TY - JOUR AU - Bujnicki, Janusz, M AB - Abstract tRNA are post-transcriptionally modified by chemical modifications that affect all aspects of tRNA biology. An increasing number of mutations underlying human genetic diseases map to genes encoding for tRNA modification enzymes. However, our knowledge on human tRNA-modification genes remains fragmentary and the most comprehensive RNA modification database currently contains information on approximately 20% of human cytosolic tRNAs, primarily based on biochemical studies. Recent high-throughput methods such as DM-tRNA-seq now allow annotation of a majority of tRNAs for six specific base modifications. Furthermore, we identified large gaps in knowledge when we predicted all cytosolic and mitochondrial human tRNA modification genes. Only 48% of the candidate cytosolic tRNA modification enzymes have been experimentally validated in mammals (either directly or in a heterologous system). Approximately 23% of the modification genes (cytosolic and mitochondrial combined) remain unknown. We discuss these ‘unidentified enzymes’ cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analysis shows that modification genes are highly expressed in proliferative tissues like testis and transformed cells, but scarcely in differentiated tissues, with the exception of the cerebellum. Our work provides a comprehensive up to date compilation of human tRNA modifications and their enzymes that can be used as a resource for further studies. INTRODUCTION The acquisition of post-transcriptional chemical modifications is an essential part of the maturation process required to generate functional tRNA molecules (1). Modifications have different roles in controlling stability, folding and decoding properties of tRNAs and can be determinants or anti-determinants for other components of the translation apparatus like e.g. aminoacyl-tRNA synthetases (2,3). In addition, tRNA modifications can be recognition elements of ribonucleases (4), leading to the generation of tRNA fragments that affect multiple cellular processes (5). However, very few modifications such as m1G37, Ψ55 or t6A37 are present at a specific position of a particular tRNA in (almost) all known organisms. Most of them are specific to particular taxons, from species to kingdoms. For example, lysidine (k2C34) is a hallmark of bacteria (6), while archaeosine (G+15) is only found in archaea (7). Depending on the organism, the total number of genes encoding tRNA modification enzymes varies between as little as eleven in some obligate symbionts (8) to around an estimated hundred in humans of which 50 are currently represented in MODOMICS (9). The near complete sets of tRNA modification genes are currently available for only one organism per domain of life: Saccharomyces cerevisiae for eukarya, where only one gene required for the formation of ncm5U out of cm5U is missing (10), Escherichia coli for bacteria where only the genes for ho5U34 and Acp3U47-formation remain unidentified and Haloferax volcanii for archaea where a handful of genes are missing (1). Beyond these three organisms, the annotation of tRNA modification genes remains scarce, because of several issues: First, RNA modification enzymes are often part of large multifunctional protein families such as the Rossmann Fold Methyltransferase (RFM) superfamily, which can act on other substrates than RNA (11). For example, some RNA methyltransferases are closely related to protein methyltransferases or DNA methyltransferases (11). Second, closely related members of orthologous families often introduce a similar chemical modification, but in different RNAs and at different positions. For example, members of the TrmFO family methylate tRNA or rRNA depending on the organism (12). Third, related enzymes can generate chemically distinct modifications. For example closely related Radical-SAM enzymes introduce methyl groups at different positions of nucleosides like in m2A or m8A (13). Finally, the same chemical modification, in particular methyl groups, can be introduced by proteins that are dissimilar (14) or even evolutionarily unrelated having arisen through non-orthologous gene displacements (15). For example, the formation of the universal m1G37 is catalyzed by TrmD and Trm5, two enzymes of completely different evolutionary origins in bacteria and in eukarya/archaea (16). The combination of these factors has made it difficult to identify enzymes responsible for many tRNA modifications and hence to determine the function of those tRNA modifications in many species including humans. Recently, an increasing number of mutations causing genetic diseases have been mapped to human genes encoding tRNA modification enzymes (see (17–22) and Table 1), making a comprehensive list of these genes highly desirable. However, to our knowledge, no complete compilation of modifications found in both cytosolic and mitochondrial human tRNAs with their corresponding predicted or validated modification enzymes is available. For mitochondria, the best approximation is a recent list of modifications of bovine tRNAs and the predicted enzymes (23), which has been extrapolated for human tRNAs (23,24). A prediction of human tRNA methyltransferases, based on the known yeast enzymes was performed more than five years ago (25) and was recently extended to homologs of the other yeast RNA modification genes (26). Surveys of specific enzyme families such as the human m5C methyltransferases (27) or pseudouridine synthases (28) that target tRNA molecules have listed the known and missing genes for these specific modifications. The goal of our analysis was to compile a comprehensive list of known and predicted tRNA modifications in Homo sapiens with genes implicated in their biosynthesis. This analysis allowed for the identification of the remaining gaps of knowledge in the field of human tRNA modifications and will help to guide future experiments. Furthermore, we have used publicly available datasets in order to determine the expression profiles and proteomic evidence of known and predicted modification enzymes. Our work will facilitate access to the current knowledge on human tRNA modification enzymes for a wider community of biologists. Table 1. Known and predicted tRNA modification genes that have been linked to human diseases Modification Gene Disease Cyto. Pheno. Mito. Pheno. Article xG THG1L Microcephaly, developmental delay, nephrotic defect + + (110,175,176) m1G TRMT10A Diabetes, intellectual disabilities, microcephaly, developmental defects + (111,143,177–180) ac4C NAT10 Cancer + (112,181,182) ac4C THUMPD1 Cancer + (113) Gm TARBP1 Cancer + (114,115) D DUS2 Cancer + + (116) Y PUS1 Mitochondrial myopathy and sideroblastic anemia (MLASA) + + (117,183,184) m3C METTL6 Cancer + (118,119) I ADAT3 Intellectual disabilities, microcephaly + (120,185–187) m5C NSUN2 Intellectual disabilities, developmental delay, reduced fertility, cancer + (121,170–172,189,229–232) Cm,Um,Gm, f5Cm, hm5Cm, mcm5Um FTSJ1 Intellectual disabilities + (122,123,188) Cm, Gm,f5Cm, hm5Cm WDR6 Cancer + (124) Q QTRT1 Cancer + (125) cm5U, ncm5U, mcm5U, mcm5s2U ELP1 Familial dysautonomia, cancer + (126,127,190) cm5U, ncm5U, mcm5U, mcm5s2U ELP3 Familial dysautonomia, Charcot–Marie–Tooth disease (CMT), cancer, amyotrophic lateral sclerosis (ALS) + (127,130,191,192) cm5U, ncm5U, mcm5U, mcm5s2U ELP4 Autism spectrum disorder, intellectual disabilities + (128) cm5U, ncm5U, mcm5U, mcm5s2U ELP5 Cancer, diabetes + (129,193,194) s2U, mcm5s2U CTU1 Cancer + (127,130,131) s2U, mcm5s2U CTU2 Microcephaly, nephrotic defect, cancer + (127,130,132,133) s2U, mcm5s2U MOCS3* Molybdenum cofactor deficiency s2U, mcm5s2U MPST* Mercaptolactate-cysteine disulfiduria (MCDU), intellectual disabilities s2U, mcm5s2U NFS1* Friedreich ataxia s2U, mcm5s2U SERGEF* Hereditary deafness, artheriosclerosis s2U, mcm5s2U CIAO1* Hereditary paraganglioma-pheochromocytoma syndromes, retinitis pigmentosa s2U, mcm5s2U NUBP1* Cancer s2U, mcm5s2U ISCU* Myopathy with lactic acidosis, Friedreich ataxia I ADAT1 Coronary artery disease + (134) m1G, m1I TRMT5 Failure to thrive, hypertrophic cardiomyopathy, exercise intolerance + + (135,136) o2Yw, yW TRMT12 Cancer (137,138) o2Yw, yW LCMT2 Cancer + (139) t6A YRDC Cancer + (140) t6A OSGEP Galloway-Mowat syndrome, microcephaly, nephrotic defects + (18,141,195–197) t6A TP53RK Galloway-Mowat syndrome, microcephaly, nephrotic defects, cancer + (141,142,195,196) t6A TPRKB Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) t6A LAGE3 Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) ms2t6A CDKAL1 Diabetes, microcephaly, cancer + (144,198,199) m5C TRDMT1 Metabolism, cancer + (145,146) Y PUS3 Intellectual disabilities + (147,148) Um TRMT44 Partial Epilepsy with Pericentral Spikes (PEPS) + (149) m7G METTL1 Multiple sclerosis, cancer + (150,200,201) m7G WDR4 Microcephaly, cancer, nephrotic defects, developmental defects + (151,202–204) m5U TRMT2A Cancer + (152) Y PUS10 Autoimmune diseases, intellectual disabilities + (153,205,206) m1A TRMT6 Cancer + (139,154,155) m1A TRMT61A Cancer + (139,154,155) m5C NSUN6* Cancer + (156) m1G,m1A TRMT10C Lactic acidosis, hypotonia, feeding difficulties, deafness + (157,158) m1G,m1A HSD17B10 Neurodegeneration, cardiomyopathy + (158,207,208) m2,2G TRMT1 Intellectual disabilities, microcephaly + + (159,209,210) f5C NSUN3 Cancer + (160,161) tm5U GTPBP3 Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), non-syndromic hearing loss + (162,163,211–213) tm5U MTO1 Lactic acidosis, cardiomyopathy, encephalopathy, non-syndromic hearing loss, cancer, myoclonus epilepsy associated with ragged-red fibers (MERRF) + (162–164,214–217) tm5s2U TRMU Leigh syndrome, hepatopathy associated with hyperlactatemia, non-syndromic hearing loss + (165,218–222) t6A OSGEPL1 Cancer, MERRF + (166,167) i6A TRIT1 Microcephaly, developmental delay, epilepsy, cancer + + (168,223–225) ms2i6A CDK5RAP1 Cancer, type II diabetes, vitiligo + (169,226–228) m1A TRMT61B Cancer, Alzheimer's disease + (173,174) Modification Gene Disease Cyto. Pheno. Mito. Pheno. Article xG THG1L Microcephaly, developmental delay, nephrotic defect + + (110,175,176) m1G TRMT10A Diabetes, intellectual disabilities, microcephaly, developmental defects + (111,143,177–180) ac4C NAT10 Cancer + (112,181,182) ac4C THUMPD1 Cancer + (113) Gm TARBP1 Cancer + (114,115) D DUS2 Cancer + + (116) Y PUS1 Mitochondrial myopathy and sideroblastic anemia (MLASA) + + (117,183,184) m3C METTL6 Cancer + (118,119) I ADAT3 Intellectual disabilities, microcephaly + (120,185–187) m5C NSUN2 Intellectual disabilities, developmental delay, reduced fertility, cancer + (121,170–172,189,229–232) Cm,Um,Gm, f5Cm, hm5Cm, mcm5Um FTSJ1 Intellectual disabilities + (122,123,188) Cm, Gm,f5Cm, hm5Cm WDR6 Cancer + (124) Q QTRT1 Cancer + (125) cm5U, ncm5U, mcm5U, mcm5s2U ELP1 Familial dysautonomia, cancer + (126,127,190) cm5U, ncm5U, mcm5U, mcm5s2U ELP3 Familial dysautonomia, Charcot–Marie–Tooth disease (CMT), cancer, amyotrophic lateral sclerosis (ALS) + (127,130,191,192) cm5U, ncm5U, mcm5U, mcm5s2U ELP4 Autism spectrum disorder, intellectual disabilities + (128) cm5U, ncm5U, mcm5U, mcm5s2U ELP5 Cancer, diabetes + (129,193,194) s2U, mcm5s2U CTU1 Cancer + (127,130,131) s2U, mcm5s2U CTU2 Microcephaly, nephrotic defect, cancer + (127,130,132,133) s2U, mcm5s2U MOCS3* Molybdenum cofactor deficiency s2U, mcm5s2U MPST* Mercaptolactate-cysteine disulfiduria (MCDU), intellectual disabilities s2U, mcm5s2U NFS1* Friedreich ataxia s2U, mcm5s2U SERGEF* Hereditary deafness, artheriosclerosis s2U, mcm5s2U CIAO1* Hereditary paraganglioma-pheochromocytoma syndromes, retinitis pigmentosa s2U, mcm5s2U NUBP1* Cancer s2U, mcm5s2U ISCU* Myopathy with lactic acidosis, Friedreich ataxia I ADAT1 Coronary artery disease + (134) m1G, m1I TRMT5 Failure to thrive, hypertrophic cardiomyopathy, exercise intolerance + + (135,136) o2Yw, yW TRMT12 Cancer (137,138) o2Yw, yW LCMT2 Cancer + (139) t6A YRDC Cancer + (140) t6A OSGEP Galloway-Mowat syndrome, microcephaly, nephrotic defects + (18,141,195–197) t6A TP53RK Galloway-Mowat syndrome, microcephaly, nephrotic defects, cancer + (141,142,195,196) t6A TPRKB Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) t6A LAGE3 Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) ms2t6A CDKAL1 Diabetes, microcephaly, cancer + (144,198,199) m5C TRDMT1 Metabolism, cancer + (145,146) Y PUS3 Intellectual disabilities + (147,148) Um TRMT44 Partial Epilepsy with Pericentral Spikes (PEPS) + (149) m7G METTL1 Multiple sclerosis, cancer + (150,200,201) m7G WDR4 Microcephaly, cancer, nephrotic defects, developmental defects + (151,202–204) m5U TRMT2A Cancer + (152) Y PUS10 Autoimmune diseases, intellectual disabilities + (153,205,206) m1A TRMT6 Cancer + (139,154,155) m1A TRMT61A Cancer + (139,154,155) m5C NSUN6* Cancer + (156) m1G,m1A TRMT10C Lactic acidosis, hypotonia, feeding difficulties, deafness + (157,158) m1G,m1A HSD17B10 Neurodegeneration, cardiomyopathy + (158,207,208) m2,2G TRMT1 Intellectual disabilities, microcephaly + + (159,209,210) f5C NSUN3 Cancer + (160,161) tm5U GTPBP3 Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), non-syndromic hearing loss + (162,163,211–213) tm5U MTO1 Lactic acidosis, cardiomyopathy, encephalopathy, non-syndromic hearing loss, cancer, myoclonus epilepsy associated with ragged-red fibers (MERRF) + (162–164,214–217) tm5s2U TRMU Leigh syndrome, hepatopathy associated with hyperlactatemia, non-syndromic hearing loss + (165,218–222) t6A OSGEPL1 Cancer, MERRF + (166,167) i6A TRIT1 Microcephaly, developmental delay, epilepsy, cancer + + (168,223–225) ms2i6A CDK5RAP1 Cancer, type II diabetes, vitiligo + (169,226–228) m1A TRMT61B Cancer, Alzheimer's disease + (173,174) *Disease likely caused by defects other than loss of tRNA modification. View Large Table 1. Known and predicted tRNA modification genes that have been linked to human diseases Modification Gene Disease Cyto. Pheno. Mito. Pheno. Article xG THG1L Microcephaly, developmental delay, nephrotic defect + + (110,175,176) m1G TRMT10A Diabetes, intellectual disabilities, microcephaly, developmental defects + (111,143,177–180) ac4C NAT10 Cancer + (112,181,182) ac4C THUMPD1 Cancer + (113) Gm TARBP1 Cancer + (114,115) D DUS2 Cancer + + (116) Y PUS1 Mitochondrial myopathy and sideroblastic anemia (MLASA) + + (117,183,184) m3C METTL6 Cancer + (118,119) I ADAT3 Intellectual disabilities, microcephaly + (120,185–187) m5C NSUN2 Intellectual disabilities, developmental delay, reduced fertility, cancer + (121,170–172,189,229–232) Cm,Um,Gm, f5Cm, hm5Cm, mcm5Um FTSJ1 Intellectual disabilities + (122,123,188) Cm, Gm,f5Cm, hm5Cm WDR6 Cancer + (124) Q QTRT1 Cancer + (125) cm5U, ncm5U, mcm5U, mcm5s2U ELP1 Familial dysautonomia, cancer + (126,127,190) cm5U, ncm5U, mcm5U, mcm5s2U ELP3 Familial dysautonomia, Charcot–Marie–Tooth disease (CMT), cancer, amyotrophic lateral sclerosis (ALS) + (127,130,191,192) cm5U, ncm5U, mcm5U, mcm5s2U