0.183  0.079  0.215  0.038  0.320  0.196  Boer  5.90  5.44  5.15  5.77  0.173  Spanish  5.52  5.33  5.40  5.35  1Inclusion = inclusion of brackish water (control vs. mean of the 33-BR, 67-BR, and 100-BR treatments); Linear = linear effect of level of brackish water; Quadratic = quadratic effect of level of brackish water. 2Control = 100% tap water; 33-BR = 67% control and 33% brackish water; 67-BR = 33% control and 67% brackish water; 100-BR = 100% of a brackish water source. 3Kilojoules per kilogram BW0.75 per heart beat/min. View Large Total tract digestibility of OM decreased (P = 0.049) when brackish water was included in drinking water (Table 3). There were trends for similar differences in digestion of feed DM (P = 0.064), total DM (P = 0.081), and energy (P = 0.055; Tables 3 and 4). Breed did not affect digestibilities, and there were no breed × water treatment interactions (P > 0.05). Neither breed nor water treatment affected intakes of digested DM, OM, or GE (P > 0.10). Intake of nitrogen was greater (P = 0.033) by Boer wethers than by Spanish wethers (Table 3), with a slightly greater CP concentration in the diet selected by Boer goats (8.62 vs. 8.40% CP). With similar nitrogen digestibility, intake of digested nitrogen tended (P = 0.064) to be greater for Boer goats than for Spanish goats. Urinary nitrogen excretion was also greater for Boer goats than for Spanish goats (P = 0.016), which resulted in a similar nitrogen balance between breeds. Water treatment did not affect any nitrogen or NDF measure. As expected based on urinary nitrogen excretion, urinary energy was greater for Boer wethers than for Spanish wethers (P = 0.019; Table 4). Ruminal CH4 emission was not affected by breed or water treatment (P > 0.10). Likewise, ME intake expressed in megajoules per day and daily kilojoules per kilogram BW0.75 was not affected by breed, water treatment, or their interaction (P > 0.10). However, heat energy was greater for Boer goats than for Spanish goats in megajoules per day (P = 0.002) and daily kilojoules per kilogram BW0.75 (P = 0.040). But this did not result in a breed difference in recovered energy accretion in megajoules per day (P = 0.992) because of numerically greater ME intake for Boer goats with all water treatments except 67-BR. Heat energy in daily kilojoules per kilogram BW0.75 was lower with than without inclusion of brackish water (P = 0.010), although the difference in megajoules was nonsignificant (P = 0.588). These disparate effects of water treatment on the 2 bases of expression of heat energy can be explained through greater ADG (P = 0.037) by wethers consuming water with brackish water than by wethers consuming water without brackish water (−37, −14, −7, and −16 g [SE 7.20] for the control, 33-BR, 67-BR, and 100-BR, respectively). In accordance, numerical differences in BW among water treatments increased in magnitude as the experiment progressed. For example, initial BW was 19.7, 20.2, 20.1, and 20.0 kg (SE 0.70); average BW was 19.3, 20.0, 20.1, and 19.8 kg (SE 0.69); and final BW was 19.0, 19.9, 20.0, and 19.7 kg (SE 0.070) for the control, 33-BR, 67-BR, and 100-BR, respectively. Likewise, the ratio of heat energy to heart rate was decreased by brackish water inclusion when expressed as daily kilojoules per kilogram BW0.75 per heart beat per minute (P = 0.038) but not when expressed as daily kilojoules per heart beat (P = 0.659; 52.6, 50.9, 49.9, and 52.3 kJ/heart beat [SE 1.71] for the control, 33-BR, 67-BR, and 100-BR, respectively). Blood Constituents Blood hemoglobin concentration was not affected by breed or water treatment (P > 0.05; Table 5). Oxygen saturation of hemoglobin, PCV, and plasma osmolality were not influenced by breed, water treatment, or the interaction (P > 0.10). Blood glucose concentration was higher (P = 0.012) for the control than for treatments with brackish water. Likewise, blood lactate concentration tended to be greater (P = 0.068) for the control than for brackish water treatments. Table 5. Blood characteristics of Boer and Spanish wether goats consuming different levels of brackish water   Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Hemoglobin, g/dL  0.122  0.711  0.071  0.528  0.331  0.945  Boer  10.39  9.63  9.64  8.41  0.559  Spanish  9.84  