TY - JOUR AU1 - PhD, Todd A. Crowder, AU2 - USA, Andrew L. Ferrara, IN AU3 - USA, Max D. Levinbook, IN AB - ABSTRACT Purpose: To compare an empirical, Army doctrine-based (endurance, strength, mobility, military relevant tasks), criterion-referenced, body mass (BM) unbiased Military Optimal Performance Challenge (MOPC) to the Army's Physical Fitness Test (APFT) and thus assisting commanders to determine military readiness. Methods: Militarily-relevant physical assessments were combined to create a composite MOPC score. The MOPC and APFT were administered to 20 male, military subjects during a 2-week period. Data collection included 3-Mile Run, Mobility Test, Upper/Lower Body Strength/Endurance, Simulated Casualty Evacuation Test. The APFT was administered through Army guidelines before MOPC data collection. Results: The APFT was influenced by BM, lean body mass (LBM) (r = −0.44; r2 = 0.20; p = 0.04), whereas MOPC was less impacted (r = 0.21; r2 = 0.04; p = 0.32). Eight subjects, as viewed by %APFT, are “fit for duty” (80.6%); however, all eight subjects' mean score as %MOPC was <50%. Conclusions: The MOPC offers a robust approach to military readiness and is free of the confounding influence of BM. The MOPC is a unique assessment requiring a multitude of abilities to garner success and may assist in training for functional combat performance skills demanding high work capacities. INTRODUCTION The rigors of physical combat in the armed forces are unquestioned. In preparation for combat, current physical training (PT), “best practices” are varied not only for future combat engagements but also for future armed services physical fitness tests. In other words, at times, there is a philosophy to “train for the PT test,” whereas other service members stay focused on battle-centric PT. All five United States' armed services have some version of a physical fitness test that includes a distance run and timed push-ups (PU) and sit-ups (SU).1 Several challenges exist with the current physical fitness testing models, namely: (1) a BM bias against heavier, not just fatter men and women,2 (2) extensive training for specific tests because promotion and retention are dependent on physical fitness assessment scores, (3) a “no-equipment, field-centric” environment leading to potential assessments being discounted because of equipment requirements, and (4) the belief that physical fitness assessment correlates with demanding military relevant tasks. The previous statement is supported by the practice of many leaders still inquiring as to the average of one's “unit physical fitness score,” when APFT scores and “battle fitness readiness” or actual military performance in competitive selection programs have correlated weakly (r = 0.25).3 Harman et al4 stated since unit leaders are responsible for improving fitness scores of their troops, military units traditionally place the most emphasis in their PT on exercises that raise physical fitness scores. In an extensive review, Harman and Frykman5 concluded distance runs, PU, and SU scores are not potent determinants of physically demanding military tasks. Related to the Army, the current physical fitness tests' (2 minutes of PU and SU and a two-mile run [2MR]) overall intent when designed in the late 1970s/early 1980s was nothing more than a baseline fitness test administered and graded for the privilege to wear the uniform (BG J. Anderson (Ret.), personal communication). Unfortunately, some commanders still rely heavily on the comprehensive APFT score (both individual and unit) as a screening method when examining a unit's combat readiness. In addition, technological advances have led to improvements in the soldier's personal body armor (lethality, protection) resulting in potential weight overload. As equipment weight increases, so does the subsequent soldier physiological demand. The relationship between soldier load and subsequent metabolic physiological performance is critical. In our current investigation, our subjects' BM was ∼180 lbs (82 kg), and thus conventional loading of 