ELP4 Autism spectrum disorder, intellectual disabilities + (128) cm5U, ncm5U, mcm5U, mcm5s2U ELP5 Cancer, diabetes + (129,193,194) s2U, mcm5s2U CTU1 Cancer + (127,130,131) s2U, mcm5s2U CTU2 Microcephaly, nephrotic defect, cancer + (127,130,132,133) s2U, mcm5s2U MOCS3* Molybdenum cofactor deficiency s2U, mcm5s2U MPST* Mercaptolactate-cysteine disulfiduria (MCDU), intellectual disabilities s2U, mcm5s2U NFS1* Friedreich ataxia s2U, mcm5s2U SERGEF* Hereditary deafness, artheriosclerosis s2U, mcm5s2U CIAO1* Hereditary paraganglioma-pheochromocytoma syndromes, retinitis pigmentosa s2U, mcm5s2U NUBP1* Cancer s2U, mcm5s2U ISCU* Myopathy with lactic acidosis, Friedreich ataxia I ADAT1 Coronary artery disease + (134) m1G, m1I TRMT5 Failure to thrive, hypertrophic cardiomyopathy, exercise intolerance + + (135,136) o2Yw, yW TRMT12 Cancer (137,138) o2Yw, yW LCMT2 Cancer + (139) t6A YRDC Cancer + (140) t6A OSGEP Galloway-Mowat syndrome, microcephaly, nephrotic defects + (18,141,195–197) t6A TP53RK Galloway-Mowat syndrome, microcephaly, nephrotic defects, cancer + (141,142,195,196) t6A TPRKB Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) t6A LAGE3 Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) ms2t6A CDKAL1 Diabetes, microcephaly, cancer + (144,198,199) m5C TRDMT1 Metabolism, cancer + (145,146) Y PUS3 Intellectual disabilities + (147,148) Um TRMT44 Partial Epilepsy with Pericentral Spikes (PEPS) + (149) m7G METTL1 Multiple sclerosis, cancer + (150,200,201) m7G WDR4 Microcephaly, cancer, nephrotic defects, developmental defects + (151,202–204) m5U TRMT2A Cancer + (152) Y PUS10 Autoimmune diseases, intellectual disabilities + (153,205,206) m1A TRMT6 Cancer + (139,154,155) m1A TRMT61A Cancer + (139,154,155) m5C NSUN6* Cancer + (156) m1G,m1A TRMT10C Lactic acidosis, hypotonia, feeding difficulties, deafness + (157,158) m1G,m1A HSD17B10 Neurodegeneration, cardiomyopathy + (158,207,208) m2,2G TRMT1 Intellectual disabilities, microcephaly + + (159,209,210) f5C NSUN3 Cancer + (160,161) tm5U GTPBP3 Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), non-syndromic hearing loss + (162,163,211–213) tm5U MTO1 Lactic acidosis, cardiomyopathy, encephalopathy, non-syndromic hearing loss, cancer, myoclonus epilepsy associated with ragged-red fibers (MERRF) + (162–164,214–217) tm5s2U TRMU Leigh syndrome, hepatopathy associated with hyperlactatemia, non-syndromic hearing loss + (165,218–222) t6A OSGEPL1 Cancer, MERRF + (166,167) i6A TRIT1 Microcephaly, developmental delay, epilepsy, cancer + + (168,223–225) ms2i6A CDK5RAP1 Cancer, type II diabetes, vitiligo + (169,226–228) m1A TRMT61B Cancer, Alzheimer's disease + (173,174) Modification Gene Disease Cyto. Pheno. Mito. Pheno. Article xG THG1L Microcephaly, developmental delay, nephrotic defect + + (110,175,176) m1G TRMT10A Diabetes, intellectual disabilities, microcephaly, developmental defects + (111,143,177–180) ac4C NAT10 Cancer + (112,181,182) ac4C THUMPD1 Cancer + (113) Gm TARBP1 Cancer + (114,115) D DUS2 Cancer + + (116) Y PUS1 Mitochondrial myopathy and sideroblastic anemia (MLASA) + + (117,183,184) m3C METTL6 Cancer + (118,119) I ADAT3 Intellectual disabilities, microcephaly + (120,185–187) m5C NSUN2 Intellectual disabilities, developmental delay, reduced fertility, cancer + (121,170–172,189,229–232) Cm,Um,Gm, f5Cm, hm5Cm, mcm5Um FTSJ1 Intellectual disabilities + (122,123,188) Cm, Gm,f5Cm, hm5Cm WDR6 Cancer + (124) Q QTRT1 Cancer + (125) cm5U, ncm5U, mcm5U, mcm5s2U ELP1 Familial dysautonomia, cancer + (126,127,190) cm5U, ncm5U, mcm5U, mcm5s2U ELP3 Familial dysautonomia, Charcot–Marie–Tooth disease (CMT), cancer, amyotrophic lateral sclerosis (ALS) + (127,130,191,192) cm5U, ncm5U, mcm5U, mcm5s2U ELP4 Autism spectrum disorder, intellectual disabilities + (128) cm5U, ncm5U, mcm5U, mcm5s2U ELP5 Cancer, diabetes + (129,193,194) s2U, mcm5s2U CTU1 Cancer + (127,130,131) s2U, mcm5s2U CTU2 Microcephaly, nephrotic defect, cancer + (127,130,132,133) s2U, mcm5s2U MOCS3* Molybdenum cofactor deficiency s2U, mcm5s2U MPST* Mercaptolactate-cysteine disulfiduria (MCDU), intellectual disabilities s2U, mcm5s2U NFS1* Friedreich ataxia s2U, mcm5s2U SERGEF* Hereditary deafness, artheriosclerosis s2U, mcm5s2U CIAO1* Hereditary paraganglioma-pheochromocytoma syndromes, retinitis pigmentosa s2U, mcm5s2U NUBP1* Cancer s2U, mcm5s2U ISCU* Myopathy with lactic acidosis, Friedreich ataxia I ADAT1 Coronary artery disease + (134) m1G, m1I TRMT5 Failure to thrive, hypertrophic cardiomyopathy, exercise intolerance + + (135,136) o2Yw, yW TRMT12 Cancer (137,138) o2Yw, yW LCMT2 Cancer + (139) t6A YRDC Cancer + (140) t6A OSGEP Galloway-Mowat syndrome, microcephaly, nephrotic defects + (18,141,195–197) t6A TP53RK Galloway-Mowat syndrome, microcephaly, nephrotic defects, cancer + (141,142,195,196) t6A TPRKB Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) t6A LAGE3 Galloway-Mowat syndrome, microcephaly, nephrotic defects + (141,195,196) ms2t6A CDKAL1 Diabetes, microcephaly, cancer + (144,198,199) m5C TRDMT1 Metabolism, cancer + (145,146) Y PUS3 Intellectual disabilities + (147,148) Um TRMT44 Partial Epilepsy with Pericentral Spikes (PEPS) + (149) m7G METTL1 Multiple sclerosis, cancer + (150,200,201) m7G WDR4 Microcephaly, cancer, nephrotic defects, developmental defects + (151,202–204) m5U TRMT2A Cancer + (152) Y PUS10 Autoimmune diseases, intellectual disabilities + (153,205,206) m1A TRMT6 Cancer + (139,154,155) m1A TRMT61A Cancer + (139,154,155) m5C NSUN6* Cancer + (156) m1G,m1A TRMT10C Lactic acidosis, hypotonia, feeding difficulties, deafness + (157,158) m1G,m1A HSD17B10 Neurodegeneration, cardiomyopathy + (158,207,208) m2,2G TRMT1 Intellectual disabilities, microcephaly + + (159,209,210) f5C NSUN3 Cancer + (160,161) tm5U GTPBP3 Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), non-syndromic hearing loss + (162,163,211–213) tm5U MTO1 Lactic acidosis, cardiomyopathy, encephalopathy, non-syndromic hearing loss, cancer, myoclonus epilepsy associated with ragged-red fibers (MERRF) + (162–164,214–217) tm5s2U TRMU Leigh syndrome, hepatopathy associated with hyperlactatemia, non-syndromic hearing loss + (165,218–222) t6A OSGEPL1 Cancer, MERRF + (166,167) i6A TRIT1 Microcephaly, developmental delay, epilepsy, cancer + + (168,223–225) ms2i6A CDK5RAP1 Cancer, type II diabetes, vitiligo + (169,226–228) m1A TRMT61B Cancer, Alzheimer's disease + (173,174) *Disease likely caused by defects other than loss of tRNA modification. View Large MATERIALS AND METHODS The set of human isoacceptor tRNAs (i.e. tRNAs that are acylated with the same amino acid regardless of the anticodon sequence) was extracted from the Genomic tRNA Database (GtRNAdb): http://gtrnadb.ucsc.edu/ (29) and is summarized here: http://gtrnadb.ucsc.edu/genomes/eukaryota/Hsapi19/ All modifications present in the sequences of cytosolic and mitochondrial tRNA of human (H. sapiens), cow (Bos taurus), rat (Rattus norvegicus), and mouse (Mus musculus) were extracted from the MODOMICS database of RNA modification pathways (http://modomics.genesilico.pl/) (9). This provided a first list that was then updated with one modification from the literature (m5C34 in Leu-CAA-tRNA) and several human modifications detected with novel tRNAseq methods (30) (m3C20 in Met-CAU-tRNA and m3C47 in Leu-CAG-tRNA and most Ser-tRNAs, m1A16 in mito-Arg-TCG-tRNA and m3C32 in mito-Thr-UGU-tRNA and mito-Ser-UGA) that were missing from MODOMICS. The MODOMICS database was updated accordingly. High-throughput tRNA-seq modification data was derived from published study data sets (30–32). The protein and literature mining tools of NCBI (33) as well as the Uniprot resource and Id/Mapping tools (34) were used to gather data. Gene names were gathered from the HUGO Gene Nomenclature Committee (https://www.genenames.org) (35). Protein interaction data was derived from BioGrid (36) and the predicted mitochondrial localization from MitoCarta (https://www.broadinstitute.org/files/shared/metabolism/mitocarta/human.mitocarta2.0.html) (37). Human co-expression data was extracted from the Search-based Exploration of Expression Compendium (SEEK) database (http://seek.princeton.edu/index.jsp) (38). Phylogenetic trees for specific protein families were extracted from PhylomeDB (http://phylomedb.org) (39). For gene expression analyses, RNAseq data was obtained from the GTEx portal (www.gtexportal.org; GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz) on 30/04/2018. For each gene the transcript with the highest expression levels was selected for each tissue. Subsequently, relative expression levels were calculated and plotted as a heatmap using the heatmap.2 function in R. Tissues included in the analysis were selected to provide a general physiological overview. Hierarchical clustering of genes was performed according to similarity of expression profile using Ward's method (40). For tissue-specific proteomics evidence, we used the human proteome map (http://www.humanproteomemap.org/) using the default settings (41). Proteins that were not detected in any tissue were manually removed. RESULTS AND DISCUSSION Compiling all mammalian cytosolic tRNA modifications As a first step to predict the complete set of modification enzymes, we sought to list the nature and positions of all chemical modifications that have been identified in human cytosolic tRNAs. This task is not trivial as the set of human tRNAs used in decoding is very complex (see (42) for a recent review). Indeed, not all tRNA sequences encoded in the human genome are expressed in common cell-lines (43,44). Based on the loss of canonical secondary structure, mutations at highly conserved positions, or positioning in transcriptional silent chromosomal regions, some candidate tRNA genes are likely tRNA-derived Short Interspersed Nuclear Elements or pseudogenes, and others may have non-canonical functions outside of translation (5,45,46). Therefore, additional filtering criteria are needed to select a list of tRNAs that most likely decode mRNAs in the human cytosol. An updated set of ‘high confidence’ human tRNAs has been generated by tRNAscan-SE 2.0 (Chan, Lin and Lowe, unpublished data) and is available in the GtRNAdb (29). This list of over 400 tRNA genes contains 47 distinct isoacceptors families (including tRNASec, the tRNA for selenocysteine insertion). A first set of biochemically-determined tRNA isoacceptor sequences that include chemical modifications in at least one mammal was extracted from the MODOMICS database at the time of the initial analysis (30 May 2017). Furthermore, partial information is available for modifications at specific positions such as wobble uridine (U34). It is known that 5-carbamoylmethyluridine (ncm5U) is found in Val-UAC-tRNA, 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U) in Arg-UCU-tRNA and 5-methoxycarbonyl-hydroxymethyluridine (mchm5U) in Gly-UCC-tRNA (47). Since the modifications of U34 in human Arg-UCU-tRNA and Gly-UCC-tRNA differ from those in the corresponding yeast tRNA, it is difficult to predict the nature of most of the U34 modifications in humans (48). Finally, a large fraction of the RNA sequence data stems from the 60s, 70s and 80s, so is based on paper and thin-layer chromatography (TLC) (49), photometric characterization of nucleosides following chromatography (50), and mass-spectrometry using low-resolution, low-sensitivity instruments (49). These methods failed to identify or distinguish some of the modifications, which are therefore listed as N and xN in Supplementary Table S1A but can now be detected with high-resolution mass spectrometry (51–54). To add to the complexity of the task, the human genome (in contrast to yeast) encodes isoacceptor families that include many unique isodecoders, which are tRNAs with the same anticodon but contains variations in the tRNA body (42). Different isodecoders can be expressed under specific conditions as shown for the neuron-specific tRNA-Arg-UCU (55) or in the case of cancer (56). New high-throughput sequencing methods have been developed and optimized to facilitate detection of full length tRNAs such as DM-tRNA-seq (31) or tRNA-HydroSeq (57) or AlkAniline-Seq (58) and of tRNA-derived small RNAs (ARM-seq (32)). While these high-throughput RNA modification mapping methods reviewed in (59) and (30) are not yet as precise or quantitative as mass spectrometry, they do offer a practical, inexpensive method to survey a subset of modifications across all expressed tRNAs for many cell types. Using these methods also offers a first glimpse of the diversity of modification states across different isodecoders. Some isodecoder families in human such as Ala-AGC can be highly complex, contrasting the relatively simple view previously seen in budding yeast. In human, there are 22 high confidence Ala-AGC tRNA genes detected in the genome, which encode 16 unique (by sequence) Ala-AGC tRNA transcripts; in yeast, there are 11 Ala-AGC genes, which all encode identical Ala-AGC tRNA transcripts. This variation in human tRNA sequences also leads to an apparent complexity in tRNA modifications that is only now being appreciated. For example, RNA modification data collected with traditional methods exists for just 2 out of 16 Ala-AGC isodecoders (Ala-AGC-8 and Ala-AGC-11). ARM-seq and DM-tRNA-seq, however, both detect transcripts and modifications for many more isodecoders (Supplementary Table S5). These high-throughput methods allowed to detect four human modifications that were missing in MODOMICS at the time of our first analysis (see methods section). The final count of tRNA isoacceptors with modification information is 27 in humans and 38 in mammals (Figure 1 and Supplementary Tables S1A and S5). Figure 1. View largeDownload slide tRNA isoacceptors that have been biochemically characterized at the RNA level by traditional methods. Three additional tRNA isoacceptors (Rn-Val-NAC, Hs-Leu-NAA, Hs-Val-NAC) listed in Supplementary Table S1A weren’t placed in this figure due to their unknown nucleotide. Figure 1. View largeDownload slide tRNA isoacceptors that have been biochemically characterized at the RNA level by traditional methods. Three additional tRNA isoacceptors (Rn-Val-NAC, Hs-Leu-NAA, Hs-Val-NAC) listed in Supplementary Table S1A weren’t placed in this figure due to their unknown nucleotide. Linking the modifications of human cytosolic tRNAs to their corresponding modification enzymes We generated a current list of chemical modifications found in human cytosolic tRNAs (Figure 2A, Supplementary Table S2) by combining the modification information from the tRNA sequences compiled in Supplementary Table S1A Subsequently, we used this list as a starting point to generate the set of predicted human tRNA modification genes. Figure 2. View largeDownload slide Cloverleaf representation of tRNA, with modified positions indicated for (A) cytoplasmic and (B) mitochondrial tRNAs, respectively, indicating