10.60  10.00  10.76  O2 saturation of hemoglobin, %  0.273  0.401  0.442  0.121  0.886  0.471  Boer  101.5  103.2  104.0  103.9  0.91  Spanish  103.7  104.1  104.4  103.2  O2 concentration, mmol/L  0.002  0.659  0.140  0.652  0.250  0.855  Boer  6.12  5.71  5.84  4.91  0.376  Spanish  6.38  6.90  6.47  6.85  Packed cell volume, %  0.237  0.757  0.198  0.417  0.486  0.904  Boer  27.7  25.4  25.6  22.8  1.61  Spanish  26.2  27.6  26.0  28.0  Lactate, mmol/L  0.702  0.227  0.957  0.068  0.367  0.632  Boer  4.12  3.84  3.16  3.19  0.624  Spanish  4.33  3.39  2.98  2.91  Glucose, mmol/L  0.173  0.056  0.706  0.012  0.412  0.462  Boer  3.64  3.25  3.01  3.04  0.175  Spanish  3.22  3.07  2.95  2.99  Osmolality, mOsmol/L  0.576  0.812  0.376  0.396  0.694  0.792  Boer  314.1  311.4  309.3  305.4  3.67  Spanish  308.0  308.0  307.0  311.1    Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Hemoglobin, g/dL  0.122  0.711  0.071  0.528  0.331  0.945  Boer  10.39  9.63  9.64  8.41  0.559  Spanish  9.84  10.60  10.00  10.76  O2 saturation of hemoglobin, %  0.273  0.401  0.442  0.121  0.886  0.471  Boer  101.5  103.2  104.0  103.9  0.91  Spanish  103.7  104.1  104.4  103.2  O2 concentration, mmol/L  0.002  0.659  0.140  0.652  0.250  0.855  Boer  6.12  5.71  5.84  4.91  0.376  Spanish  6.38  6.90  6.47  6.85  Packed cell volume, %  0.237  0.757  0.198  0.417  0.486  0.904  Boer  27.7  25.4  25.6  22.8  1.61  Spanish  26.2  27.6  26.0  28.0  Lactate, mmol/L  0.702  0.227  0.957  0.068  0.367  0.632  Boer  4.12  3.84  3.16  3.19  0.624  Spanish  4.33  3.39  2.98  2.91  Glucose, mmol/L  0.173  0.056  0.706  0.012  0.412  0.462  Boer  3.64  3.25  3.01  3.04  0.175  Spanish  3.22  3.07  2.95  2.99  Osmolality, mOsmol/L  0.576  0.812  0.376  0.396  0.694  0.792  Boer  314.1  311.4  309.3  305.4  3.67  Spanish  308.0  308.0  307.0  311.1  1Inclusion = inclusion of brackish water (control vs. mean of the 33-BR, 67-BR, and 100-BR treatments); Linear = linear effect of level of brackish water; Quadratic = quadratic effect of level of brackish water. 2Control = 100% tap water; 33-BR= 67% control and 33% brackish water; 67-BR = 33% control and 67% brackish water; 100-BR = 100% of a brackish water source. View Large Table 5. Blood characteristics of Boer and Spanish wether goats consuming different levels of brackish water   Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Hemoglobin, g/dL  0.122  0.711  0.071  0.528  0.331  0.945  Boer  10.39  9.63  9.64  8.41  0.559  Spanish  9.84  10.60  10.00  10.76  O2 saturation of hemoglobin, %  0.273  0.401  0.442  0.121  0.886  0.471  Boer  101.5  103.2  104.0  103.9  0.91  Spanish  103.7  104.1  104.4  103.2  O2 concentration, mmol/L  0.002  0.659  0.140  0.652  0.250  0.855  Boer  6.12  5.71  5.84  4.91  0.376  Spanish  6.38  6.90  6.47  6.85  Packed cell volume, %  0.237  0.757  0.198  0.417  0.486  0.904  Boer  27.7  25.4  25.6  22.8  1.61  Spanish  26.2  27.6  26.0  28.0  Lactate, mmol/L  0.702  0.227  0.957  0.068  0.367  0.632  Boer  4.12  3.84  3.16  3.19  0.624  Spanish  4.33  3.39  2.98  2.91  Glucose, mmol/L  0.173  0.056  0.706  0.012  0.412  0.462  Boer  3.64  3.25  3.01  3.04  0.175  Spanish  3.22  3.07  2.95  2.99  Osmolality, mOsmol/L  0.576  0.812  0.376  0.396  0.694  0.792  Boer  314.1  311.4  309.3  305.4  3.67  Spanish  308.0  308.0  307.0  311.1    Effect P-value  Contrast P-value1    Treatment2  Item  Breed  Treatment  Interaction  Inclusion  Linear  Quadratic  Breed  Control  33-BR  67-BR  100-BR  SE  Hemoglobin, g/dL  0.122  0.711  0.071  0.528  0.331  0.945  Boer  10.39  9.63  9.64  8.41  0.559  Spanish  9.84  10.60  10.00  10.76  O2 saturation of hemoglobin, %  0.273  0.401  0.442  0.121  0.886  0.471  Boer  101.5  103.2  104.0  103.9  0.91  Spanish  103.7  104.1  104.4  103.2  O2 concentration, mmol/L  0.002  0.659  0.140  0.652  0.250  0.855  Boer  6.12  5.71  5.84  4.91  0.376  Spanish  6.38  6.90  6.47  6.85  Packed cell volume, %  0.237  0.757  0.198  0.417  0.486  0.904  Boer  27.7  25.4  25.6  22.8  1.61  Spanish  26.2  27.6  26.0  28.0  Lactate, mmol/L  0.702  0.227  0.957  0.068  0.367  0.632  Boer  4.12  3.84  3.16  3.19  0.624  Spanish  4.33  3.39  2.98  2.91  Glucose, mmol/L  0.173  0.056  0.706  0.012  0.412  0.462  Boer  3.64  3.25  3.01  3.04  0.175  Spanish  3.22  3.07  2.95  2.99  Osmolality, mOsmol/L  0.576  0.812  0.376  0.396  0.694  0.792  Boer  314.1  311.4  309.3  305.4  3.67  Spanish  308.0  308.0  307.0  311.1  1Inclusion = inclusion of brackish water (control vs. mean of the 33-BR, 67-BR, and 100-BR treatments); Linear = linear effect of level of brackish water; Quadratic = quadratic effect of level of brackish water. 