90 to 110 lbs (40.9–50.0 kg) would represent on average over 50% to 60% of the soldier's body weight. Although investigating a prototype soldier Land Warrior System, we found executing a 10% graded foot march at 3.5 mph wearing ∼27 kg of equipment (30% BM; 35% lean body mass [LBM]) represented a work output of ∼52% VO2 max, 61% VE max, 89% HR max, and 87% RER max.6 Alt in our laboratory found heavy work output demands, and thus constant rate treadmill foot marching (4.0 mph) with all-purpose, lightweight individual carrying equipment packs of 70% LBM yielded work output of ∼58% of one's VO2 max.7 Knapik8 examined heavy loads during a 20-km foot march and determined as load increased, pace decreased. Heart rate was used to determine physiological demand. Out of respect to the increasing soldier physiological demand, more and more PT is incorporating some form of “battle-focused PT,” and/or strength and mobility conditioning.9 Armed services have incorporated this concept; recently the Marines in 2008, created a second fitness test, the Combat Fitness Test10 that incorporates military skills (casualty evacuation, grenade throw, low crawl, etc.) and other performance-based skills; speed, high intensity conditioning, agility, coordination, strength, and power. The Air Force and Navy have had an active research and dialogue related to fitness assessments and physical readiness.11,12 In addition, Vanderburgh et al13 has proposed a load carriage distance run and PU test that is occupationally relevant and importantly limits the BM bias. Likewise, in our laboratory we have determined a loaded 5K-run test has shown relatively high reliability (p = 0.69) and typical Army fitness measures of PU, SU, and body composition measures of %fat, and LBM fail to explain much variance on the performance of a modified Pre-Fatigue Simulated Casualty Evacuation Test. Still further, a combination of military movement academic grade (obstacle course, rope climbing, gymnastics skills) and 2MR offered the greatest predictive value, however, yielding only ∼39% of the Pre-Fatigue Simulated Casualty Evacuation Tests variance.14 Thus, various types of simulated casualty evacuations appear to be unique assessments requiring a multitude of abilities to garner success. In addition, within the Army, several organizations have attempted to create a comprehensive fitness score; 101st Iron Eagle Challenge and the Ranger Raw Assessment. Both of these assessments appear to still have challenges related to BM bias as the Iron Eagle Challenge has four of the six events in which research has indicated are influenced by BM15,16 (pull-ups, dips, chin-ups, 3MR), and corrections need to be made before accurate classifications can be made.17 Further, the Ranger Raw Assessment has five events of eight that are influenced by BM (agility test, pull-ups, PU, heel claps, and 300-yard shuttle), in addition, one test favors larger BM individuals16 (225-lb dead lift; ∼102 kg), and one event offering potential regarding the mitigation of BM bias, a comprehensive Ranger Physical Assessement Test has multiple events favoring both light weight and heavy weight individuals. The latest Army training and doctrine guidance related to PT, FM 7–2218 Army Physical Readiness Training indicates from a global PT perspective, Army units should emphasize endurance, strength, and mobility as critical cornerstone factors in physical program design. Using current guidance and a belief that service members will still “train for the test,” we set out to design a comprehensive Military Optimal Performance Challenge (MOPC) that would allow military members to conduct “military relevant” events, focus on assessing endurance, strength, and mobility and yet not be confounded by a BM influence relationship. Further, being sensitive to equipment issues and running in boots, we designed a MOPC-Light (MOPC-LT) that did not use the practice of running in boots or the use of specialized equipment other than those commonly found in any Department of Defense fitness center. The purpose of this