genes/proteins experimentally validated in human, predicted with high confidence in other species, unknown with predictions, and unknown with no predictions. Figure 2. View largeDownload slide Cloverleaf representation of tRNA, with modified positions indicated for (A) cytoplasmic and (B) mitochondrial tRNAs, respectively, indicating genes/proteins experimentally validated in human, predicted with high confidence in other species, unknown with predictions, and unknown with no predictions. Once the list of human cytosolic tRNA modifications had been generated (Figure 2A, Supplementary Table S2), we linked the modifications to their corresponding modification enzymes whenever possible. This was done by using the advanced query tools of Uniprot for a first pass and then surveying the literature. By default, the reference linking the gene to the function is found by accessing the Uniprot entry for a given gene. Only when the reference had not yet been captured in Uniprot (∼10 cases), did we add a PMID entry in Supplementary Table S2. Not all predictions reach the same level of credibility. For example, in some cases, experimental validation is available for the human ortholog, while in other cases only the function of the yeast ortholog is validated. Therefore, we used the following code to classify the evidence of our functional annotation: [5] in vivo data in mammals; [4] in vivo data of the human or a related mammalian enzyme in a heterologous host; [3] in vitro data using the human enzyme; [2] similarity to an experimentally validated gene in a non-mammalian species; [1] candidates that have not been verified in any organism; [0] no clear candidate. These predictions are available in Supplementary Table S2, and we summarized all enzymes with evidence codes 2–5 in Figure 2A, using the protein names recommended by the HUGO Gene Nomenclature committee (35). According to this assessment, we predicted at least 76 proteins to be required for the modification of cytosolic tRNAs. Clearly, this is an underestimation, as more than 24 enzymes are still unknown (evidence code 0 or 1). Furthermore, for approximately 26 proteins there is no direct in vivo or in vitro experimental data using a mammalian homolog (evidence code 2). Thus, our analysis emphasizes that extensive experimental validations and research will be required to verify specific gene predictions and to identify some of the ‘missing’ genes. These cases will be further discussed below. Identifying candidates for the ‘missing’ genes To identify candidates of unidentified tRNA modifications enzymes, we compiled an initial list of ∼40 human proteins that are members of families known to be implicated in RNA modifications. These were mainly methyltransferases, pseudouridine synthases or THUMP-domain-containing proteins that have not yet been linked to a specific function. When we surveyed the recent literature, we found that ∼2/3 of these candidates had been reported to modify rRNA or proteins. For the remaining twelve proteins/genes, we gathered localization data from Mitocarta, and analyzed co-expression using the SEEK expression database profiles to identify the candidates that are coexpressed with RNA processing or translation related genes (Supplementary Table S4). This list is far from exhaustive as new methylase folds implicated in RNA modification are still being discovered (60). Missing genes coding for cytosolic tRNA modification enzymes In general, when the gene is missing, the function of the corresponding modification is very difficult to infer, as no genetic study can be conducted. In some cases, such as acp3U20, the gene is not known in any organism, and almost no functional information is available. The only functional inference that can be done is if the gene encoding the enzyme responsible for the same modification is known in another organism. This is the case for a few modifications such as m1A14 and m5U54 in yeast or m1G6 in bacteria and archaea. Also, for complex pathways in which some genes have already been characterized such as Q and mcm5s2U34, functional information is available. However, we feel it is a far stretch to transfer functional inferences made from prokaryotes or unicellular eukaryotes to human. Even if a related enzyme is known in another species, it is very difficult to predict how the unknown human enzyme discriminates substrate tRNAs from non-substrates. Thus, in the absence of information about the gene and enzyme responsible, very little information can be inferred about the function of the modification itself. Below we list modifications of human cytosolic tRNAs, for which the genes remain to be discovered and characterized, and this list also indicates the areas where functional information is missing. m1G6/7: This nucleotide is modified in multiple cytosolic and in at least one mitochondrial tRNA (Supplementary Table S1A and B). Trm14/TrmN are members of the COG0116 family of methyltransferases and target this position in several thermophilic bacteria and archaea (61). However other members of the same family, such as RmlL have been shown to methylate guanine residues in 23S RNA (62). THUMPD2 and THUMPD3 are two barely characterized members of this family in humans (Supplementary Table S4), and previous analyses suggested that these enzymes might be required for the formation of both cytosolic and mitochondrial modifications (23). THUMPD2 was found to form a complex with the m2,2G26-methylase TRMT1, while THUMPD3 was shown to interact with the methylase-activator protein TRM112 (63) in two high-throughput interactome studies (36), strengthening their role as tRNA methyltransferase candidates. However, experimental verification will be required to evaluate whether these two proteins are essential for the formation of m1G, whether they exhibit different substrates specificities towards G6 or G7 and whether they act in mitochondria or in the cytoplasm. m1A14: Enzymes responsible for this modification were identified in S. cerevisiae and belong to the pfam01746 family (64). The human genome encodes three members of this family: TRMT10A is required for the generation of m1G9 in cytosolic tRNAs (65). TRMT10C as part of the RNase P complex, forms m1G9 in mitochondrial tRNAs (62) and like some family members from other species, can also methylate adenosine to form m1A9 (66). Hence, TRMT10B (Supplementary Table S4) is a candidate for the elusive m1A14 methyltransferase, even if a recent report could not detect any tRNA methylation activity in vitro (67). As expected for a cytosolic enzyme, TRMT10B is not part of the predicted human mitoproteome (37). However, multiple reports of interactions with 25 mitochondrial ribosomal proteins (https://thebiogrid.org/127659) suggest this protein localizes to the mitochondria. Further experiments will be needed to determine whether TRMT10B is the missing m1A14 methyltransferase or whether TRMT10A methylates both G9 and A14 or whether a yet unknown enzyme catalyzes this reaction. Acp3U20,20a: Only very few enzymes have been characterized that modify RNA by transferring the aminocarboxypropyl (acp) group of SAM, which is the methyl donor in most RNA-methylation reactions. However, acp-transferring enzymes belong to three unrelated superfamilies, which also contain methyltransferases. The only human enzyme currently known to introduce the acp3 modification is TSR3, a member of the COG2042 family (68), which is required for the biosynthesis of the hypermodified nucleotide m1acp3Ψ in 18S rRNA (69). The crystal structures of its archaeal homologs revealed that TSR3 belongs to the SPOUT class of methyltransferases (69). The second structurally characterized acp-transferase Tyw2 belongs to the unrelated RFM superfamily (70). A different acp modification has been described in the diphthamide-biosynthesis pathway, where an acp group is transferred from SAM to the carbon atom of a histidine residue of eukaryotic translation elongation factor 2 (eEF2) by an enzyme that belongs to the Radical-SAM superfamily (71). acp3U is found in several positions in tRNA of different organisms like for example acp3U47 in E. coli tRNA, but the corresponding enzymes have not been identified in any of these species. Since all known acp transferases most likely arose independently from methyltransferases, the acp3U-forming enzyme may currently be annotated as a hypothetical methyltransferase of unknown function (Supplementary Table S4) but it is difficult to select a plausible candidate in light of the diversity of known acp transferases. Ψ: The list of pseudouridine synthases modifying human tRNAs is far from complete. Several candidates have been proposed to be required for the modification of positions 30–32, 50, 72 or e11,12,13 (23), but several can likely be excluded as they were found to be required for the modification of mitochondrial rRNA and mito-tRNA at positions 27, 29, 39 and 50 (RPUSD4) (65,72) or mitochondrial mRNA (like RPUSD3) (73). RPUSD1 and RPUSD2 (Supplementary Table S4) have not been tested experimentally and are hence still valid candidates. Pus7/TruD, the enzyme that introduces Ψ13 is highly conserved in all three kingdoms (74) and is a member of the COG0585 family. The yeast Pus7 enzyme further modifies position 35 (75). PUS7 and PUS7L, two members of the COG0585 family in humans are products of a gene duplication that occurred most certainly in the common ancestors of metazoa (see http://phylomedb.org/?q=search_tree&seqid=Q9H0K6). Experiments will be required to determine whether these two enzymes have identical, overlapping or different substrates specificities. For example, one of the two enzymes might modify position 13, while the second enzyme might target position 35. Another possibility is that PUS7 and PUS7L target both positions 13 and 35, but in different tRNA isoacceptors. PUS7 is implicated in pseudouridylation of Ψ8 in tRF derived from Ala-tRNA, Cys-tRNA and Val-tRNA but whether PUS7 acts directly on tRNA has formally not been shown (76). PUS1 is multisite specific so it is a plausible candidate for the positions 30 to 32, even though it has been found that the mouse homolog modifies positions 27, 28, 34 and 36 (77). Finally, based on experimental evidence from Archaea (78), it had been postulated that the human Pus10 is required for the formation of Ψ54 (28) and this was recently experimental validated in human (79). Q34: Queuosine in position 34 (Q34) is highly conserved in bacteria and eukarya. Humans like all eukaryotes are unable to synthesize Q but instead salvage the queuine (q) base from their diet and gut microflora as a micronutrient (80). Recent studies have shown that nutritionally determined Q-tRNA levels promote Dnmt2-mediated methylation of tRNA-Asp and control translational speed of Q-decoded codons as well as at near-cognate codons (81). The heterodimeric human TGT enzyme formed by the QTRT1 and QTRT2 (previously called QTRTD1) subunits is the only fully characterized enzyme of the Q salvage pathway (80). A second human salvage-enzyme member of the DUF2419 family has been identified but its molecular function is unknown (82). Finally, the transporter for the q base or the precursor nucleoside Q is still elusive as well as the enzyme(s) that further modify the Q residue by attaching galactosyl or mannosyl moieties. mcm5s2U34: Wobble uridine is generally modified in all known organisms (see (83) for a recent review). The combination of modifications at positions 2 and 5 of the nucleobase results in an intricate tuning of codon-anticodon interactions, thus allowing the translation apparatus to distinguish codons in split-codon boxes and to introduce additional amino acids (83,84). 5-carboxymethyluridine (cm5U), the first step of the 5-modification is introduced by the action of the Elongator complex, a heteromeric complex consisting of two copies of Elp1–Elp6 that is activated by several auxiliary proteins (85). Orthologs of all yeast Elongator complex subunits are known and described in humans. However, human orthologs of the yeast regulatory components (the kinase Kti14, the phosphatase Sit4 and its regulatory subunits Sap185 and Sap190) could not be identified. Here, functional screens will be required to determine the counterparts of these components in humans. The conversion of cm5U to mcm5U is catalyzed by the c-terminal Trm9 domain of ALKBH8 (86–88). mcm5U in some tRNA can be further hydroxylated to mchm5U by the AlkB Domain of ALKBH8 (87) or 2′-O-methylated to mcm5Um by an unknown enzyme. The enzyme required for ncm5U formation from cm5U is not known in any organism and remains to be identified. 2-thiolation is achieved through the action of the URM1 pathway that shares features of bacterial sulfur-carrier proteins (SCP) and ubiquitin-like proteins (UBL) (89). The URM1 pathway components are straight forward to identify. Urm1 has two homologs in humans: URM1 and MOCS2A. However, MOCS2A is required for the synthesis of the molybdopterin cofactor while URM1 is required for tRNA thiolation and MOCS3 activates the SCP of both pathways (90). The final step of the thiolation reaction is performed by a complex consisting of CTU1 and CTU2. Missing methyltransferases. Methyltransferases are the biggest group of RNA modifying enzymes. While many tRNA methyltransferases have been discovered and characterized, a few of them remain to be identified (Supplementary Table S2). Members of the NSUN family (PF01189) usually introduce m5C modifications (91) and some such as NSUN2 are multi-site specific (92). However, NSUN2 is not required for the formation of m5C40 or m5C72 (92). NSUN7 is the only member of the NSUN family without a known substrate (Supplementary Table S4). Hence, it is a strong candidate for methylating one or both these positions. However, indirect data links it to methylation of enhancer RNAs (93). Three enzymes (METTL2A, METTL2B and METTL6) have been found to be involved in m3C32 formation potentially on different tRNA targets (94). Any of these three might be required for introducing m3C at position e2 and/or 47 as the biochemical assays have been inconclusive to date (See (94), Supplementary Table S5). It is unclear, which protein synthesizes m5U54 since two human homologs of yeast Trm2 were identified: TRMT2A and TRMT2B (Supplementary Table S2). It is not known whether these two proteins catalyze the same reaction or whether they differ in substrate specificity or sub-cellular localization. For example, TRMT2B is predicted to localize to mitochondria and might be required for modifying mitochondrial tRNAs (Supplementary Table S3). Finally, no candidate can easily be proposed for the formation of m1Ψ39, Ψm39 and Gm39. The pool of methyltransferase candidates among proteins with uncharacterized functions is large (∼8, Supplementary Table S4), and we did not find evidence to favor a specific candidate. Identification