2Control = 100% tap water; 33-BR= 67% control and 33% brackish water; 67-BR = 33% control and 67% brackish water; 100-BR = 100% of a brackish water source. View Large DISCUSSION Water Composition The total soluble salt level in the brackish well water was less than the minimum of 10,000 mg/L for a high salinity classification by the U.S. Geological Survey (2013). The sulfate concentration was at the level of 2,500 mg/kg with diets containing at least 40% forage, above which polioencephalomalacia would be a concern (NRC, 2007). The level of boron was greater than 5 mg/L, which has been suggested as being toxic in livestock drinking water (Ayers and Westcot, 1985). However, the NRC (2007) listed a maximum tolerable boron level in sheep diets approximately 10 times greater than intake from water in the current experiment. Breed Similar effects of brackish water with growing Boer and Spanish wethers are indicated by the lack of significant interaction between breed and water treatment. Greater water intake by Boer wethers than by Spanish wethers in grams per day presumably relates to the difference in BW and the trend for greater DM intake based on similar intake in grams per kilogram BW0.75 and a moderate correlation between water and DM intakes (r = 0.47, P = 0.002). Greater urinary nitrogen and energy for Boer wethers than for Spanish wethers was primarily because of the difference in nitrogen intake that resulted from the tendency for greater DM intake and the slightly higher level of CP in DM selected by Boer wethers. Factors responsible for greater heat energy produced by Boer wethers than by Spanish wethers are unclear, although recovered energy was not different. Water Treatment Water Intake and Loss. Water intake relative to DM intake for all treatments was less than expected based on literature reviewed by Giger-Reverdin and Gihad (1991), McGregor (2004), and the NRC (2007). For example, water intake was much less than a 3:1 ratio relative to DM intake for goats and slightly lower than 107 g/kg BW0.75 for nonpregnant and nonlactating goats. However, Mengistu et al. (2007) reported slightly lower water intake by young Ethiopian Somali bucks of 1.54 to 1.57 mL/g of DM intake and 78 to 88 mL/kg BW0.75. Differences in environmental conditions may affect such comparisons between studies, and it is relevant to reiterate that the present experiment was conducted without heat stress, which can markedly increase water intake for heat dissipation. Although there were no effects of breed, treatment, or their interaction on total water intake relative to BW0.75, the highest mean (Boer wethers with 33-BR) was 26% greater (i.e., 22.2 g/kg BW0.75) than the lowest (Spanish wethers with 100-BR). Based on these values and the SD, the minimum number of observations based on a 2-sided power test to detect a difference (i.e., less than or greater than) with a P < 0.05 was 9. The number increases to 32 for the difference of 10.7 g/kg BW0.75 between means of Boer with 100-BR and Spanish with 33-BR, and the minimum number of observations is 18 and 11 for differences between Boer with 33-BR and Spanish with 33-BR and between Boer with 100-BR and Spanish with 100-BR, respectively. The U.S. Geological Survey (2013) defines water as saline if the TDS level is greater than 1,000 mg/L, with moderate salinity levels up to 10,000 mg/L commonly referred to as brackish water. Even with this moderate level of TDS, based on research reviewed by McGregor (2004), lower water intake for the control was expected than for one or more of the brackish water treatments, but this was not observed. For example, based on a 3% increase in water intake by sheep for each 1,000 mg/L in TDS above 2,000 mg/L proposed by the Standing Committee on Agriculture (1990), intake of water should have been 15% greater for 100-BR than for the control. With higher levels of salinity, however, water