research was three-fold: (1) create a comprehensive, criterion-measured MOPC and MOPC-LT devoid of the confounding influence of BM compared to the existing APFT, (2) investigate relationships between “criterion-functional fitness percentiles”, BM, APFT, MOPC, and MOPC-LT composite scores, (3) initially, investigate through factor analysis about the relationships involved with APFT, MOPC, and MOPC-LT and each accompanying subcomponent factors (PU, SU, mobility for battle [MOB], etc.). METHODS Subjects were 20 male, military personnel (19 enlisted soldiers, 1 military officer) of diverse body size and physical performance abilities (Table I). Subjects were volunteers, relatively fit, in active duty status, who were participating in a unit “ramp-up” PT program supported by their local battalion. All the subjects provided with written informed consent and the experimental design protocol and volunteer agreement affidavits were approved by a U.S. Service Academy's internal institutional review board and ethics committee. TABLE I. Subject Characteristics Variable  Mean  ±SD  Height (in)  70.3  2.9  Body Mass (lbs)  177.8  27.4  Lean Body Mass (lbs)  155.4  19.1  FM (lbs)  22.3  10.5  % Fat  12.1  4.5  PU (reps)  62.9  9.5  SU (reps)  69.6  11.9  2MR (secs) (14:02 min/sec)  842.4  92.2  3MR (secs) (22:30 min/sec)  1350.4  150.9  Mobility for Battle (secs)  92.8  8.0  Bench Press Weight (lbs)  171.5  19.8  Bench Press (reps)  7.0  7.4  5-second Cadence PUs (reps)  8.3  3.8  Back Squat Weight (lbs)  184.0  29.5  Back Squat (reps)  9.7  8.7  Ankles to the Bar (reps)  9.6  5.6  Simulated Casualty Evac: SCET (secs) (12:14 min/sec)  733.7  76.6  APFT (Total Points)  258.7  27.5  APFT (%) Based on 300 Points  86.2  9.2  Military Optimal Performance Challenge (MOPC) (Total Points)  159.6  44.6  MOPC (%) Based on 250 Points  63.8  17.9  MOPC-Light (No SCET) MOPC-LT (Total Points)  115.8  42.7  MOPC-LT (%) Based on 200 Points  57.9  21.3  Variable  Mean  ±SD  Height (in)  70.3  2.9  Body Mass (lbs)  177.8  27.4  Lean Body Mass (lbs)  155.4  19.1  FM (lbs)  22.3  10.5  % Fat  12.1  4.5  PU (reps)  62.9  9.5  SU (reps)  69.6  11.9  2MR (secs) (14:02 min/sec)  842.4  92.2  3MR (secs) (22:30 min/sec)  1350.4  150.9  Mobility for Battle (secs)  92.8  8.0  Bench Press Weight (lbs)  171.5  19.8  Bench Press (reps)  7.0  7.4  5-second Cadence PUs (reps)  8.3  3.8  Back Squat Weight (lbs)  184.0  29.5  Back Squat (reps)  9.7  8.7  Ankles to the Bar (reps)  9.6  5.6  Simulated Casualty Evac: SCET (secs) (12:14 min/sec)  733.7  76.6  APFT (Total Points)  258.7  27.5  APFT (%) Based on 300 Points  86.2  9.2  Military Optimal Performance Challenge (MOPC) (Total Points)  159.6  44.6  MOPC (%) Based on 250 Points  63.8  17.9  MOPC-Light (No SCET) MOPC-LT (Total Points)  115.8  42.7  MOPC-LT (%) Based on 200 Points  57.9  21.3  View Large TABLE I. Subject Characteristics Variable  Mean  ±SD  Height (in)  70.3  2.9  Body Mass (lbs)  177.8  27.4  Lean Body Mass (lbs)  155.4  19.1  FM (lbs)  22.3  10.5  % Fat  12.1  4.5  PU (reps)  62.9  9.5  SU (reps)  69.6  11.9  2MR (secs) (14:02 min/sec)  842.4  92.2  3MR (secs) (22:30 min/sec)  1350.4  150.9  Mobility for Battle (secs)  92.8  8.0  Bench Press Weight (lbs)  171.5  19.8  Bench Press (reps)  7.0  7.4  5-second Cadence PUs (reps)  8.3  3.8  Back Squat Weight (lbs)  184.0  29.5  Back Squat (reps)  9.7  8.7  Ankles to the Bar (reps)  9.6  5.6  Simulated Casualty Evac: SCET (secs) (12:14 min/sec)  733.7  76.6  APFT (Total Points)  258.7  27.5  APFT (%) Based on 300 Points  86.2  9.2  Military Optimal Performance Challenge (MOPC) (Total Points)  159.6  44.6  MOPC (%) Based on 250 Points  63.8  17.9  MOPC-Light (No SCET) MOPC-LT (Total Points)  115.8  42.7  MOPC-LT (%) Based on 200 Points  57.9  21.3  Variable  Mean  ±SD  Height (in)  70.3  2.9  Body Mass (lbs)  177.8  27.4  Lean Body Mass (lbs)  155.4  19.1  FM (lbs)  22.3  10.5  % Fat  12.1  4.5  PU (reps)  62.9  9.5  SU (reps)  69.6  11.9  2MR (secs) (14:02 min/sec)  842.4  92.2  3MR (secs) (22:30 min/sec)  1350.4  150.9  Mobility for Battle (secs)  