of the genes encoding for mitochondrial tRNA modifications enzymes The Suzuki laboratory published a thorough compilation of tRNA modification enzymes for the full set of 22 bovine mito-tRNAs (23) and most of their functional annotations can be transferred to orthologous human enzymes (Figure 2B, Supplementary Table S3). Furthermore, some open cases have been solved since. Notably, ALKBH1 and NSUN3 are required for the formation of f5C in initiator tRNA (95–97). The same ALKBH1 enzyme is further required for hm5C and f5C formation in cytosolic tRNA (95). A more complete compilation of the predicted human mitochondrial tRNA modification enzymes was published recently with extensive added functional information (24). We compiled these predictions and added evidence codes resulting in a list of 35 enzymes required to modify the full set of mitochondrial tRNAs (Figure 2B and Supplementary Table S3). An additional evidence code to classify enzymes that have been experimentally validated in the cytoplasm but not in mitochondria was added (evidence code 6). We will discuss here the remaining open questions. The Q base is found in mitochondrial tRNAs and the catalytic subunit QTRT1 of the human transglycosylase complex is found in the mitoproteome (Supplementary Table S3). In the cytoplasm, QTRT1 forms a complex with QTRT2 (98) but it is not known whether this interaction also occurs in mitochondria. It has been shown that QTRT1 and QTRT2 are associated with the mitochondria with QTRT2 more loosely bound than QTRT1 (99). Is it possible that QTRT2 facilitates the transport of q, as the mitochondrial queuine transporter is missing? Similar to cytosolic pseudourine synthases, the set of enzymes introducing Ψ residues in mitochondrial tRNAs is far from complete, in particular since different enzymes can introduce the same modification at a given position in different tRNAs, implying that many more might be missing. RPUSD4 was recently shown to modify 16S rRNA from mitochondria and introduce Ψ39 in mito-tRNAPhe but not in mito-tRNAGly (72). PUS3 was predicted to modify other mitochondrial tRNAs such as mito-tRNAGln at position 39 (23). However, experimental data on PUS3 is available only for cytosolic tRNAs, requiring additional confirmation of its mitochondrial targets. Two pseudouridine synthases without known substrates (RPUSD3 and PUS1L) localize to the mitochondria (Supplementary Table S4). RUPSD3 modifies mitochondrial mRNAs (73), leaving PUS1L as a strong candidate for an enzyme that modifies positions 30, 31, 50 and/or 57 (Supplementary Table S4). Nevertheless, we cannot exclude that a pseudouridine synthase not predicted to be mitochondrial such as RPUSD1 or RPSUD2 is actually dually-targeted as it has been recently shown for Pus10 that is translocated to the mitochondria only under specific physiological conditions (100). In general, the situation is more complex when one gene encodes for two proteins that localize to different sub-cellular compartments, since the mitochondria-targeted isoform is often not identified as a mitochondrial protein. Thirty- seven proteins are predicted to be required for mitochondrial tRNA modifications with nine of these currently unknown, and eleven modify only mitochondrial tRNAs (Supplementary Table S3). In the Mitocarta analysis that integrates 14 different sources of predictions and experimental data to compile a list 1158 human mitochondrial protein (37), ten of these proteins were correctly identified as mitochondrial (Supplementary Table S3). The only exception is CDK5RAP1, an enzyme required for the thiolation reaction during ms2i6A formation (101,102). Of the dually targeted proteins, ten were correctly assigned as mitochondrial in Mitocarta (Supplementary Table S3) while seven others were not: TRM5, YRDC, PUS3, NSUN2, TRM112, METTL2B and QTRT2. TRM112 and QTRT2 are non-catalytic subunits and it cannot be excluded that they are dispensable in mitochondria, as tRNA modification machineries can be simpler in mitochondria. For example, only two proteins are required for the synthesis of t6A in mitochondria while six proteins are required in the cytosol (103). The case of PUS3 has already been discussed above. For the remaining three cases, dual localization data in yeast for Sua5p (104) and for Trm5p (105) as well as predicted isoforms (see http://www.uniprot.org/uniprot/Q08J23 for NSUN2) suggest that they can be similarly found in both compartments in humans. Hence, the MitoCarta set of mitochondrial proteins may be incomplete. Finally, the enzymes required for the formation of m2G6, m5C72 and of several Ψ residues are experimentally uncharacterized (Supplementary Table S3). As discussed above, the two candidates for the formation of cytosolic m2G6 are THUMPD2 and THUMPD3. These two proteins are not predicted to localize to mitochondria (37) but this prediction might not be correct. The same is true for the candidate for the cytosolic m5C72 methylase, NSUN7. Tissue expression and proteomics data of tRNA modification enzymes Disease phenotypes of aberrant tRNA modification enzymes are often linked to neuronal phenotypes, metabolic disorders and cancer (17–21). However, the tissue-specific expression profiles of tRNA modification genes have not been systematically explored. Therefore, we used expression data available through the Genotype-Tissue-Expression (GTEx) project and compared expression levels of all modification genes in representative tissues of all organs (Figure 3). We also compiled tissue-specific proteomics evidence from the human proteome map (41) (Supplementary Figure S1). Overall, there are several general trends: First, expression levels of modification genes are quite uniform between different tissues. Second, expression levels of most genes are relatively low, in particular in whole blood. Third, generally high expression levels are observed in testis and transformed cells. Fourth, expression levels in brain are below average of the tissues with the exception of the cerebellum, where expression of a small number of genes reaches levels that are similar to expression observed in testis. This is surprising given the typical neuronal phenotypes observed upon defects in human modification enzymes. There are, however, clusters of genes that are upregulated in several brain tissues (Figure 3). These findings may point to a more crucial function during early steps of differentiation and proliferation of stem cells. Thus, it is likely that many of the observed defects in humans are either developmental phenotypes or relatively subtle. Finally, even though most genes of different pathways are found in similar clusters, this is not true for all pathways, e.g. the ELP pathway. A similar trend is seen when analyzing the proteomics data (Supplementary Figure S1). With the highly expressed genes, a correlation was observed between the transcriptomic and proteomics data (for example DUS2, PUS3 or TRMT5 in testis), however, the proteomic data is less complete due to the low expression levels of most enzymes (Supplementary Figure S1). These observations suggest that tRNA modification enzymes are able to maintain sufficiently high modification levels in differentiated tissues likely because of the high stability of tRNA and low tRNA synthesis levels. Furthermore, some modification enzymes bind to RNA that are not their natural targets (See (106–109) for specific examples). Hence, it is likely beneficial to maintain low expression levels of these enzymes to avoid unspecific modification of cellular RNA like mRNA or rRNA. Figure 3. View largeDownload slide Expression of tRNA modification genes and candidates in a representative set of healthy human tissues. (A) Empirically selected tissues with physiological relevance are included. (B) Like (A), but only representing a set of brain tissues. Genes are clustered according to similarity in the expression profile. Source: gtexportal.org. Genes included are from Supplementary Table S2. Figure 3. View largeDownload slide Expression of tRNA modification genes and candidates in a representative set of healthy human tissues. (A) Empirically selected tissues with physiological relevance are included. (B) Like (A), but only representing a set of brain tissues. Genes are clustered according to similarity in the expression profile. Source: gtexportal.org. Genes included are from Supplementary Table S2. CONCLUSIONS This inventory of human tRNA modifications and the corresponding enzymes surprisingly reveals that despite the fact that the field of RNA modifications has dramatically expanded in recent years with 50 human modifications enzymes identified only in the last 10 years, the picture is far from complete. We estimate that between ∼135 genes are required to modify cytosolic and mitochondrial tRNAs and that 23% of these genes still need to be identified and that another 22% require further experimental validations. Approximately 50% of the human modification genes have been linked to a number of human diseases (Table 1). Furthermore, all genes required for the formation of iron-sulfur clusters affect tRNA modification indirectly and are linked to diseases that are likely not mediated by tRNA modification defects. Like described before (17–22) the phenotypes are most often neurodegenerative or neurodevelopmental diseases like microcephaly and intellectual disabilities, but also renal and metabolic defects. Finally, roughly 50% of the disease genes have been linked to cancer (Table 1), suggesting that tRNA modification enzymes may provide interesting targets for cancer therapies. Also, given the wide diversity of tRNA transcript sequences in humans, the preference of different members of the modification enzyme families for different tRNA isodecoders remains an open question. An in-depth analysis of tRNA modification dynamics in various stress conditions and cell types will reveal the intimate relationship between tRNAs and their modifying partners in more detail. This compilation can act as a guide for future experiments to complete the characterization of the set of human tRNA modification enzymes. SUPPLEMENTARY DATA Supplementary Data are available at NAR Online. ACKNOWLEDGEMENTS We thank Yuri Motorin, Jane Jackman, Marc Graille, Vincent P. Kelly, Ramesh Gupta, Peter C. Dedon and Michaela Frye for inputs and discussions, and Michaela Frye for inspiring us for Figure 1. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH and NINDS. FUNDING National Institutes of Health [GM70641 to V. dC.-L; HG006753 to T.M.L.]; Max Planck Society and the European Research Council [310489-tRNAmodi to S.A.L.]; German Research Foundation [SPP 1784 to S.A.L.]; IIMCB statutory funds (to P.B. and J.M.B.); Polish National Science Centre [2012/04/A/NZ2/00455 to J.M.B]. The open access publication charge for this paper has been waived by Oxford University Press. Conflict of interest statement. Janusz M. Bujnicki is an Executive Editor of Nucleic Acids Research. REFERENCES 1. El Yacoubi B. , Bailly M. , de Crécy-Lagard V. Biosynthesis and function of posttranscriptional modifications of transfer RNAs . Annu. Rev. Genet. 2012 ; 46 : 69 – 95 . Google Scholar Crossref Search ADS PubMed 2. Agris P.F. , Narendran A. , Sarachan K. , Väre V.Y.P. , Eruysal E. The importance of being modified: The role of RNA modifications in translational fidelity . Enzymes . 2017 ; 41 : 1 – 50 . Google Scholar Crossref Search ADS PubMed 3. Lorenz C. , Lünse C.E. , Mörl M. tRNA modifications: impact on structure and thermal adaptation . Biomolecules . 2017 ; 7 : 35 . Google Scholar Crossref Search ADS 4. Chanfreau G.F. Impact of RNA modifications and RNA-modifying enzymes on eukaryotic ribonucleases . Enzymes . 2017 ; 41 : 299 – 329 . Google Scholar Crossref Search ADS PubMed 5. Zhang X. , Cozen A.E. , Liu Y. , Chen Q. , Lowe T.M. Small RNA modifications: integral to function and disease . Trends Mol. Med. 2016 ; 22 : 1025 – 1034 . Google Scholar Crossref Search ADS PubMed 6. Suzuki T. , Numata T. Convergent evolution of AUA decoding in bacteria and archaea . RNA Biol. 2014 ; 11 : 1586 – 1596 . Google Scholar Crossref Search ADS PubMed 7. Gregson J.M. , Crain P.F. , Edmonds C.G. , Gupta R. , Hashizume T. , Phillipson D.W. , McCloskey J.A. Structure of the archaeal transfer RNA nucleoside G*-15 (2-amino-4,7-dihydro- 4-oxo-7-beta-D-ribofuranosyl-1H-pyrrolo[2,3-d]pyrimidine-5-carboximi dam ide (archaeosine)) . J. Biol. Chem. 1993 ; 268 : 10076 – 10086 . Google Scholar PubMed 8. Gallo L.C. , Penedo F.J. , Carnethon M. , Isasi C.R. , Sotres-Alvarez D. , Malcarne V.L. , Roesch S.C. , Youngblood M.E. , Daviglus M.L. , Gonzalez P. et al. . The Hispanic Community Health Study/Study of Latinos Sociocultural Ancillary Study: sample, design, and procedures . Ethn. Dis. 2014 ; 24 : 77 – 83 . Google Scholar PubMed 9. Boccaletto P. , Machnicka M.A. , Purta E. , Pitkowski P. , Baginski B. , Wirecki T.K. , de Crécy-Lagard V. , Ross R. , Limbach P.A. , Kotter A. et al. . MODOMICS: a database of RNA modification pathways. 2017 update . Nucleic Acids Res. 2018 ; 46 : D303 – D307 . Google Scholar Crossref Search ADS PubMed 10. Chen C. , Huang B. , Anderson J.T. , Byström A.S. Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U . PLoS One . 2011 ; 6 : e20783 . Google Scholar Crossref Search ADS PubMed 11. Bujnicki J.M. Comparison of protein structures reveals monophyletic origin of the AdoMet-dependent methyltransferase family and mechanistic convergence rather than recent differentiation of N4-cytosine and N6-adenine DNA methylation . Silico Biol. 1999 ; 1 : 175 – 182 . 12. Lartigue C. , Lebaudy A. , Blanchard A. , Yacoubi B. El , Rose S. , Grosjean H. , Douthwaite S. The flavoprotein Mcap0476 (RlmFO) catalyzes m5U1939 modification in Mycoplasma capricolum 23Ś rRNA . Nucleic Acids Res. 2014 ; 42 : 8073 – 8082 . Google Scholar Crossref Search ADS PubMed 13. Yan F. , Fujimori D.G. RNA methylation by Radical SAM enzymes RlmN and Cfr proceeds via methylene transfer and hydride shift . Proc. Natl. Acad. Sci. U.S.A. 2011 ; 108 : 3930 – 3934 . Google Scholar Crossref Search ADS PubMed 14. Husain N. , Tkaczuk K.L. , Tulsidas S.R. , Kaminska K.H. , Ĉubrilo S. , Maravić-Vlahoviĉek G. , Bujnicki J.M. , Sivaraman J. Structural basis for the methylation of G1405 in 16s rRNA by aminoglycoside resistance methyltransferase Sgm from an antibiotic producer: a diversity of active sites in m7G methyltransferases . Nucleic Acids Res. 2010 ; 38 : 4120 – 4132 . Google Scholar Crossref Search ADS PubMed 15. Kozbial P.Z. , Mushegian A.R. Natural history of S-adenosylmethionine-binding proteins . BMC Struct. Biol. 2005 ; 5 : 19 . Google Scholar Crossref Search ADS PubMed 16. Goto-Ito S. , Ito T. , Yokoyama S. Trm5 and trmd: two enzymes from distinct origins catalyze the identical tRNA modification, m1g37 . Biomolecules . 