intake decreases. For example, Goatcher and Church (1970) indicated that water intake by sheep markedly decreases with NaCl levels above 0.6%; the sum of Na and Cl concentrations in brackish water of the present experiment was 0.37% and the level of TDS of 6,900 mg/L, or approximately 0.69%, was only slightly greater. The purpose of increasing water intake with inclusion and increasing level of brackish water would be to facilitate increased urine output for excretion of the greater amount of minerals being ingested without incurring an increased mineral concentration in urine. Greater urine mass (P = 0.003; 242, 361, 359, and 329 g/d [SE 28.4] for the control, 33-BR, 67-BR, and 100-BR, respectively), water (P = 0.003; 211, 317, 319, and 285 g/d [SE 25.6] for the control, 33-BR, 67-BR, and 100-BR, respectively), and DM (P = 0.053; 31, 44, 40, and 44 g/d [SE 44.3] for the control, 33-BR, 67-BR, and 100-BR, respectively) with than without brackish water are in accordance with the anticipated greater intake of water and salts. Likewise, the DM concentration in urine was similar among treatments (13.1, 12.3, 11.4, and 13.1% [SE 2.02] for the control, 33-BR, 67-BR, and 100-BR, respectively). But because water intake was similar among treatments, water loss via other means must have been less for brackish water treatments if it is assumed that body water mass was similar among treatments. Water excretion in feces, however, was not affected by water treatment (P = 0.530; 247, 251, 276, and 257 g/d [SE 19.0] for the control, 33-BR, 67-BR, and 100-BR, respectively). Therefore, there may have been less water lost by evaporation when brackish water was included in the drinking water. McGregor (2004) concluded that evaporative water loss via respiration and sweating is generally greater than through excretion of urine and feces. Relatedly, subtraction of the sum of water excretion in urine and feces (458, 567, 595, and 541 g/d [SE 37.9] for the control, 33-BR, 67-BR, and 100-BR, respectively) from total water intake yields a difference much less with than without brackish water (473, 375, 354, and 345 g/d [SE 47.7] for the control, 33-BR, 67-BR, and 100-BR, respectively). Therefore, if daily water intake was similar to total loss, evaporative loss would have been fairly similar in magnitude to the sum of losses in urine and feces for the control but much less for treatments with brackish water, with differences between total water intake and excretion in urine and feces of 458 and 568 g/d for the control and the average of brackish water treatments, respectively. Evaporative water loss would have been approximately 110 g/d less for treatments with than for treatments without brackish water. In support, there is considerable variability in the amount of water loss by evaporation, with loss via sweating decreasing with restricted water supplies and increasing degree of dehydration (McGregor, 2004) and being the primary way of conserving water during periods of dehydration (Dunson, 1974). Nonetheless, these postulates do not address reasons why the wethers did not simply increase water intake to compensate for greater urinary water output. Body Weight, ADG, and Heat Energy. Change in BW during short experiments such as this one, which is 21 d in length, would not normally receive much attention other than regarding bases on which to express physiological functions such as water and DM intakes and heat energy. But greater ADG (i.e., less BW loss) with than without brackish water intake, which also was not anticipated because of decreased OM digestibility and similar ME intake among treatments, may help in understanding other findings. Body weight loss averaged 24.7 g/d less with than without brackish water. If an average level of water in tissue mobilized such as 63% is assumed (Ngwa et al., 2007), there was 15.6 g/d less water available for use and excretion by wethers on the brackish water treatments than by wethers on the control. This increases the magnitude of difference between the control and brackish water treatments in the measured inputs and outputs of water and the potential difference in evaporative water loss noted earlier. Furthermore, it is conceivable that even less of the water in tissue being mobilized by