92.8  8.0  Bench Press Weight (lbs)  171.5  19.8  Bench Press (reps)  7.0  7.4  5-second Cadence PUs (reps)  8.3  3.8  Back Squat Weight (lbs)  184.0  29.5  Back Squat (reps)  9.7  8.7  Ankles to the Bar (reps)  9.6  5.6  Simulated Casualty Evac: SCET (secs) (12:14 min/sec)  733.7  76.6  APFT (Total Points)  258.7  27.5  APFT (%) Based on 300 Points  86.2  9.2  Military Optimal Performance Challenge (MOPC) (Total Points)  159.6  44.6  MOPC (%) Based on 250 Points  63.8  17.9  MOPC-Light (No SCET) MOPC-LT (Total Points)  115.8  42.7  MOPC-LT (%) Based on 200 Points  57.9  21.3  View Large The subjects were tested on the MOPC during a 10-day period under similar conditions. The subjects' APFT score was tested before the MOPC period under strict unit testing procedures. Officer and senior enlisted oversight on both testing sessions (APFT, MOPC) assisted with assessment conditions and standards. Related to the MOPC, the comprehensive assessment included 3MR, MOB Test, Upper and Lower Body Strength/Endurance, and a Simulated Casualty Evacuation Test (SCET).  Appendix A shows test item controls related to the MOPC along with the subsequent specific testing parameters to insure standardization. All the assessments had a familiarization period before testing. Impact loading events (SCET, 3MR) were separated by at least 48 hours. All MOPC events with the exception of the SCET were conducted in military PT gear with running shoes and running belt. The 3MR was on a marked known circular, level, paved loop verified by a global positioning measuring tool. Subjects wore gym alpha, running shoes and covered the distance as fast as possible. Running lap splits were provided to assist with optimal performance. The MOB was performed on a tape measured course in accordance to the existing schematic representation (Fig. 1). Related to the MOB, the mobility assessment was created in 2006 to 2007, at a U.S. Service Academy in a year-long academic capstone, cadet-faculty project. Since the MOB's creation, it has been incorporated into a U.S. Service Academy's curriculum and administered to a large population of diverse (fitness, body composition, height) college-age and military-age subjects including both genders. Analysis of the performances has indicated this to be a comprehensive, reliable test assessing overall soldier mobility. In a well-supervised academic course, we found intra-class correlations for test, retest consistently revealed strong correlations (r ≥ 0.91). Overall upper and lower body muscular strength endurance assessments were administered using existing protocols that have showed the ability to measure strength and remove the confounding influence of BM.19 Briefly, subjects had practice attempts in determining a testing performance weight. On separate testing days, subjects performed repetitions until volitional momentary muscular concentric failure for both upper body (bench press 185 lbs; 84 kg) and lower body (back squat 205 lbs; 93 kg). Both of these tests are positively influenced by BM.16,20 Upper body muscular fitness, 5-second cadence pull-ups (CPU) and upper body, “core” fitness, ankles to the bar (ATB) were assessed through standards found in  Appendix A. Both of these tests are negatively influenced by BM.15,16 Using our existing assessment and scoring procedures,19 the aggregate score (bench press and 5-second CPUs; back squat, and ATB) minimized the impact of BM on the overall performance of the composite upper and lower body muscular fitness measures. The SCET was developed over several years (2007–2009) at a U.S. Service Academy that included the input and collaborative work of 10 company grade or higher officers. Speaking to deployed personnel and collaborative officers and assessing casualty evacuation demand, it was postulated casualty evacuation at times occurs after some period of fatiguing military work. In addition, Vanderburgh et al13 have reported a load-carriage distance run incurs no BM bias, an important point related to fair performance assessments. Therefore, the current SCET