2017 ; 7 : 32 . Google Scholar Crossref Search ADS 17. Torres A.G. , Batlle E. , Ribas de Pouplana L. Role of tRNA modifications in human diseases . Trends Mol. Med. 2014 ; 20 : 306 – 314 . Google Scholar Crossref Search ADS PubMed 18. Edvardson S. , Prunetti L. , Arraf A. , Haas D. , Bacusmo J.M. , Hu J.F. , Ta-Shma A. , Dedon P.C. , de Crécy-Lagard V. , Elpeleg O. tRNA N6-adenosine threonylcarbamoyltransferase defect due to KAE1/TCS3 (OSGEP) mutation manifest by neurodegeneration and renal tubulopathy . Eur. J. Hum. Genet. 2017 ; 25 : 545 – 551 . Google Scholar Crossref Search ADS PubMed 19. Bednářová A. , Hanna M. , Durham I. , VanCleave T. , England A. , Chaudhuri A. , Krishnan N. Lost in translation: defects in transfer RNA modifications and neurological disorders . Front. Mol. Neurosci. 2017 ; 10 : 135 . Google Scholar Crossref Search ADS PubMed 20. Sarin L.P. , Leidel S.A. Modify or die? - RNA modification defects in metazoans . RNA Biol. 2014 ; 11 : 1555 – 1567 . Google Scholar Crossref Search ADS PubMed 21. Jonkhout N. , Tran J. , Smith M.A. , Schonrock N. , Mattick J.S. , Novoa E.M. The RNA modification landscape in human disease . RNA . 2017 ; 23 : 1754 – 1769 . Google Scholar Crossref Search ADS PubMed 22. Pereira M. , Francisco S. , Varanda A.S. , Santos M. , Santos M.A.S. , Soares A.R. Impact of tRNA modifications and tRNA-modifying enzymes on proteostasis and human disease . Int. J. Mol. Sci. 2018 ; 19 : 3738 . Google Scholar Crossref Search ADS 23. Suzuki T. , Suzuki T. A complete landscape of post-transcriptional modifications in mammalian mitochondrial tRNAs . Nucleic Acids Res. 2014 ; 42 : 7346 – 7357 . Google Scholar Crossref Search ADS PubMed 24. Bohnsack M.T. , Sloan K.E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease . Cell. Mol. Life Sci. 2018 ; 75 : 241 – 260 . Google Scholar Crossref Search ADS PubMed 25. Towns W.L. , Begley T.J. Transfer RNA Methytransferases and their corresponding modifications in budding yeast and humans: activities, predications, and potential roles in human health . DNA Cell Biol. 2012 ; 31 : 434 – 454 . Google Scholar Crossref Search ADS PubMed 26. Maraia R.J. , Arimbasseri A.G. Factors that shape eukaryotic tRNAomes: Processing, modification and anticodon-codon use . Biomolecules . 2017 ; 7 : 26 . Google Scholar Crossref Search ADS 27. Popis M.C. , Blanco S. , Frye M. Posttranscriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation, and cancer . Curr. Opin. Oncol. 2016 ; 28 : 65 – 71 . Google Scholar Crossref Search ADS PubMed 28. Spenkuch F. , Motorin Y. , Helm M. Pseudouridine: still mysterious, but never a fake (uridine) . RNA Biol. 2014 ; 11 : 1540 – 1554 . Google Scholar Crossref Search ADS PubMed 29. Chan P.P. , Lowe T.M. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes . Nucleic Acids Res. 2016 ; 44 : D184 – D189 . Google Scholar Crossref Search ADS PubMed 30. Clark W.C. , Evans M.E. , Dominissini D. , Zheng G. , Pan T. tRNA base methylation identification and quantification via high-throughput sequencing . RNA . 2016 ; 22 : 1771 – 1784 . Google Scholar Crossref Search ADS PubMed 31. Zheng G. , Qin Y. , Clark W.C. , Dai Q. , Yi C. , He C. , Lambowitz A.M. , Pan T. Efficient and quantitative high-throughput tRNA sequencing . Nat. Methods . 2015 ; 12 : 835 – 837 . Google Scholar Crossref Search ADS PubMed 32. Cozen A.E. , Quartley E. , Holmes A.D. , Hrabeta-Robinson E. , Phizicky E.M. , Lowe T.M. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments . Nat. Methods . 2015 ; 12 : 879 – 884 . Google Scholar Crossref Search ADS PubMed 33. Agarwala R. , Barrett T. , Beck J. , Benson D.A. , Bollin C. , Bolton E. , Bourexis D. , Brister J.R. , Bryant S.H. , Canese K. et al. . Database resources of the National Center for Biotechnology Information . Nucleic Acids Res. 2016 ; 44 : D7 – D19 . Google Scholar Crossref Search ADS PubMed 34. Bateman A. , Martin M.J. , O’Donovan C. , Magrane M. , Apweiler R. , Alpi E. , Antunes R. , Arganiska J. , Bely B. , Bingley M. et al. . UniProt: a hub for protein information . Nucleic Acids Res. 2015 ; 43 : D204 – D212 . Google Scholar Crossref Search ADS PubMed 35. Gray K.A. , Yates B. , Seal R.L. , Wright M.W. , Bruford E.A. Genenames.org: the HGNC resources in 2015 . Nucleic Acids Res. 2015 ; 43 : D1079 – D1085 . Google Scholar Crossref Search ADS PubMed 36. Chatr-Aryamontri A. , Oughtred R. , Boucher L. , Rust J. , Chang C. , Kolas N.K. , O’Donnell L. , Oster S. , Theesfeld C. , Sellam A. et al. . The BioGRID interaction database: 2017 update . Nucleic Acids Res. 2017 ; 45 : D369 – D379 . Google Scholar Crossref Search ADS PubMed 37. Calvo S.E. , Clauser K.R. , Mootha V.K. MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins . Nucleic Acids Res. 2016 ; 44 : D1251 – D1257 . Google Scholar Crossref Search ADS PubMed 38. Zhu Q. , Wong A.K. , Krishnan A. , Aure M.R. , Tadych A. , Zhang R. , Corney D.C. , Greene C.S. , Bongo L.A. , Kristensen V.N. et al. . Targeted exploration and analysis of large cross-platform human transcriptomic compendia . Nat. Methods . 2015 ; 12 : 211 – 214 . Google Scholar Crossref Search ADS PubMed 39. Huerta-Cepas J. , Capella-Gutiérrez S. , Pryszcz L.P. , Marcet-Houben M. , Gabaldón T. PhylomeDB v4: zooming into the plurality of evolutionary histories of a genome . Nucleic Acids Res. 2014 ; 42 : D897 – D902 . Google Scholar Crossref Search ADS PubMed 40. Ward J.H. Hierarchical grouping to optimize an objective function . J. Am. Stat. Assoc. 1963 ; 58 : 236 – 244 . Google Scholar Crossref Search ADS 41. Kim M.-S. , Pinto S.M. , Getnet D. , Nirujogi R.S. , Manda S.S. , Chaerkady R. , Madugundu A.K. , Kelkar D.S. , Isserlin R. , Jain S. et al. . A draft map of the human proteome . Nature . 2014 ; 509 : 575 – 581 . Google Scholar Crossref Search ADS PubMed 42. Schimmel P. RNA Processing and Modifications: The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis . Nat. Rev. Mol. Cell Biol. 2018 ; 19 : 45 – 58 . Google Scholar Crossref Search ADS PubMed 43. Barski A. , Chepelev I. , Liko D. , Cuddapah S. , Fleming A.B. , Birch J. , Cui K. , White R.J. , Zhao K. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes . Nat. Struct. Mol. Biol. 2010 ; 17 : 629 – 634 . Google Scholar Crossref Search ADS PubMed 44. Canella D. , Praz V. , Reina J.H. , Cousin P. , Hernandez N. Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells . Genome Res. 2010 ; 20 : 710 – 721 . Google Scholar Crossref Search ADS PubMed 45. Martinez G. , Choudury S.G. , Slotkin R.K. tRNA-derived small RNAs target transposable element transcripts . Nucleic Acids Res. 2017 ; 45 : 5142 – 5152 . Google Scholar Crossref Search ADS PubMed 46. Goodarzi H. , Liu X. , Nguyen H.C.B. , Zhang S. , Fish L. , Tavazoie S.F. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement . Cell . 2015 ; 161 : 790 – 802 . Google Scholar Crossref Search ADS PubMed 47. Yoshida M. , Kataoka N. , Miyauchi K. , Ohe K. , Iida K. , Yoshida S. , Nojima T. , Okuno Y. , Onogi H. , Usui T. et al. . Rectifier of aberrant mRNA splicing recovers tRNA modification in familial dysautonomia . Proc. Natl. Acad. Sci. U.S.A. 2015 ; 112 : 2764 – 2769 . Google Scholar Crossref Search ADS PubMed 48. Johansson M.J.O. , Esberg A. , Huang B. , Björk G.R. , Byström A.S. Eukaryotic wobble uridine modifications promote a functionally redundant decoding system . Mol. Cell. Biol. 2008 ; 28 : 3301 – 3312 . Google Scholar Crossref Search ADS PubMed 49. Harada F. , Gross H.J. , Kimura F. , Chang S.H. , Nishimura S. , RajBhandary U.L. 2-Methylthio N6-(Δ2-isopentenyl) adenosine: a component of E. coli tyrosine transfer RNA . Biochem. Biophys. Res. Commun. 1968 ; 33 : 299 – 306 . Google Scholar Crossref Search ADS PubMed 50. Gehrke C.W. , Kuo K.C. , Zumwalt R.W. Chromatography of nucleosides . J. Chromatogr. A . 1980 ; 188 : 129 – 147 . Google Scholar Crossref Search ADS 51. Wagner T.M. , Nair V. , Guymon R. , Pomerantz S.C. , Crain P.F. , Davis D.R. , McCloskey J.A. A novel method for sequence placement of modified nucleotides in mixtures of transfer RNA . Nucleic Acids Symp. Ser. (Oxf). 2004 ; 48 : 263 – 264 . Google Scholar Crossref Search ADS 52. Meng Z. , Limbach P.A. Mass spectrometry of RNA: linking the genome to the proteome . Brief. Funct. Genomics . 2006 ; 5 : 87 – 95 . Google Scholar Crossref Search ADS 53. Suzuki T. , Ikeuchi Y. , Noma A. , Suzuki T. , Sakaguchi Y. Mass spectrometric identification and characterization of RNA-modifying enzymes . Methods Enzymol. 2007 ; 425 : 211 – 229 . Google Scholar Crossref Search ADS PubMed 54. Cai W.M. , Chionh Y.H. , Hia F. , Gu C. , Kellner S. , McBee M.E. , Ng C.S. , Pang Y.L.J. , Prestwich E.G. , Lim K.S. et al. . A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications . Methods Enzymol. 2015 ; 560 : 29 – 71 . Google Scholar Crossref Search ADS PubMed 55. Ishimura R. , Nagy G. , Dotu I. , Zhou H. , Yang X. , Senju S. , Nishimura Y. , Chuang J.H. , Ackerman S.L. Ribosome stalling induced by mutation of a CNS-specific tRNA causes neurodegeneration . Science . 2014 ; 345 : 455 – 459 . Google Scholar Crossref Search ADS PubMed 56. Pavon-Eternod M. , Gomes S. , Geslain R. , Dai Q. , Rosner M.R. , Pan T. tRNA over-expression in breast cancer and functional consequences . Nucleic Acids Res. 2009 ; 37 : 7268 – 7280 . Google Scholar Crossref Search ADS PubMed 57. Gogakos T. , Brown M. , Garzia A. , Meyer C. , Hafner M. , Tuschl T. Characterizing expression and processing of precursor and mature human tRNAs by hydro-tRNAseq and PAR-CLIP . Cell Rep. 2017 ; 20 : 1463 – 1475 . Google Scholar Crossref Search ADS PubMed 58. Marchand V. , Ayadi L. , Ernst F.G.M. , Hertler J. , Bourguignon-Igel V. , Galvanin A. , Kotter A. , Helm M. , Lafontaine D.L.J. , Motorin Y. AlkAniline-Seq: profiling of m7G and m3C RNA modifications at single nucleotide resolution . Angew. Chem. Int. Ed. Engl. 2018 ; 57 : 16785 – 16790 . Google Scholar Crossref Search ADS PubMed 59. Limbach P.A. , Paulines M.J. Going global: the new era of mapping modifications in RNA . Wiley Interdiscip. Rev. RNA . 2017 ; 8 : e1367 . Google Scholar Crossref Search ADS 60. Kimura S. , Miyauchi K. , Ikeuchi Y. , Thiaville P.C. , de Crécy-Lagard V. , Suzuki T. Discovery of the β-barrel-type RNA methyltransferase responsible for N6-methylation of N6-threonylcarbamoyladenosine in tRNAs . Nucleic Acids Res. 2014 ; 42 : 9350 – 9365 . Google Scholar Crossref Search ADS PubMed 61. Fislage M. , Roovers M. , Tuszynska I. , Bujnicki J.M. , Droogmans L. , Versées W. Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life . Nucleic Acids Res. 2012 ; 40 : 5149 – 5161 . Google Scholar Crossref Search ADS PubMed 62. Sergiev P. V. , Bogdanov A.A. , Dontsova O.A. Ribosomal RNA guanine-(N2)-methyltransferases and their targets . Nucleic Acids Res. 2007 ; 35 : 2295 – 2301 . Google Scholar Crossref Search ADS PubMed 63. Bourgeois G. , Létoquart J. , van Tran N. , Graille M. Trm112, a protein activator of methyltransferases modifying actors of the eukaryotic translational apparatus . Biomolecules . 2017 ; 7 : E7 . Google Scholar Crossref Search ADS PubMed 64. Jackman J.E. , Montange R.K. , Malik H.S. , Phizicky E.M. Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9 . RNA . 2003 ; 9 : 574 – 585 . Google Scholar Crossref Search ADS PubMed 65. Evans D.G. , Harkness E. , Lalloo F. , Howell A. Long-term prospective clinical follow-up after BRCA1/2 presymptomatic testing: BRCA2 risks higher than in adjusted retrospective studies . J. Med. Genet. 2014 ; 51 : 573 – 580 . Google Scholar Crossref Search ADS PubMed 66. Van Laer B. , Roovers M. , Wauters L. , Kasprzak J.M. , Dyzma M. , Deyaert E. , Singh R.K. , Feller A. , Bujnicki J.M. , Droogmans L. et al. . Structural and functional insights into tRNA binding and adenosine N1-methylation by an archaeal Trm10 homologue . Nucleic Acids Res. 2016 ; 44 : 940 – 953 . Google Scholar Crossref Search ADS PubMed 67. Vilardo E. , Nachbagauer C. , Buzet A. , Taschner A. , Holzmann J. , Rossmanith W. A subcomplex of human mitochondrial RNase P is a bifunctional methyltransferase - extensive moonlighting in mitochondrial tRNA biogenesis . Nucleic Acids Res. 2018 ; 46 : 11126 – 11127 . Google Scholar PubMed 68. Armengaud J. , Dedieu A. , Solques O. , Pellequer J.L. , Quemeneur E. Deciphering structure and topology of conserved COG2042 orphan proteins . BMC Struct. Biol. 2005 ; 5 : 3 . Google Scholar Crossref Search ADS PubMed 69. Meyer B. , Wurm J.P. , Sharma S. , Immer C. , Pogoryelov D. , Kötter P. , Lafontaine D.L.J. , Wöhnert J. , Entian K.D. Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans . Nucleic Acids Res. 2016 ; 44 : 4304 – 4316 . Google Scholar Crossref Search ADS PubMed 70. Umitsu M. , Nishimasu H. , Noma A. , Suzuki T. , Ishitani R. , Nureki O. Structural basis of AdoMet-dependent aminocarboxypropyl transfer reaction catalyzed by tRNA-wybutosine synthesizing enzyme, TYW2 . Proc. Natl. Acad. Sci. U.S.A. 2009 ; 106 : 15616 – 15621 . Google Scholar Crossref Search ADS PubMed 71. Schaffrath R. , Abdel-Fattah W. , Klassen R. , Stark M.J.R. The diphthamide modification pathway from Saccharomyces cerevisiae - revisited . Mol. Microbiol. 2014 ; 94 : 1213 – 1226 . Google Scholar Crossref Search ADS PubMed 72. Zaganelli S. , Rebelo-Guiomar P. , Maundrell K. , Rozanska A. , Pierredon S. , Powell C.A. , Jourdain A.A. , Hulo N. , Lightowlers R.N. , Chrzanowska-Lightowlers Z.M. et al. . The pseudouridine synthase RPUSD4 is an essential component of mitochondrial RNA granules . J. Biol. Chem. 2017 ; 292 : 4519 – 4532 . Google Scholar Crossref Search ADS PubMed 73. Antonicka H. , Choquet K. , Lin Z. , Gingras A. , Kleinman C.L. , Shoubridge E.A. A pseudouridine synthase module is essential for mitochondrial protein synthesis and cell viability . EMBO Rep. 2017 ; 18 : 28 – 38 . Google Scholar Crossref Search ADS PubMed 74. Kaya Y. , Ofengand J. A novel unanticipated type of pseudouridine synthase with homologs in bacteria, archaea, and eukarya . RNA . 2003 ; 9 : 711 – 721 . Google Scholar Crossref Search ADS PubMed 75. Urban A. , Behm-Ansmant I. , Branlant C. , Motorin Y. RNA sequence and two-dimensional structure features required for efficient substrate modification by the Saccharomyces cerevisiae RNA:Ψ-synthase Pus7p . J. Biol. Chem. 2009 ; 284 : 5845 – 5858 . Google Scholar Crossref Search ADS PubMed 76. Guzzi N. , Cieśla M. , Ngoc P.C.T. , Lang S. , Arora S. , Dimitriou M. , Pimková K. , Sommarin M.N.E. , Munita R. , Lubas M. et al. . Pseudouridylation of tRNA-derived fragments steers translational control in stem cells . Cell . 2018 ; 173 : 1204 – 1216 . Google Scholar Crossref Search ADS PubMed 77. Behm-Ansmant I. , Massenet S. , Immel F. , Patton J.R. , Motorin Y. , Branlant C. A previously unidentified activity of yeast and mouse RNA: pseudouridine synthases 1 (Pus1p) on tRNAs . RNA . 2006 ; 12 : 1583 – 1593 . Google Scholar Crossref Search ADS PubMed 78. Joardar A. , Jana S. , Fitzek E. , Gurha P. , Majumder M. , Chatterjee K. , Geisler M. , Gupta R. Role of forefinger and thumb loops in production of Ψ54 and Ψ55 in tRNAs by archaeal Pus10 . RNA . 