wethers on brackish water treatments would have contributed to the pool of water excreted in urine. That is, a portion of the effect of brackish water intake on ADG may be attributable to greater water retention in the whole body, with potential sites or depots of the gastrointestinal tract, plasma, interstitial fluid, etc. For example, Assad and El-Sherif (2002) observed less BW loss by Barki sheep ewes consuming water with 7,650 and 13,535 mg/L TDS compared with sheep ewes consuming fresh water. It was stated that this was because the ewes consuming saline water had an increased body water content, although levels of extracellular fluid, interstitial fluid, and blood volume presented in tabular form all were decreased by saline water consumption. Therefore, an increased level of water in the gastrointestinal tract is possible. El-Sherif and El-Hassanein (1996; as cited by Assad and El-Sherif, 2002) reported that rams consuming saline water had increased intracellular water retention; however, extracellular fluid and plasma volume were decreased. In some instances when brackish or saline water intake increases total water consumption, ruminal fluid retention time has been decreased (McGregor, 2004; Attia-Ismail et al., 2008), although this does not necessarily indicate a decrease or change in ruminal fluid volume. Conversely, Blache et al. (2007) suggested that decreased gut fill for Merino sheep consuming diets with 20% salt contributed to greater BW loss, yet feed intake was reduced as well. But with similar water intake among treatments in the present experiment, it is possible that ruminal fluid volume was increased by brackish water intake. Even though the effect of brackish water inclusion on the ratio of heat energy to heart rate may relate to change in ADG and BW, because in many instances, heat energy is based on heart rate determined when animals are freely moving on pasture or in pens, with values multiplied by the ratio of heat energy to heart rate measured at one or more other times, these findings indicate that composition of the drinking water should be similar if the level of salinity is above that characteristic of fresh water sources. Another finding perhaps pertinent to the difference in ADG is less heat energy relative to BW0.75 with than without brackish water. Because ME intake and recovered energy were similar among treatments, the lack of a corresponding effect of brackish water inclusion on heat energy expressed in megajoules per day could be explained by a greater total body water level with than without brackish water. Furthermore, decreased heat relative to BW0.75 may have been associated with less peripheral tissue evaporative water loss (Al-Tamimi, 2007; Caroprese et al., 2012; Chedid et al., 2014). Conversely, Arieli et al. (1989) noted greater heat production by Awassi wethers consuming saline diets. However, these diets were much more saline than what was imposed through the brackish water treatments of the present experiment, consisting of saltbush (Atriplex barclayana; 31% ash) or with salt included at approximately 12% of DM intake. The effect was postulated to have been largely caused by greater energy use for mineral absorption and excretion. A similar energy cost in the present experiment with this brackish water source was not evident. In part, this was probably because of increased urine excretion that minimized change in energy expended by the kidneys to excrete more concentrated urine (Borsook and Winegarden, 1931). Relating to the slightly negative ADG for the entire experiment, the recovered energy average of 0.305 MJ/d divided by an assumed tissue energy concentration of 23.9 MJ/kg (AFRC, 1998) yields a predicted ADG of 13 g. This suggests a difference in whole body composition at the beginning than at the end of the study or a slight underestimation of energy losses in feces, urine, CH4, and/or heat. Moreover, although loss of some nitrogen from urine is possible, nitrogen balance means imply that tissue mobilized during the study was mainly fat. That is, with an overall average nitrogen balance of 1.875 g/d and assuming a protein concentration in tissue mobilized or accreted of 14% (AFRC, 1998), an ADG of 84 g is predicted. Feed Intake and Digestion. No effect of level