represented the previous mentioned input, thus subjects in the current investigation wore Army Combat Uniforms, Kevlar helmet, boots, and either military vest with ceramic plates or military vest alone. The subjects were weighed on a digital scale with gear and then performed a 1MR, followed by a 400-m run with dummy weapon and finished with a simulated casualty evacuation 140-m movement of a “casualty” (100 lbs; 45.5 kg sand-filled military ruck sack) while retaining the dummy weapon. No additional supporting gear (hydration system, supplies, etc.) was worn. One platoon wore the armored vest and protective plates (14.5 kg) and one platoon wore armored vests (no plates) only (8.5 kg). Minor variations of ensemble makeups due to size differences existed, however, subject inclusion weight differences were minor and nonsignificant ensemble differences existed when post-hoc fitness analysis were conducted. Exact standards are found in  Appendix A. The casualty evacuation weight chosen of only 100 lbs represents the belief this is a “starting weight” to simulate casualty evacuation. Clearly, casualty evacuation may constitute the removal of any military individual with perhaps as high as ∼280+ lbs including or not including body armor from the battlefield. The intent of casualty evacuation regardless of weight, 70 to 100 lbs in our current and past research work, is to begin conducting assessments with this important warrior task and battle drill. Clearly, members of our relatively fit service academy population have challenges with 70 to 100 lbs simulated casualty evacuation and thus are intellectually internalizing the removal of an even heavier subject (280+ lbs) would demand even more battle ready fitness work capacity. FIGURE 1. View largeDownload slide Schematic representation of MOB. FIGURE 1. View largeDownload slide Schematic representation of MOB. In conjunction with all MOPC assessments, we conducted, height, weight, and percent body fat, which were attained using skinfold caliper measurements according to standardized Jackson and Pollock21 protocols and equations. Raw performance MOPC data measures were recorded and a composite score was attained using the criterion referenced scales contained in  Appendix B. Two composite scores were created because of both a logistical and philosophical concern. The first score (MOPC) was tabulated using all 7 assessments. The second score (MOPC-LT) was tabulated with 6 assessments only and did not include the SCET, thus eliminating a logistical concern and possible medical concern (running in combat boots). We understand constant training, particular running in combat boots, may increase the incidence of lower leg injuries22; however, we believe our distances (<2,200 m) would minimize this exposure. Indeed, appropriate specificity training could be conducted in ACUs, military vests/plates and running shoes. Statistical analysis involved the use of basic descriptive statistics, correlations, repeated measures ANOVA, and a factor analysis. (StatSoft, Tulsa, Oklahoma). For analyses, statistical significance was set at p ≤ 0.05. We also examined statistical significance at both p ≤ 0.01 and p ≤ 0.001. Initial analysis included correlations involving body composition (BM, LBM, and FM) and separate physical assessments (PU, SU, MOB, etc.) and composite scores; APFT, MOPC, and MOPC-LT. In addition, since the SCET was a unique multifaceted assessment involving 3 distinct subcomponents, specific analyses were conducted on this parameter and the attending subcomponent events. Repeated measures ANOVA involved creating a percentile for each composite score. This percentile measurement could be viewed as the fitness or physical readiness of each soldier with 100% indicating the highest “fit for duty” subject. Thus, APFT (%APFT score/300), %MOPC (MOPC score/250), and %MOPC-LT (MOPC/200) were created to assist in comparing field performances of the APFT, MOPC, and MOPC-LT. Factor analysis was used in an attempt to empirically elucidate the important factors required for battlefield