2013 ; 19 : 1279 – 1294 . Google Scholar Crossref Search ADS PubMed 79. Deogharia M. , Mukhopadhyay S. , Joardar A. , Gupta R. The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue . RNA . 2018 ; doi:10.1261/rna.068114.118 . 80. Fergus C. , Barnes D. , Alqasem M.A. , Kelly V.P. The queuine micronutrient: charting a course from microbe to man . Nutrients . 2015 ; 7 : 2897 – 2929 . Google Scholar Crossref Search ADS PubMed 81. Tuorto F. , Legrand C. , Cirzi C. , Federico G. , Liebers R. , Müller M. , Ehrenhofer-Murray A.E. , Dittmar G. , Gröne H.-J. , Lyko F. Queuosine-modified tRNAs confer nutritional control of protein translation . EMBO J. 2018 ; 37 : e99777 . Google Scholar Crossref Search ADS PubMed 82. Zallot R. , Brochier-Armanet C. , Gaston K.W. , Forouhar F. , Limbach P.A. , Hunt J.F. , de Crécy-Lagard V. Plant, animal, and fungal micronutrient queuosine is salvaged by members of the DUF2419 protein family . ACS Chem. Biol. 2014 ; 9 : 1812 – 1825 . Google Scholar Crossref Search ADS PubMed 83. Schaffrath R. , Leidel S.A. Wobble uridine modifications–a reason to live, a reason to die? . RNA Biol. 2017 ; 14 : 1209 – 1222 . Google Scholar Crossref Search ADS PubMed 84. Grosjean H. , Westhof E. An integrated, structure- and energy-based view of the genetic code . Nucleic Acids Res. 2016 ; 44 : 8020 – 8040 . Google Scholar Crossref Search ADS PubMed 85. Dauden M.I. , Jaciuk M. , Müller C.W. , Glatt S. Structural asymmetry in the eukaryotic Elongator complex . FEBS Lett. 2018 ; 592 : 502 – 515 . Google Scholar Crossref Search ADS PubMed 86. Fu D. , Brophy J.A.N. , Chan C.T.Y. , Atmore K.A. , Begley U. , Paules R.S. , Dedon P.C. , Begley T.J. , Samson L.D. Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival . Mol. Cell. Biol. 2010 ; 30 : 2449 – 2459 . Google Scholar Crossref Search ADS PubMed 87. Fu Y. , Dai Q. , Zhang W. , Ren J. , Pan T. , He C. The AlkB domain of mammalian ABH8 catalyzes hydroxylation of 5-methoxycarbonylmethyluridine at the wobble position of tRNA . Angew. Chem. Int. Ed. Engl. 2010 ; 49 : 8885 – 8888 . Google Scholar Crossref Search ADS PubMed 88. Songe-Møller L. , van den Born E. , Leihne V. , Vågbø C.B. , Kristoffersen T. , Krokan H.E. , Kirpekar F. , Falnes P.Ø. , Klungland A. Mammalian ALKBH8 possesses tRNA methyltransferase activity required for the biogenesis of multiple wobble uridine modifications implicated in translational decoding . Mol. Cell. Biol. 2010 ; 30 : 1814 – 1827 . Google Scholar Crossref Search ADS PubMed 89. Termathe M. , Leidel S.A. The Uba4 domain interplay is mediated via a thioester that is critical for tRNA thiolation through Urm1 thiocarboxylation . Nucleic Acids Res. 2018 ; 46 : 5171 – 5181 . Google Scholar Crossref Search ADS PubMed 90. Chowdhury M.M. , Dosche C. , Löhmannsröben H.-G. , Leimkühler S. Dual role of the molybdenum cofactor biosynthesis protein MOCS3 in tRNA thiolation and molybdenum cofactor biosynthesis in humans . J. Biol. Chem. 2012 ; 287 : 17297 – 17307 . Google Scholar Crossref Search ADS PubMed 91. Bujnicki J.M. , Feder M. , Ayres C.L. , Redman K.L. Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases . Nucleic Acids Res. 2004 ; 32 : 2453 – 2463 . Google Scholar Crossref Search ADS PubMed 92. Auxilien S. , Guérineau V. , Szweykowska-Kuliñska Z. , Golinelli-Pimpaneau B. The human tRNA m5C methyltransferase Misu is multisite-specific . RNA Biol. 2012 ; 9 : 1331 – 1338 . Google Scholar Crossref Search ADS PubMed 93. Aguilo F. , Li S. De , Balasubramaniyan N. , Sancho A. , Benko S. , Zhang F. , Vashisht A. , Rengasamy M. , Andino B. , Chen C. hung et al. . Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α . Cell Rep. 2016 ; 14 : 479 – 492 . Google Scholar Crossref Search ADS PubMed 94. Xu L. , Liu X. , Sheng N. , Oo K.S. , Liang J. , Chionh Y.H. , Xu J. , Ye F. , Gao Y.-G. , Dedon P.C. et al. . Three distinct 3-methylcytidine (m3C) methyltransferases modify tRNA and mRNA in mice and humans . J. Biol. Chem. 2017 ; 292 : 14695 – 14703 . Google Scholar Crossref Search ADS PubMed 95. Kawarada L. , Suzuki T. , Ohira T. , Hirata S. , Miyauchi K. , Suzuki T. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications . Nucleic Acids Res. 2017 ; 45 : 7401 – 7415 . Google Scholar Crossref Search ADS PubMed 96. Haag S. , Sloan K.E. , Ranjan N. , Warda A.S. , Kretschmer J. , Blessing C. , Hübner B. , Seikowski J. , Dennerlein S. , Rehling P. et al. . NSUN3 and ABH1 modify the wobble position of mt‐tRNA Met to expand codon recognition in mitochondrial translation . EMBO J. 2016 ; 35 : 2104 – 2119 . Google Scholar Crossref Search ADS PubMed 97. Van Haute L. , Dietmann S. , Kremer L. , Hussain S. , Pearce S.F. , Powell C.A. , Rorbach J. , Lantaff R. , Blanco S. , Sauer S. et al. . Deficient methylation and formylation of mt-tRNAMetwobble cytosine in a patient carrying mutations in NSUN3 . Nat. Commun. 2016 ; 7 : 12039 . Google Scholar Crossref Search ADS PubMed 98. Chen Y.C. , Kelly V.P. , Stachura S. V. , Garcia G.A. Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure . RNA . 2010 ; 16 : 958 – 968 . Google Scholar Crossref Search ADS PubMed 99. Boland C. , Hayes P. , Santa-Maria I. , Nishimura S. , Kelly V.P. Queuosine formation in eukaryotic tRNA occurs via a mitochondria-localized heteromeric transglycosylase . J. Biol. Chem. 2009 ; 284 : 18218 – 18227 . Google Scholar Crossref Search ADS PubMed 100. Jana S. , Hsieh A.C. , Gupta R. Reciprocal amplification of caspase-3 activity by nuclear export of a putative human RNA-modifying protein, PUS10 during TRAIL-induced apoptosis . Cell Death Dis. 2017 ; 8 : e3093 . Google Scholar Crossref Search ADS PubMed 101. Wei F.Y. , Zhou B. , Suzuki T. , Miyata K. , Ujihara Y. , Horiguchi H. , Takahashi N. , Xie P. , Michiue H. , Fujimura A. et al. . Cdk5rap1-mediated 2-methylthio modification of mitochondrial tRNAs governs protein translation and contributes to myopathy in mice and humans . Cell Metab. 2015 ; 21 : 428 – 442 . Google Scholar Crossref Search ADS PubMed 102. Fakruddin M. , Wei F.Y. , Emura S. , Matsuda S. , Yasukawa T. , Kang D. , Tomizawa K. Cdk5rap1-mediated 2-methylthio-N6-isopentenyladenosine modification is absent from nuclear-derived RNA species . Nucleic Acids Res. 2017 ; 45 : 11954 – 11961 . Google Scholar Crossref Search ADS PubMed 103. Thiaville P.C. , Iwata-Reuyl D. , DeCrécy-Lagard V. Diversity of the biosynthesis pathway for threonylcarbamoyladenosine (t6A), a universal modification of tRNA . RNA Biol. 2014 ; 11 : 1529 – 1539 . Google Scholar Crossref Search ADS PubMed 104. Thiaville P.C. , Yacoubi B. El , Perrochia L. , Hecker A. , Prigent M. , Thiaville J.J. , Forterre P. , Namy O. , Basta T. , de Crécy-Lagard V. Cross kingdom functional conservation of the core universally conserved threonylcarbamoyladenosine tRNA synthesis enzymes . Eukaryot. Cell . 2014 ; 13 : 1222 – 1231 . Google Scholar Crossref Search ADS PubMed 105. Lee C. , Kramer G. , Graham D.E. , Appling D.R. Yeast mitochondrial initiator tRNA is methylated at guanosine 37 by the Trm5-encoded tRNA (guanine-N1-)-methyltransferase . J. Biol. Chem. 2007 ; 282 : 27744 – 27753 . Google Scholar Crossref Search ADS PubMed 106. Leidel S. , Pedrioli P.G.A. , Bucher T. , Brost R. , Costanzo M. , Schmidt A. , Aebersold R. , Boone C. , Hofmann K. , Peter M. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA . Nature . 2009 ; 458 : 228 – 232 . Google Scholar Crossref Search ADS PubMed 107. Waller T.J. , Read D.F. , Engelke D.R. , Smaldino P.J. The human tRNA-modifying protein, TRIT1, forms amyloid fibers in vitro . Gene . 2017 ; 612 : 19 – 24 . Google Scholar Crossref Search ADS PubMed 108. Pratt-Hyatt M. , Pai D.A. , Haeusler R.A. , Wozniak G.G. , Good P.D. , Miller E.L. , McLeod I.X. , Yates J.R. , Hopper A.K. , Engelke D.R. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing . Proc. Natl. Acad. Sci. U.S.A. 2013 ; 110 : E3081 – E3089 . Google Scholar Crossref Search ADS PubMed 109. Keffer-Wilkes L.C. , Veerareddygari G.R. , Kothe U. RNA modification enzyme TruB is a tRNA chaperone . Proc. Natl. Acad. Sci. U.S.A. 2016 ; 113 : 14306 – 14311 . Google Scholar Crossref Search ADS PubMed 110. Murphy M. , Docherty N.G. , Griffin B. , Howlin J. , McArdle E. , McMahon R. , Schmid H. , Kretzler M. , Droguett A. , Mezzano S. et al. . IHG-1 amplifies TGF-beta1 signaling and is increased in renal fibrosis . J. Am. Soc. Nephrol. 2008 ; 19 : 1672 – 1680 . Google Scholar Crossref Search ADS PubMed 111. Cosentino C. , Toivonen S. , Diaz Villamil E. , Atta M. , Ravanat J.-L. , Demine S. , Schiavo A.A. , Pachera N. , Deglasse J.-P. , Jonas J.-C. et al. . Pancreatic β-cell tRNA hypomethylation and fragmentation link TRMT10A deficiency with diabetes . Nucleic Acids Res. 2018 ; 46 : 10302 – 10318 . Google Scholar Crossref Search ADS PubMed 112. Zhang H. , Hou W. , Wang H.-L. , Liu H.-J. , Jia X.-Y. , Zheng X.-Z. , Zou Y.-X. , Li X. , Hou L. , McNutt M.A. et al. . GSK-3β-regulated N-acetyltransferase 10 is involved in colorectal cancer invasion . Clin. Cancer Res. 2014 ; 20 : 4717 – 4729 . Google Scholar Crossref Search ADS PubMed 113. Zhang X. , Jiang G. , Sun M. , Zhou H. , Miao Y. , Liang M. , Wang E. , Zhang Y. Cytosolic THUMPD1 promotes breast cancer cells invasion and metastasis via the AKT-GSK3-Snail pathway . Oncotarget . 2017 ; 8 : 13357 – 13366 . Google Scholar PubMed 114. Ye J. , Wang J. , Zhang N. , Liu Y. , Tan L. , Xu L. Expression of TARBP1 protein in human non-small-cell lung cancer and its prognostic significance . Oncol. Lett. 2018 ; 15 : 7182 – 7190 . Google Scholar PubMed 115. Sand M. , Skrygan M. , Georgas D. , Arenz C. , Gambichler T. , Sand D. , Altmeyer P. , Bechara F.G. Expression levels of the microRNA maturing microprocessor complex component DGCR8 and the RNA-induced silencing complex (RISC) components argonaute-1, argonaute-2, PACT, TARBP1, and TARBP2 in epithelial skin cancer . Mol. Carcinog. 2012 ; 51 : 916 – 922 . Google Scholar Crossref Search ADS PubMed 116. Kato T. , Daigo Y. , Hayama S. , Ishikawa N. , Yamabuki T. , Ito T. , Miyamoto M. , Kondo S. , Nakamura Y. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis . Cancer Res. 2005 ; 65 : 5638 – 5646 . Google Scholar Crossref Search ADS PubMed 117. Bykhovskaya Y. , Casas K. , Mengesha E. , Inbal A. , Fischel-Ghodsian N. Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA) . Am. J. Hum. Genet. 2004 ; 74 : 1303 – 1308 . Google Scholar Crossref Search ADS PubMed 118. Gatza M.L. , Silva G.O. , Parker J.S. , Fan C. , Perou C.M. An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer . Nat. Genet. 2014 ; 46 : 1051 – 1059 . Google Scholar Crossref Search ADS PubMed 119. Tan X.-L. , Moyer A.M. , Fridley B.L. , Schaid D.J. , Niu N. , Batzler A.J. , Jenkins G.D. , Abo R.P. , Li L. , Cunningham J.M. et al. . Genetic variation predicting cisplatin cytotoxicity associated with overall survival in lung cancer patients receiving platinum-based chemotherapy . Clin. Cancer Res. 2011 ; 17 : 5801 – 5811 . Google Scholar Crossref Search ADS PubMed 120. Alazami A.M. , Hijazi H. , Al-Dosari M.S. , Shaheen R. , Hashem A. , Aldahmesh M.A. , Mohamed J.Y. , Kentab A. , Salih M.A. , Awaji A. et al. . Mutation in ADAT3, encoding adenosine deaminase acting on transfer RNA, causes intellectual disability and strabismus . J. Med. Genet. 2013 ; 50 : 425 – 430 . Google Scholar Crossref Search ADS PubMed 121. Frye M. , Watt F.M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors . Curr. Biol. 2006 ; 16 : 971 – 981 . Google Scholar Crossref Search ADS PubMed 122. Guy M.P. , Shaw M. , Weiner C.L. , Hobson L. , Stark Z. , Rose K. , Kalscheuer V.M. , Gecz J. , Phizicky E.M. Defects in tRNA anticodon loop 2′-O-methylation are implicated in nonsyndromic X-linked intellectual disability due to mutations in FTSJ1 . Hum. Mutat. 2015 ; 36 : 1176 – 1187 . Google Scholar Crossref Search ADS PubMed 123. Wang R. , Lei T. , Fu F. , Li R. , Jing X. , Yang X. , Liu J. , Li D. , Liao C. Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in South China . Pediatr. Neonatol. 2018 ; S1875-9572 : 30317 – 30320 . 124. Xie X. , Wang Z. , Chen Y. Association of LKB1 with a WD-repeat protein WDR6 is implicated in cell growth arrest and p27(Kip1) induction . Mol. Cell. Biochem. 2007 ; 301 : 115 – 122 . Google Scholar Crossref Search ADS PubMed 125. Gündüz U. , Elliott M.S. , Seubert P.H. , Houghton J.A. , Houghton P.J. , Trewyn R.W. , Katze J.R. Absence of tRNA-guanine transglycosylase in a human colon adenocarcinoma cell line . Biochim. Biophys. Acta . 1992 ; 1139 : 229 – 238 . Google Scholar Crossref Search ADS PubMed 126. Slaugenhaupt S.A. , Blumenfeld A. , Gill S.P. , Leyne M. , Mull J. , Cuajungco M.P. , Liebert C.B. , Chadwick B. , Idelson M. , Reznik L. et al. . Tissue-specific expression of a splicing mutation in the IKBKAP gene causes familial dysautonomia . Am. J. Hum. Genet. 2001 ; 68 : 598 – 605 . Google Scholar Crossref Search ADS PubMed 127. Rapino F. , Delaunay S. , Rambow F. , Zhou Z. , Tharun L. , De Tullio P. , Sin O. , Shostak K. , Schmitz S. , Piepers J. et al. . Codon-specific translation reprogramming promotes resistance to targeted therapy . Nature . 2018 ; 558 : 605 – 609 . Google Scholar Crossref Search ADS PubMed 128. Addis L. , Ahn J.W. , Dobson R. , Dixit A. , Ogilvie C.M. , Pinto D. , Vaags A.K. , Coon H. , Chaste P. , Wilson S. et al. . Microdeletions of ELP4 are associated with language impairment, autism spectrum disorder, and mental retardation . Hum. Mutat. 2015 ; 36 : 842 – 850 . Google Scholar Crossref Search ADS PubMed 129. Fadason T. , Ekblad C. , Ingram J.R. , Schierding W.S. , O’Sullivan J.M. Physical interactions and expression quantitative traits loci identify regulatory connections for obesity and type 2 diabetes associated SNPs . Front. Genet. 2017 ; 8 : 150 . Google Scholar Crossref Search ADS PubMed 130. Delaunay S. , Rapino F. , Tharun L. , Zhou Z. , Heukamp L. , Termathe M. , Shostak K. , Klevernic I. , Florin A. , Desmecht H. et al. . Elp3 links tRNA modification to IRES-dependent translation of LEF1 to sustain metastasis in breast cancer . J. Exp. Med. 2016 ; 213 : 2503 – 2523 . Google Scholar Crossref Search ADS PubMed 131. Zinshteyn B. , Gilbert W.V. Loss of a conserved tRNA anticodon modification perturbs cellular signaling . PLoS Genet. 2013 ; 9 : e1003675 . Google Scholar Crossref Search ADS PubMed 132. Shaheen R. , Patel N. , Shamseldin H. , Alzahrani F. , Al-Yamany R. , ALMoisheer A. , Ewida N. , Anazi S. , Alnemer M. , Elsheikh M. et al. . Accelerating matchmaking of novel dysmorphology syndromes through clinical and genomic characterization of a large cohort . Genet. Med. 2016 ; 18 : 686 – 695 . Google Scholar Crossref Search ADS PubMed 133. Shaheen R. , Al-Salam Z. , El-Hattab A.W. , Alkuraya F.S. The syndrome dysmorphic facies, renal agenesis, ambiguous genitalia, microcephaly, polydactyly and lissencephaly (DREAM-PL): Report of two additional patients . Am. J. Med. Genet. A . 