of brackish water on feed intake is in line with the conclusion of Masters et al. (2007) that intake by grazing ruminants is not influenced by salinity with NaCl levels in drinking water less than 1%. The decreases in digestibilities of DM, OM, and GE were not expected in one respect because water intake was not increased by brackish water. In cases where brackish or saline water has increased water intake, digestibility can decrease because of shorter ruminal digesta retention time (McGregor, 2004; Attia-Ismail et al., 2008). In the present experiment, with no change in water intake, digestibility may have been depressed because of adverse effects of high ruminal fluid osmolality on microbial activity (Durand and Kawashima, 1980; Mackie and Therion, 1984; Masters et al., 2007). But if so, then any increase in ruminal fluid volume with brackish water consumption was not of a magnitude resulting in osmolality similar to the control. In this regard, some effects of the specific level of brackish water inclusion may have been anticipated. However, it should be noted that for OM digestibility, even though linear and quadratic effects of nonzero levels of brackish water were not significant, numerically, the difference relative to the control was less for 33-BR (2.6 percentage units) than for 67-BR (5.7 percentage units) and 100-BR (4.9 percentage units). For potential future experimentation, with means separation by LSD, 40, 11, and 14 observations would be required to detect differences (P < 0.05; less than or greater than) between the control and 33-BR, 67-BR, and 100-BR treatments, respectively. Blood Characteristics. No effects of water treatment on plasma osmolality or PCV support the suggestion that greater urinary water excretion for treatments with brackish water was accompanied by decreased water loss by other means, although this neither supports nor refutes the possibility that the mass of water in a site such as the gastrointestinal tract, interstitial fluid, or plasma was greater when brackish water was consumed and that contributed to greater ADG. The decrease in blood glucose concentration due to brackish water inclusion is similar to findings of Blache et al. (2007) with Merino sheep consuming a diet with approximately 20% salt for 2 wk. Factors responsible for the change in glucose as well as decreased insulin concentration were not determined but appeared independent of decreased feed intake, which is in accordance with no effect of water treatment on DM intake in the present experiment. Furthermore, ME intake was not influenced by water treatment. One possibility, which is in partial agreement with greater ADG, is greater plasma volume with than without brackish water that contributed to lower glucose and lactate concentrations. Conclusions Inclusion of a source of brackish water with 6,900 mg/L TDS in drinking water had a number of effects that were similar between growing Boer and Spanish goat wethers. Nonzero levels of brackish water at 33, 67, and 100% had very little impact. Total tract OM digestibility was decreased by brackish water inclusion, but ME intake was not affected. Urine excretion was greater with than without brackish water, yet water intake was not different among treatments, suggesting decreased water loss by other means with similar plasma osmolality among treatments. Daily heat energy in kilojoules per kilogram BW0.75 was decreased by brackish water, indicating little to no energy cost of excreting the increased quantity of minerals consumed. Furthermore, although the study period was fairly short, BW loss was less for animals drinking brackish water than for animals drinking control water. Overall, it does not appear that this source of brackish water would have adverse effects on performance of growing meat goats over short or moderate periods of time. LITERATURE CITED Agricultural and Food Research Council (AFRC) 1998. The nutrition of goats. CAB Int., New York, NY. Al-Tamimi H. J. 2007. Thermoregulatory response of goat kids subjected to heat stress. Small Rumin. Res.  71: 280– 285. doi: https://doi.org/10.1016/j.smallrumres.2006.04.013 Google Scholar CrossRef Search ADS   Androwski J. Springer A. Acker T. Manone M. 2011. Wind-powered desalination: An estimate of saline groundwater in the U.S. J. Am. Water Resour. Assoc.  47: 93– 102. doi: https://doi.org/10.1111/j.1752-1688.2010.00493.x Google Scholar CrossRef Search ADS   AOAC 2006. Official methods of analysis. 18th ed. AOAC Int., Gaithersburg, MD. Arieli A. Naim E. Benjamin R. W. Pasternak D. 1989. The effect of feeding saltbush and sodium chloride on energy metabolism in sheep. Anim. Prod.  49: 451– 457. doi: https://doi.org/10.1017/S0003356100032657 Google Scholar CrossRef Search ADS   Assad F. El-Sherif M. M. A. 2002. Effect of drinking saline water and feed shortage on adaptive responses of sheep and camels. Small Rumin. Res.  45: 279– 290. doi: https://doi.org/10.1016/S0921-4488(02)00083-4 Google Scholar CrossRef Search ADS   Attia-Ismail S. A. Abdo A. R. Asker A. R. T. 2008. Effect of salinity level in drinking water on feed intake, nutrition utilization, water intake and turnover and rumen function in sheep and goats. Egypt. J. Sheep Goat Sci.  3: 77– 94. Ayers R. S. Westcot D. W. 1985. 6. Water quality for livestock and poultry. In: Water quality for agriculture.  Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org./docrep/003/T0234E/T0234E00.htm (Accessed 3 February 2016.) Blache D. Grandison M. J. Masters D. G. Dynes R. A. Blackberry M. A. Martin G. B. 2007. Relationship between metabolic endocrine systems and voluntary feed intake in Merino sheep fed a high salt diet. Aust. J. Exp. Agric.  47: 544– 550. doi: https://doi.org/10.1071/EA06112 Google Scholar CrossRef Search ADS   Borsook H. Winegarden H. M. 1931. The energy cost of the excretion of urine. Proc. Natl. Acad. Sci. USA  17: 13– 28. Google Scholar CrossRef Search ADS   Brouwer E. 1965. Report of sub-committee on constants and factors. In: Blaxter K. L. editor, Energy metabolism, Proc. 3rd Symp.  European Assoc. Anim. Prod. Publ. No. 11. Academic Press, London, UK. p. 441– 443. Caroprese M. Albenzio M. Bruno A. Annicchiarico G. Marino R. Sevi A. 2012. Effects of shade and flaxseed supplementation on the welfare of lactating ewes under high ambient temperatures. Small Rumin. Res.  102: 177– 185. doi: https://doi.org/10.1016/j.smallrumres.2011.07.010 Google Scholar CrossRef Search ADS   Chedid M. Jaber L. S. Giger-Reverdin S. Duvaux-Ponter C. Hamadeh S. K. 2014. Review: Water stress in sheep raised under arid conditions. Can. J. Anim. Sci.  94: 243– 257. doi: https://doi.org/10.4141/cjas2013-188 Google Scholar CrossRef Search ADS   Dunson W. A 1974. Some aspects of salt and water balance of feral goats from arid islands. Am. J. Physiol.  226: 662– 669. Google Scholar PubMed  Durand M. Kawashima R. 1980. Influence of minerals in rumen microbial digestion. In: Ruckebusch Y. Thivend P. editors, Digestive physiology and metabolism in ruminants.  AVI Publishing Company, Inc., Westport, CT. p. 375– 408. doi: https://doi.org/10.1007/978-94-011-8067-2_18 Google Scholar CrossRef Search ADS   Eisemann J. H. Nienaber J. A. 1990. Tissue and whole-body oxygen uptake in fed and faster steers. Br. J. Nutr.  64: 399– 411. doi: https://doi.org/10.1079/BJN19900041 Google Scholar CrossRef Search ADS PubMed  El-Sherif M. M. A. El-Hassanein E. E. 1996. Influence of drinking saline water on growth and distribution of body fluids in sheep. Alexandria J. Agric. Res.  41: 1– 9. Giger-Reverdin S. Gihad E. A. 1991. Water metabolism and intake in goats. In: Morand-Fehr P. editor, Goat nutrition.  Pudoc, Wageningen, Netherlands. p. 37– 45. Goatcher W. D. Church D. C. 1970. Taste responses in ruminants. IV. Reactions of pygmy goats, normal goats, sheep and cattle to acetic acid and quinine hydrochloride. J. Anim. Sci.  31: 373– 382. Google Scholar CrossRef Search ADS PubMed  Littell R. C. Henry P. R. Ammerman C. B. 1998. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci.  76: 1216– 1231. Google Scholar CrossRef Search ADS PubMed  Lu C. D 1989. Effects of heat stress on goat production. Small Rumin. Res.  2: 151– 162. doi: https://doi.org/10.1016/0921-4488(89)90040-0 Google Scholar CrossRef Search ADS   Mackie R. I. Therion J. J. 1984. Influence of mineral interactions on growth efficiency of rumen bacteria. In: Gilchrist F. M. C. Mackie R. I. editors, Herbivore nutrition in the subtropics and tropics.  