2016 ; 170 : 3222 – 3226 . Google Scholar Crossref Search ADS PubMed 134. Yamada Y. , Yasukochi Y. , Kato K. , Oguri M. , Horibe H. , Fujimaki T. , Takeuchi I. , Sakuma J. Identification of 26 novel loci that confer susceptibility to early-onset coronary artery disease in a Japanese population . Biomed. Rep. 2018 ; 9 : 383 – 404 . Google Scholar PubMed 135. Powell C.A. , Kopajtich R. , D’Souza A.R. , Rorbach J. , Kremer L.S. , Husain R.A. , Dallabona C. , Donnini C. , Alston C.L. , Griffin H. et al. . TRMT5 mutations cause a defect in Post-transcriptional modification of mitochondrial tRNA associated with multiple Respiratory-Chain deficiencies . Am. J. Hum. Genet. 2015 ; 97 : 319 – 328 . Google Scholar Crossref Search ADS PubMed 136. Zhou M. , Xue L. , Chen Y. , Li H. , He Q. , Wang B. , Meng F. , Wang M. , Guan M.-X. A hypertension-associated mitochondrial DNA mutation introduces an m1G37 modification into tRNAMet, altering its structure and function . J. Biol. Chem. 2018 ; 293 : 1425 – 1438 . Google Scholar Crossref Search ADS PubMed 137. Rodriguez V. , Chen Y. , Elkahloun A. , Dutra A. , Pak E. , Chandrasekharappa S. Chromosome 8 BAC array comparative genomic hybridization and expression analysis identify amplification and overexpression of TRMT12 in breast cancer . Genes. Chromosomes Cancer . 2007 ; 46 : 694 – 707 . Google Scholar Crossref Search ADS PubMed 138. Simpson H.M. , Khan R.Z. , Song C. , Sharma D. , Sadashivaiah K. , Furusawa A. , Liu X. , Nagaraj S. , Sengamalay N. , Sadzewicz L. et al. . Concurrent mutations in ATM and genes associated with common γ chain signaling in peripheral T cell lymphoma . PLoS One . 2015 ; 10 : e0141906 . Google Scholar Crossref Search ADS PubMed 139. Yeon S.Y. , Jo Y.S. , Choi E.J. , Kim M.S. , Yoo N.J. , Lee S.H. Frameshift mutations in repeat sequences of ANK3, HACD4, TCP10L, TP53BP1, MFN1, LCMT2, RNMT, TRMT6, METTL8 and METTL16 genes in colon cancers . Pathol. Oncol. Res. 2018 ; 24 : 617 – 622 . Google Scholar Crossref Search ADS PubMed 140. Huang B. , Zhai W. , Hu G. , Huang C. , Xie T. , Zhang J. , Xu Y. MicroRNA-206 acts as a tumor suppressor in bladder cancer via targeting YRDC . Am. J. Transl. Res. 2016 ; 8 : 4705 – 4715 . Google Scholar PubMed 141. Hyun H.S. , Kim S.H. , Park E. , Cho M.H. , Kang H.G. , Lee H.S. , Miyake N. , Matsumoto N. , Tsukaguchi H. , Cheong H. Il A familial case of Galloway-Mowat syndrome due to a novel TP53RK mutation: a case report . BMC Med. Genet. 2018 ; 19 : 131 . Google Scholar Crossref Search ADS PubMed 142. Hideshima T. , Cottini F. , Nozawa Y. , Seo H.-S. , Ohguchi H. , Samur M.K. , Cirstea D. , Mimura N. , Iwasawa Y. , Richardson P.G. et al. . p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma . Blood . 2017 ; 129 : 1308 – 1319 . Google Scholar Crossref Search ADS PubMed 143. Igoillo-Esteve M. , Genin A. , Lambert N. , Désir J. , Pirson I. , Abdulkarim B. , Simonis N. , Drielsma A. , Marselli L. , Marchetti P. et al. . tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans . PLoS Genet. 2013 ; 9 : e1003888 . Google Scholar Crossref Search ADS PubMed 144. Ismail N.A. , Ragab S. , Abd El Dayem S.M. , Baky A.N.A.E. , Hamed M. , Ahmed Kamel S. , Adel El Halim D. Implication of CDKAL1 single-nucleotide polymorphism rs 9465871 in obese and non-obese Egyptian children . Med. J. Malaysia . 2018 ; 73 : 286 – 290 . Google Scholar PubMed 145. Yang X.-X. , He X.-Q. , Li F.-X. , Wu Y.-S. , Gao Y. , Li M. Risk-association of DNA methyltransferases polymorphisms with gastric cancer in the Southern Chinese population . Int. J. Mol. Sci. 2012 ; 13 : 8364 – 8378 . Google Scholar Crossref Search ADS PubMed 146. Chowdhury S. , Hobbs C.A. , MacLeod S.L. , Cleves M.A. , Melnyk S. , James S.J. , Hu P. , Erickson S.W. Associations between maternal genotypes and metabolites implicated in congenital heart defects . Mol. Genet. Metab. 2012 ; 107 : 596 – 604 . Google Scholar Crossref Search ADS PubMed 147. Shaheen R. , Han L. , Faqeih E. , Ewida N. , Alobeid E. , Phizicky E.M. , Alkuraya F.S. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition . Hum. Genet. 2016 ; 135 : 707 – 713 . Google Scholar Crossref Search ADS PubMed 148. Abdelrahman H.A. , Al-Shamsi A.M. , Ali B.R. , Al-Gazali L. A null variant in PUS3 confirms its involvement in intellectual disability and further delineates the associated neurodevelopmental disease . Clin. Genet. 2018 ; 94 : 586 – 587 . Google Scholar Crossref Search ADS PubMed 149. Leschziner G.D. , Coffey A.J. , Andrew T. , Gregorio S.P. , Dias-Neto E. , Calafato M. , Bentley D.R. , Kinton L. , Sander J.W. , Johnson M.R. Q8IYL2 is a candidate gene for the familial epilepsy syndrome of Partial Epilepsy with Pericentral Spikes (PEPS) . Epilepsy Res. 2011 ; 96 : 109 – 115 . Google Scholar Crossref Search ADS PubMed 150. Hadjigeorgiou G.M. , Kountra P.-M. , Koutsis G. , Tsimourtou V. , Siokas V. , Dardioti M. , Rikos D. , Marogianni C. , Aloizou A.-M. , Karadima G. et al. . Replication study of GWAS risk loci in Greek multiple sclerosis patients . Neurol. Sci. 2018 ; doi:10.1007/s10072-018-3617-6 . 151. Shaheen R. , Abdel-Salam G.M.H. , Guy M.P. , Alomar R. , Abdel-Hamid M.S. , Afifi H.H. , Ismail S.I. , Emam B.A. , Phizicky E.M. , Alkuraya F.S. Mutation in WDR4 impairs tRNA m(7)G46 methylation and causes a distinct form of microcephalic primordial dwarfism . Genome Biol. 2015 ; 16 : 210 . Google Scholar Crossref Search ADS PubMed 152. Hicks D.G. , Janarthanan B.R. , Vardarajan R. , Kulkarni S.A. , Khoury T. , Dim D. , Budd G.T. , Yoder B.J. , Tubbs R. , Schreeder M.T. et al. . The expression of TRMT2A, a novel cell cycle regulated protein, identifies a subset of breast cancer patients with HER2 over-expression that are at an increased risk of recurrence . BMC Cancer . 2010 ; 10 : 108 . Google Scholar Crossref Search ADS PubMed 153. Festen E.A.M. , Goyette P. , Green T. , Boucher G. , Beauchamp C. , Trynka G. , Dubois P.C. , Lagacé C. , Stokkers P.C.F. , Hommes D.W. et al. . A meta-analysis of genome-wide association scans identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk loci for Crohn's disease and celiac disease . PLoS Genet. 2011 ; 7 : e1001283 . Google Scholar Crossref Search ADS PubMed 154. Shi L. , Yang X.-M. , Tang D.-D. , Liu G. , Yuan P. , Yang Y. , Chang L.-S. , Zhang L.-R. , Song D.-K. Expression and significance of m1A transmethylase, hTrm6p/hTrm61p and its related gene hTrm6/hTrm61 in bladder urothelial carcinoma . Am. J. Cancer Res. 2015 ; 5 : 2169 – 2179 . Google Scholar PubMed 155. Macari F. , El-Houfi Y. , Boldina G. , Xu H. , Khoury-Hanna S. , Ollier J. , Yazdani L. , Zheng G. , Bièche I. , Legrand N. et al. . TRM6/61 connects PKCα with translational control through tRNAi(Met) stabilization: impact on tumorigenesis . Oncogene . 2016 ; 35 : 1785 – 1796 . Google Scholar Crossref Search ADS PubMed 156. Li C. , Wang S. , Xing Z. , Lin A. , Liang K. , Song J. , Hu Q. , Yao J. , Chen Z. , Park P.K. et al. . A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis . Nat. Cell Biol. 2017 ; 19 : 106 – 119 . Google Scholar Crossref Search ADS PubMed 157. Metodiev M.D. , Thompson K. , Alston C.L. , Morris A.A.M. , He L. , Assouline Z. , Rio M. , Bahi-Buisson N. , Pyle A. , Griffin H. et al. . Recessive mutations in TRMT10C cause defects in mitochondrial RNA processing and multiple respiratory chain deficiencies . Am. J. Hum. Genet. 2016 ; 98 : 993 – 1000 . Google Scholar Crossref Search ADS PubMed 158. Oerum S. , Roovers M. , Leichsenring M. , Acquaviva-Bourdain C. , Beermann F. , Gemperle-Britschgi C. , Fouilhoux A. , Korwitz-Reichelt A. , Bailey H.J. , Droogmans L. et al. . Novel patient missense mutations in the HSD17B10 gene affect dehydrogenase and mitochondrial tRNA modification functions of the encoded protein . Biochim. Biophys. Acta Mol. Basis Dis. 2017 ; 1863 : 3294 – 3302 . Google Scholar Crossref Search ADS PubMed 159. Blaesius K. , Abbasi A.A. , Tahir T.H. , Tietze A. , Picker-Minh S. , Ali G. , Farooq S. , Hu H. , Latif Z. , Khan M.N. et al. . Mutations in the tRNA methyltransferase 1 gene TRMT1 cause congenital microcephaly, isolated inferior vermian hypoplasia and cystic leukomalacia in addition to intellectual disability . Am. J. Med. Genet. A . 2018 ; 176 : 2517 – 2521 . Google Scholar Crossref Search ADS PubMed 160. Job B. , Bernheim A. , Beau-Faller M. , Camilleri-Broët S. , Girard P. , Hofman P. , Mazières J. , Toujani S. , Lacroix L. , Laffaire J. et al. . Genomic aberrations in lung adenocarcinoma in never smokers . PLoS One . 2010 ; 5 : e15145 . Google Scholar Crossref Search ADS PubMed 161. Cheng J.X. , Chen L. , Li Y. , Cloe A. , Yue M. , Wei J. , Watanabe K.A. , Shammo J.M. , Anastasi J. , Shen Q.J. et al. . RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia . Nat. Commun. 2018 ; 9 : 1163 . Google Scholar Crossref Search ADS PubMed 162. Kopajtich R. , Nicholls T.J. , Rorbach J. , Metodiev M.D. , Freisinger P. , Mandel H. , Vanlander A. , Ghezzi D. , Carrozzo R. , Taylor R.W. et al. . Mutations in GTPBP3 cause a mitochondrial translation defect associated with hypertrophic cardiomyopathy, lactic acidosis, and encephalopathy . Am. J. Hum. Genet. 2014 ; 95 : 708 – 720 . Google Scholar Crossref Search ADS PubMed 163. Bykhovskaya Y. , Mengesha E. , Wang D. , Yang H. , Estivill X. , Shohat M. , Fischel-Ghodsian N. Phenotype of non-syndromic deafness associated with the mitochondrial A1555G mutation is modulated by mitochondrial RNA modifying enzymes MTO1 and GTPBP3 . Mol. Genet. Metab. 2004 ; 83 : 199 – 206 . Google Scholar Crossref Search ADS PubMed 164. Li X. , Li R. , Lin X. , Guan M.-X. Isolation and characterization of the putative nuclear modifier gene MTO1 involved in the pathogenesis of deafness-associated mitochondrial 12 S rRNA A1555G mutation . J. Biol. Chem. 2002 ; 277 : 27256 – 27264 . Google Scholar Crossref Search ADS PubMed 165. Taylor R.W. , Pyle A. , Griffin H. , Blakely E.L. , Duff J. , He L. , Smertenko T. , Alston C.L. , Neeve V.C. , Best A. et al. . Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies . JAMA . 2014 ; 312 : 68 – 77 . Google Scholar Crossref Search ADS PubMed 166. Donner I. , Katainen R. , Kaasinen E. , Aavikko M. , Sipilä L.J. , Pukkala E. , Aaltonen L.A. Candidate susceptibility variants in angioimmunoblastic T-cell lymphoma . Fam. Cancer . 2018 ; doi:10.1007/s10689-018-0099-x . 167. Lin H. , Miyauchi K. , Harada T. , Okita R. , Takeshita E. , Komaki H. , Fujioka K. , Yagasaki H. , Goto Y.-I. , Yanaka K. et al. . CO2-sensitive tRNA modification associated with human mitochondrial disease . Nat. Commun. 2018 ; 9 : 1875 . Google Scholar Crossref Search ADS PubMed 168. Kernohan K.D. , Dyment D.A. , Pupavac M. , Cramer Z. , McBride A. , Bernard G. , Straub I. , Tetreault M. , Hartley T. , Huang L. et al. . Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene . Hum. Mutat. 2017 ; 38 : 511 – 516 . Google Scholar Crossref Search ADS PubMed 169. Xiong J. , Wang Y. , Gu Y. , Xue Y. , Dang L. , Li Y. CDK5RAP1 targeting NF-κB signaling pathway in human malignant melanoma A375 cell apoptosis . Oncol. Lett. 2018 ; 15 : 4767 – 4774 . Google Scholar PubMed 170. Khan M.A. , Rafiq M.A. , Noor A. , Hussain S. , Flores J. V , Rupp V. , Vincent A.K. , Malli R. , Ali G. , Khan F.S. et al. . Mutation in NSUN2, which encodes an RNA methyltransferase, causes autosomal-recessive intellectual disability . Am. J. Hum. Genet. 2012 ; 90 : 856 – 863 . Google Scholar Crossref Search ADS PubMed 171. Frye M. , Dragoni I. , Chin S.-F. , Spiteri I. , Kurowski A. , Provenzano E. , Green A. , Ellis I.O. , Grimmer D. , Teschendorff A. et al. . Genomic gain of 5p15 leads to over-expression of Misu (NSUN2) in breast cancer . Cancer Lett. 2010 ; 289 : 71 – 80 . Google Scholar Crossref Search ADS PubMed 172. Abbasi-Moheb L. , Mertel S. , Gonsior M. , Nouri-Vahid L. , Kahrizi K. , Cirak S. , Wieczorek D. , Motazacker M.M. , Esmaeeli-Nieh S. , Cremer K. et al. . Mutations in NSUN2 cause autosomal-recessive intellectual disability . Am. J. Hum. Genet. 2012 ; 90 : 847 – 855 . Google Scholar Crossref Search ADS PubMed 173. Sekar S. , McDonald J. , Cuyugan L. , Aldrich J. , Kurdoglu A. , Adkins J. , Serrano G. , Beach T.G. , Craig D.W. , Valla J. et al. . Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes . Neurobiol. Aging . 2015 ; 36 : 583 – 591 . Google Scholar Crossref Search ADS PubMed 174. Couch F.J. , Kuchenbaecker K.B. , Michailidou K. , Mendoza-Fandino G.A. , Nord S. , Lilyquist J. , Olswold C. , Hallberg E. , Agata S. , Ahsan H. et al. . Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer . Nat. Commun. 2016 ; 7 : 11375 . Google Scholar Crossref Search ADS PubMed 175. Shaheen R. , Maddirevula S. , Ewida N. , Alsahli S. , Abdel-Salam G.M.H. , Zaki M.S. , Tala S. Al , Alhashem A. , Softah A. , Al-Owain M. et al. . Genomic and phenotypic delineation of congenital microcephaly . Genet. Med. 2018 ; doi:10.1038/s41436-018-0140-3 . 176. Edvardson S. , Elbaz-Alon Y. , Jalas C. , Matlock A. , Patel K. , Labbé K. , Shaag A. , Jackman J.E. , Elpeleg O. A mutation in the THG1L gene in a family with cerebellar ataxia and developmental delay . Neurogenetics . 2016 ; 17 : 219 – 225 . Google Scholar Crossref Search ADS PubMed 177. Yew T.W. , McCreight L. , Colclough K. , Ellard S. , Pearson E.R. tRNA methyltransferase homologue gene TRMT10A mutation in young adult-onset diabetes with intellectual disability, microcephaly and epilepsy . Diabet. Med. 2016 ; 33 : e21 – e25 . Google Scholar Crossref Search ADS PubMed 178. Zung A. , Kori M. , Burundukov E. , Ben-Yosef T. , Tatoor Y. , Granot E. Homozygous deletion of TRMT10A as part of a contiguous gene deletion in a syndrome of failure to thrive, delayed puberty, intellectual disability and diabetes mellitus . Am. J. Med. Genet. A . 2015 ; 167A : 3167 – 3173 . Google Scholar Crossref Search ADS PubMed 179. Narayanan M. , Ramsey K. , Grebe T. , Schrauwen I. , Szelinger S. , Huentelman M. , Craig D. , Narayanan V. C4RCD Research Group Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities [version 1; referees: 2 approved] . F1000Research . 2015 ; 4 : 912 . Google Scholar Crossref Search ADS PubMed 180. Gillis D. , Krishnamohan A. , Yaacov B. , Shaag A. , Jackman J.E. , Elpeleg O. TRMT10A dysfunction is associated with abnormalities in glucose homeostasis, short stature and microcephaly . J. Med. Genet. 2014 ; 51 : 581 – 586 . Google Scholar Crossref Search ADS PubMed 181. Zhang X. , Liu J. , Yan S. , Huang K. , Bai Y. , Zheng S. High expression of N-acetyltransferase 10: a novel independent prognostic marker of worse outcome in patients with hepatocellular carcinoma . Int. J. Clin. Exp. Pathol. 