The Science Press, Craighall, South Africa. p. 455– 477. Masters D. G. Benes S. E. Norman H. C. 2007. Biosaline agriculture for forage and livestock production. Agric. Ecosyst. Environ.  119: 234– 248. doi: https://doi.org/10.1016/j.agee.2006.08.003 Google Scholar CrossRef Search ADS   McGregor B. A 2004. Water quality and provision for goats.  A report for the Rural Industries Research and Development Corporation. Rural Industries Research and Development Corporation, Barton, ACT, Australia. https://rirdc.infoservices.com.au/items/04-036 (Accessed 6 February 2016.) Mengistu U. Dahlborn K. Olsson K. 2007. Effects of intermittent watering on water balance and feed intake in male Ethiopian Somali goats. Small Rumin. Res.  67: 45– 54. doi: https://doi.org/10.1016/j.smallrumres.2005.09.026 Google Scholar CrossRef Search ADS   Ngwa A. T. Dawson L. J. Puchala R. Detweiler G. Merkel R. C. Tover-Luna I. Sahlu T. Ferrell C. L. Goetsch A. L. 2007. Effect of initial body condition of Boer × Spanish yearling goat wethers and level of nutrient intake on body composition. Small Rumin. Res.  73: 13– 26. doi: https://doi.org/10.1016/j.smallrumres.2006.10.013 Google Scholar CrossRef Search ADS   NRC 2007. Nutrient requirements of small ruminants: Sheep, goats, cervids, and New World camelids. Natl. Acad. Press, Washington, DC. Olsson K. McKinley M. J. 1980. Central control of water and salt intake in goats and sheep. In: Ruckebusch Y. Thivend P. editors, Digestive physiology and metabolism in ruminants.  AVI Publishing Company, Inc., Westport, CT. p. 161– 175. doi: https://doi.org/10.1007/978-94-011-8067-2_8 Google Scholar CrossRef Search ADS   Patra A. K. Puchala R. Animut G. Gipson T. A. Sahlu T. Goetsch A. L. 2009. Effects of acclimatization on energy expenditure by meat goats. Small Rumin. Res.  81: 42– 54. doi: https://doi.org/10.1016/j.smallrumres.2008.11.002 Google Scholar CrossRef Search ADS   Puchala R. Tovar-Luna I. Goetsch A. L. Sahlu T. Carstens G. E. Freetly H. C. 2007. The relationship between heart rate and energy expenditure in Alpine, Angora, Boer and Spanish goat wethers consuming different quality diets at level of intake near maintenance or fasting. Small Rumin. Res.  70: 183– 193. Google Scholar CrossRef Search ADS   Puchala R. Tovar-Luna I. Sahlu T. Freetly H. C. Goetsch A. L. 2009. The relationship between heart rate and energy expenditure in growing crossbred Boer and Spanish wethers. J. Anim. Sci.  87: 1714– 1721. doi: https://doi.org/10.2527/jas.2008-1561 Google Scholar CrossRef Search ADS PubMed  Rossi R. Del Prete E. Rokitzky J. Scharrer E. 1998. Effects of a high NaCl diet on eating and drinking patterns in Pygmy goats. Physiol. Behav.  63: 601– 604. doi: https://doi.org/10.1016/S0031-9384(97)00490-3 Google Scholar CrossRef Search ADS PubMed  Standing Committee on Agriculture 1990. Feeding standards for Australian livestock. Ruminants. Standing Committee on Agriculture and Resource Management. CSIRO Publishing, East Melbourne, Australia. Toussaint G 1997. The housing of milk goats. Livest. Prod. Sci.  49: 151– 164. doi: https://doi.org/10.1016/S0301-6226(97)00011-0 Google Scholar CrossRef Search ADS   U.S. Geological Survey 2013. National brackish groundwater assessment. U.S. Geological Survey.  http://ne.water.usgs.gov/ogw/review/files/brackish_infosheet_v8.pdf. (Accessed 6 February 2016.) Van Soest P. J. Robertson J. B. Lewis B. A. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci.  74: 3583– 3597. doi: https://doi.org/10.3168/jds.S0022-0302(91)78551-2 Google Scholar CrossRef Search ADS PubMed  Wilson A. D 1966. The tolerance of sheep to sodium chloride in food or drinking water. Aust. J. Agric. Res.  17: 503– 514. doi: https://doi.org/10.1071/AR9660503 Google Scholar CrossRef Search ADS   Footnotes 1 The project was supported by the USDA National Institute for Food and Agriculture (NIFA) Evans-Allen Project OKLXSAHLU2012, accession number 0228824. American Society of Animal Science TI - Effects of level of brackish water on feed intake, digestion, heat energy, and blood constituents of growing Boer and Spanish goat wethers JF - Journal of Animal Science DO - 10.2527/jas.2016-0553 DA - 2016-09-01 UR - https://www.deepdyve.com/lp/oxford-university-press/effects-of-level-of-brackish-water-on-feed-intake-digestion-heat-5siGpD2QIO SP - 3864 EP - 3874 VL - 94 IS - 9 DP - DeepDyve ER -