2015 ; 8 : 14765 – 14771 . Google Scholar PubMed 182. Ma R. , Chen J. , Jiang S. , Lin S. , Zhang X. , Liang X. Up regulation of NAT10 promotes metastasis of hepatocellular carcinoma cells through epithelial-to-mesenchymal transition . Am. J. Transl. Res. 2016 ; 8 : 4215 – 4223 . Google Scholar PubMed 183. Patton J.R. , Bykhovskaya Y. , Mengesha E. , Bertolotto C. , Fischel-Ghodsian N. Mitochondrial myopathy and sideroblastic anemia (MLASA): missense mutation in the pseudouridine synthase 1 (PUS1) gene is associated with the loss of tRNA pseudouridylation . J. Biol. Chem. 2005 ; 280 : 19823 – 19828 . Google Scholar Crossref Search ADS PubMed 184. Fernandez-Vizarra E. , Berardinelli A. , Valente L. , Tiranti V. , Zeviani M. Nonsense mutation in pseudouridylate synthase 1 (PUS1) in two brothers affected by myopathy, lactic acidosis and sideroblastic anaemia (MLASA) . J. Med. Genet. 2007 ; 44 : 173 – 180 . Google Scholar Crossref Search ADS PubMed 185. El-Hattab A.W. , Saleh M.A. , Hashem A. , Al-Owain M. , Asmari A. Al , Rabei H. , Abdelraouf H. , Hashem M. , Alazami A.M. , Patel N. et al. . ADAT3-related intellectual disability: Further delineation of the phenotype . Am. J. Med. Genet. A . 2016 ; 170A : 1142 – 1147 . Google Scholar Crossref Search ADS PubMed 186. Sharkia R. , Zalan A. , Jabareen-Masri A. , Zahalka H. , Mahajnah M. A new case confirming and expanding the phenotype spectrum of ADAT3-related intellectual disability syndrome . Eur. J. Med. Genet. 2018 ; S1769-7212 : 30574 – 30583 . 187. Salehi Chaleshtori A.R. , Miyake N. , Ahmadvand M. , Bashti O. , Matsumoto N. , Noruzinia M. A novel 8-bp duplication in ADAT3 causes mild intellectual disability . Hum. genome Var. 2018 ; 5 : 7 . Google Scholar Crossref Search ADS PubMed 188. Bonnet C. , Grégoire M.J. , Brochet K. , Raffo E. , Leheup B. , Jonveaux P. Pure de-novo 5 Mb duplication at Xp11.22-p11.23 in a male: phenotypic and molecular characterization . J. Hum. Genet. 2006 ; 51 : 815 – 821 . Google Scholar Crossref Search ADS PubMed 189. Fahiminiya S. , Almuriekhi M. , Nawaz Z. , Staffa A. , Lepage P. , Ali R. , Hashim L. , Schwartzentruber J. , Abu Khadija K. , Zaineddin S. et al. . Whole exome sequencing unravels disease-causing genes in consanguineous families in Qatar . Clin. Genet. 2014 ; 86 : 134 – 141 . Google Scholar Crossref Search ADS PubMed 190. Anderson S.L. , Coli R. , Daly I.W. , Kichula E.A. , Rork M.J. , Volpi S.A. , Ekstein J. , Rubin B.Y. Familial dysautonomia is caused by mutations of the IKAP gene . Am. J. Hum. Genet. 2001 ; 68 : 753 – 758 . Google Scholar Crossref Search ADS PubMed 191. Bento-Abreu A. , Jager G. , Swinnen B. , Rué L. , Hendrickx S. , Jones A. , Staats K.A. , Taes I. , Eykens C. , Nonneman A. et al. . Elongator subunit 3 (ELP3) modifies ALS through tRNA modification . Hum. Mol. Genet. 2018 ; 27 : 1276 – 1289 . Google Scholar Crossref Search ADS PubMed 192. Ladang A. , Rapino F. , Heukamp L.C. , Tharun L. , Shostak K. , Hermand D. , Delaunay S. , Klevernic I. , Jiang Z. , Jacques N. et al. . Elp3 drives Wnt-dependent tumor initiation and regeneration in the intestine . J. Exp. Med. 2015 ; 212 : 2057 – 2075 . Google Scholar Crossref Search ADS PubMed 193. Belalcazar L.M. , Papandonatos G.D. , McCaffery J.M. , Peter I. , Pajewski N.M. , Erar B. , Allred N.D. , Balasubramanyam A. , Bowden D.W. , Brautbar A. et al. . A common variant in the CLDN7/ELP5 locus predicts adiponectin change with lifestyle intervention and improved fitness in obese individuals with diabetes . Physiol. Genomics . 2015 ; 47 : 215 – 224 . Google Scholar Crossref Search ADS PubMed 194. Close P. , Gillard M. , Ladang A. , Jiang Z. , Papuga J. , Hawkes N. , Nguyen L. , Chapelle J.-P. , Bouillenne F. , Svejstrup J. et al. . DERP6 (ELP5) and C3ORF75 (ELP6) regulate tumorigenicity and migration of melanoma cells as subunits of Elongator . J. Biol. Chem. 2012 ; 287 : 32535 – 32545 . Google Scholar Crossref Search ADS PubMed 195. Braun D.A. , Rao J. , Mollet G. , Schapiro D. , Daugeron M.-C. , Tan W. , Gribouval O. , Boyer O. , Revy P. , Jobst-Schwan T. et al. . Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly . Nat. Genet. 2017 ; 49 : 1529 – 1538 . Google Scholar Crossref Search ADS PubMed 196. Wang P.Z.T. , Prasad C. , Rodriguez Cuellar C.I. , Filler G. Nephrological and urological complications of homozygous c.974G>A (p.Arg325Gln) OSGEP mutations . Pediatr. Nephrol. 2018 ; 33 : 2201 – 2204 . Google Scholar Crossref Search ADS PubMed 197. Tang X. , Hobbs C.A. , Cleves M.A. , Erickson S.W. , MacLeod S.L. , Malik S National Birth Defects Prevention Study Genetic variation affects congenital heart defect susceptibility in offspring exposed to maternal tobacco use . Birth Defects Res. A. Clin. Mol. Teratol. 2015 ; 103 : 834 – 842 . Google Scholar Crossref Search ADS PubMed 198. Park S. , Liu M. , Kang S. Alcohol Intake Interacts with CDKAL1, HHEX, and OAS3 genetic variants, associated with the risk of type 2 diabetes by lowering insulin secretion in Korean adults . Alcohol. Clin. Exp. Res. 2018 ; 42 : 2326 – 2336 . Google Scholar Crossref Search ADS PubMed 199. Nfor O.N. , Wu M.-F. , Lee C.-T. , Wang L. , Liu W.-H. , Tantoh D.M. , Hsu S.-Y. , Lee K.-J. , Ho C.-C. , Debnath T. et al. . Body mass index modulates the association between CDKAL1 rs10946398 variant and type 2 diabetes among Taiwanese women . Sci. Rep. 2018 ; 8 : 13235 . Google Scholar Crossref Search ADS PubMed 200. Alcina A. , Fedetz M. , Fernández O. , Saiz A. , Izquierdo G. , Lucas M. , Leyva L. , García-León J.-A. , Abad-Grau M.D.M. , Alloza I. et al. . Identification of a functional variant in the KIF5A-CYP27B1-METTL1-FAM119B locus associated with multiple sclerosis . J. Med. Genet. 2013 ; 50 : 25 – 33 . Google Scholar Crossref Search ADS PubMed 201. Wikman H. , Nymark P. , Väyrynen A. , Jarmalaite S. , Kallioniemi A. , Salmenkivi K. , Vainio-Siukola K. , Husgafvel-Pursiainen K. , Knuutila S. , Wolf M. et al. . CDK4 is a probable target gene in a novel amplicon at 12q13.3-q14.1 in lung cancer . Genes. Chromosomes Cancer . 2005 ; 42 : 193 – 199 . Google Scholar Crossref Search ADS PubMed 202. Trimouille A. , Lasseaux E. , Barat P. , Deiller C. , Drunat S. , Rooryck C. , Arveiler B. , Lacombe D. Further delineation of the phenotype caused by biallelic variants in the WDR4 gene . Clin. Genet. 2018 ; 93 : 374 – 377 . Google Scholar Crossref Search ADS PubMed 203. Chen X. , Gao Y. , Yang L. , Wu B. , Dong X. , Liu B. , Lu Y. , Zhou W. , Wang H. Speech and language delay in a patient with WDR4 mutations . Eur. J. Med. Genet. 2018 ; 61 : 468 – 472 . Google Scholar Crossref Search ADS 204. Braun D.A. , Shril S. , Sinha A. , Schneider R. , Tan W. , Ashraf S. , Hermle T. , Jobst-Schwan T. , Widmeier E. , Majmundar A.J. et al. . Mutations in WDR4 as a new cause of Galloway-Mowat syndrome . Am. J. Med. Genet. A . 2018 ; 176 : 2460 – 2465 . Google Scholar Crossref Search ADS PubMed 205. Chen C.-P. , Chern S.-R. , Wu P.-S. , Chen S.-W. , Lai S.-T. , Chuang T.-Y. , Chen W.-L. , Yang C.-W. , Wang W. Prenatal diagnosis of a 3.2-Mb 2p16.1-p15 duplication associated with familial intellectual disability . Taiwan. J. Obstet. Gynecol. 2018 ; 57 : 578 – 582 . Google Scholar Crossref Search ADS PubMed 206. Medrano L.M. , Pascual V. , Bodas A. , López-Palacios N. , Salazar I. , Espino-Paisán L. , González-Pérez B. , Urcelay E. , Mendoza J.L. , Núñez C. Expression patterns common and unique to ulcerative colitis and celiac disease . Ann. Hum. Genet. 2018 ; doi:10.1111/ahg.12293 . 207. He X.-Y. , Isaacs C. , Yang S.-Y. Roles of mitochondrial 17β-Hydroxysteroid dehydrogenase type 10 in Alzheimer's disease . J. Alzheimers. Dis. 2018 ; 62 : 665 – 673 . Google Scholar Crossref Search ADS PubMed 208. Roussel E. , Drolet M.-C. , Lavigne A.-M. , Arsenault M. , Couet J. Multiple short-chain dehydrogenases/reductases are regulated in pathological cardiac hypertrophy . FEBS Open Biol. 2018 ; 8 : 1624 – 1635 . Google Scholar Crossref Search ADS 209. Davarniya B. , Hu H. , Kahrizi K. , Musante L. , Fattahi Z. , Hosseini M. , Maqsoud F. , Farajollahi R. , Wienker T.F. , Ropers H.H. et al. . The role of a novel TRMT1 gene mutation and rare GRM1 gene defect in intellectual disability in two azeri families . PLoS One . 2015 ; 10 : e0129631 . Google Scholar Crossref Search ADS PubMed 210. Najmabadi H. , Hu H. , Garshasbi M. , Zemojtel T. , Abedini S.S. , Chen W. , Hosseini M. , Behjati F. , Haas S. , Jamali P. et al. . Deep sequencing reveals 50 novel genes for recessive cognitive disorders . Nature . 2011 ; 478 : 57 – 63 . Google Scholar Crossref Search ADS PubMed 211. Meseguer S. , Martínez-Zamora A. , García-Arumí E. , Andreu A.L. , Armengod M.-E. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome . Hum. Mol. Genet. 2015 ; 24 : 167 – 184 . Google Scholar Crossref Search ADS PubMed 212. Li X. , Guan M.-X. A human mitochondrial GTP binding protein related to tRNA modification may modulate phenotypic expression of the deafness-associated mitochondrial 12S rRNA mutation . Mol. Cell. Biol. 2002 ; 22 : 7701 – 7711 . Google Scholar Crossref Search ADS PubMed 213. Murayama K. , Shimura M. , Liu Z. , Okazaki Y. , Ohtake A. Recent topics: the diagnosis, molecular genesis, and treatment of mitochondrial diseases . J. Hum. Genet. 2018 ; 64 : 113 – 125 . Google Scholar Crossref Search ADS PubMed 214. Asano K. , Suzuki T. , Saito A. , Wei F.-Y. , Ikeuchi Y. , Numata T. , Tanaka R. , Yamane Y. , Yamamoto T. , Goto T. et al. . Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease . Nucleic Acids Res. 2018 ; 46 : 1565 – 1583 . Google Scholar Crossref Search ADS PubMed 215. Kim T.W. , Kim B. , Kim J.H. , Kang S. , Park S.-B. , Jeong G. , Kang H.-S. , Kim S.J. Nuclear-encoded mitochondrial MTO1 and MRPL41 are regulated in an opposite epigenetic mode based on estrogen receptor status in breast cancer . BMC Cancer . 2013 ; 13 : 502 . Google Scholar Crossref Search ADS PubMed 216. Ghezzi D. , Baruffini E. , Haack T.B. , Invernizzi F. , Melchionda L. , Dallabona C. , Strom T.M. , Parini R. , Burlina A.B. , Meitinger T. et al. . Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis . Am. J. Hum. Genet. 2012 ; 90 : 1079 – 1087 . Google Scholar Crossref Search ADS PubMed 217. Umeda N. , Suzuki T. , Yukawa M. , Ohya Y. , Shindo H. , Watanabe K. , Suzuki T. Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases . J. Biol. Chem. 2005 ; 280 : 1613 – 1624 . Google Scholar Crossref Search ADS PubMed 218. Gaignard P. , Gonzales E. , Ackermann O. , Labrune P. , Correia I. , Therond P. , Jacquemin E. , Slama A. Mitochondrial infantile liver disease due to TRMU gene Mutations: Three new cases . JIMD Rep. 2013 ; 11 : 117 – 123 . Google Scholar Crossref Search ADS PubMed 219. Schara U. , von Kleist-Retzow J.-C. , Lainka E. , Gerner P. , Pyle A. , Smith P.M. , Lochmüller H. , Czermin B. , Abicht A. , Holinski-Feder E. et al. . Acute liver failure with subsequent cirrhosis as the primary manifestation of TRMU mutations . J. Inherit. Metab. Dis. 2011 ; 34 : 197 – 201 . Google Scholar Crossref Search ADS PubMed 220. Zeharia A. , Shaag A. , Pappo O. , Mager-Heckel A.-M. , Saada A. , Beinat M. , Karicheva O. , Mandel H. , Ofek N. , Segel R. et al. . Acute infantile liver failure due to mutations in the TRMU gene . Am. J. Hum. Genet. 2009 ; 85 : 401 – 407 . Google Scholar Crossref Search ADS PubMed 221. Guan M.-X. , Yan Q. , Li X. , Bykhovskaya Y. , Gallo-Teran J. , Hajek P. , Umeda N. , Zhao H. , Garrido G. , Mengesha E. et al. . Mutation in TRMU related to transfer RNA modification modulates the phenotypic expression of the deafness-associated mitochondrial 12S ribosomal RNA mutations . Am. J. Hum. Genet. 2006 ; 79 : 291 – 302 . Google Scholar Crossref Search ADS PubMed 222. Khatami S. , Rokni-Zadeh H. , Mohsen-Pour N. , Biglari A. , Changi-Ashtiani M. , Shahrooei M. , Shahani T. Whole exome sequencing identifies both nuclear and mitochondrial variations in an Iranian family with non-syndromic hearing loss . Mitochondrion . 2018 ; S1567-7249 : 30024 – 30032 . 223. Yue Z. , Li H.-T. , Yang Y. , Hussain S. , Zheng C.-H. , Xia J. , Chen Y. Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information . Oncotarget . 2016 ; 7 : 36092 – 36100 . Google Scholar PubMed 224. Chen S. , Zheng Z. , Tang J. , Lin X. , Wang X. , Lin J. Association of polymorphisms and haplotype in the region of TRIT1, MYCL1 and MFSD2A with the risk and clinicopathological features of gastric cancer in a southeast Chinese population . Carcinogenesis . 2013 ; 34 : 1018 – 1024 . Google Scholar Crossref Search ADS PubMed 225. Spinola M. , Galvan A. , Pignatiello C. , Conti B. , Pastorino U. , Nicander B. , Paroni R. , Dragani T.A. Identification and functional characterization of the candidate tumor suppressor gene TRIT1 in human lung cancer . Oncogene . 2005 ; 24 : 5502 – 5509 . Google Scholar Crossref Search ADS PubMed 226. Palmer C.J. , Bruckner R.J. , Paulo J.A. , Kazak L. , Long J.Z. , Mina A.I. , Deng Z. , LeClair K.B. , Hall J.A. , Hong S. et al. . Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue . Mol. Metab. 2017 ; 6 : 1212 – 1225 . Google Scholar Crossref Search ADS PubMed 227. Shin M.-K. , Uhm Y.-K. , Lee J.-H. , Kim S.-K. , Chung J.-H. , Lee M.-H. Association between CDK5RAP1 polymorphisms and susceptibility to vitiligo in the Korean population . Eur. J. Dermatol. 22 : 495 – 499 . PubMed 228. Steinthorsdottir V. , Thorleifsson G. , Reynisdottir I. , Benediktsson R. , Jonsdottir T. , Walters G.B. , Styrkarsdottir U. , Gretarsdottir S. , Emilsson V. , Ghosh S. et al. . A variant in CDKAL1 influences insulin response and risk of type 2 diabetes . Nat. Genet. 2007 ; 39 : 770 – 775 . Google Scholar Crossref Search ADS PubMed 229. Okamoto M. , Hirata S. , Sato S. , Koga S. , Fujii M. , Qi G. , Ogawa I. , Takata T. , Shimamoto F. , Tatsuka M. Frequent increased gene copy number and high protein expression of tRNA (cytosine-5-)-methyltransferase (NSUN2) in human cancers . DNA Cell Biol. 2012 ; 31 : 660 – 671 . Google Scholar Crossref Search ADS PubMed 230. Martinez F.J. , Lee J.H. , Lee J.E. , Blanco S. , Nickerson E. , Gabriel S. , Frye M. , Al-Gazali L. , Gleeson J.G. Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome . J. Med. Genet. 2012 ; 49 : 380 – 385 . Google Scholar Crossref Search ADS PubMed 231. Komara M. , Al-Shamsi A.M. , Ben-Salem S. , Ali B.R. , Al-Gazali L. A novel Single-Nucleotide deletion (c.1020delA) in NSUN2 causes intellectual disability in an emirati child . J. Mol. Neurosci. 2015 ; 57 : 393 – 399 . Google Scholar Crossref Search ADS PubMed 232. Yi J. , Gao R. , Chen Y. , Yang Z. , Han P. , Zhang H. , Dou Y. , Liu W. , Wang W. , Du G. et al. . Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer . Oncotarget . 2017 ; 8 : 20751 – 20765 . Google Scholar PubMed © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. TI - Matching tRNA modifications in humans to their known and predicted enzymes JF - Nucleic Acids Research DO - 10.1093/nar/gkz011 DA - 2019-03-18 UR - https://www.deepdyve.com/lp/oxford-university-press/matching-trna-modifications-in-humans-to-their-known-and-predicted-5OjDChfGXe SP - 2143 VL - 47 IS - 5 DP - DeepDyve ER -