readiness. RESULTS The means and standard deviations for the subject's anthropometric values and physical performance values are shown in Table I. The performance data indicated the subjects were “relatively fit,” with a degree of diversity among the Army's readiness global construct variables (endurance, strength, mobility). Table II specifically showed the relationships of BM, LBM, and FM related to the MOPC, MOPC-LT, and APFT. Table II showed the negative impact of BM (−0.47) on APFT scores. In other words, the heavier a person, regardless of fat mass or LBM, the lower the one's APFT score. Twenty-two percent of the APFT score variance was explained alone by one's BM. A (−0.45) correlation of LBM to APFT performance was found, although MOPC and MOPC-LT scores indicated enhanced LBM did not negatively impact MOPC and MOPC-LT performances. In the MOPC/MOPC-LT performance arena, higher BM (r = 0.13; r2 = 0.02) and a higher LBM amount (r = 0.24; r2 = 0.06) slightly, positively impacted overall MOPC and MOPC-LT performances. The MOPC or MOPC-LT variance accounted for BM, LBM, or fat mass was a mean value of <3%, showing a “non” relationship for any MOPC or MOPC-LT composite performance score related to the anthropometric values. APFT had anthropometric factors that accounted for 19.7% of the score's performance variance. TABLE II. Impact of Body Composition on Variables Variable  BM  LBM  FM  MOPC  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.30  r = −0.10; r2 = 0.01; p = 0.67  MOPC-LT  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.31  r = −0.10; r2 = 0.01; p = 0.68  APFT  r = −0.47; r2 = 0.22; p = 0.04  r = −0.45; r2 = 0.20; p = 0 0.05  r = −0.41; r2 = 0.17; p = 0.07  Variable  BM  LBM  FM  MOPC  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.30  r = −0.10; r2 = 0.01; p = 0.67  MOPC-LT  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.31  r = −0.10; r2 = 0.01; p = 0.68  APFT  r = −0.47; r2 = 0.22; p = 0.04  r = −0.45; r2 = 0.20; p = 0 0.05  r = −0.41; r2 = 0.17; p = 0.07  View Large TABLE II. Impact of Body Composition on Variables Variable  BM  LBM  FM  MOPC  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.30  r = −0.10; r2 = 0.01; p = 0.67  MOPC-LT  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.31  r = −0.10; r2 = 0.01; p = 0.68  APFT  r = −0.47; r2 = 0.22; p = 0.04  r = −0.45; r2 = 0.20; p = 0 0.05  r = −0.41; r2 = 0.17; p = 0.07  Variable  BM  LBM  FM  MOPC  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.30  r = −0.10; r2 = 0.01; p = 0.67  MOPC-LT  r = 0.13; r2 = 0.02; p = 0.58  r = 0.24; r2 = 0.06; p = 0.31  r = −0.10; r2 = 0.01; p = 0.68  APFT  r = −0.47; r2 = 0.22; p = 0.04  r = −0.45; r2 = 0.20; p = 0 0.05  r = −0.41; r2 = 0.17; p = 0.07  View Large Table III presented an intercorrelation matrix of the anthropometric, physical performance values (all subcomponent assessments), and the three composite scores (MOPC, MOPC-LT, and APFT). Of empirical relationship assistance would be to examine the composite scores (MOPC, MOPC-LT, and APFT) at the 0.01 level of significance as opposed to the 0.05 level of significance. Average mean correlation for PU (0.67) and 3MR (−0.59) were significant at the 0.01 level for each of the three composite scores. Two-mile run (−0.79) was significant with APFT composite score only. Additional field performance measures included the MOB, bench press, and back squat output. Finally, related to subcomponent measures, the SCET represented a multifaceted assessment, which has been developed with an aim to assess military type activities and also minimized the influence of BM on the performance of this assessment. Table IV showed the relationships related to anthropometric factors, SCET-specific components, composite SCET performance, and Vanderburgh's previous data examining load-carriage distance runs.13 Previous research and current research had the variance of BM and run performance in low magnitudes (0.004 and 0.01), respectively. Related to the composite SCET, as our subjects moved higher along the work intensity continuum (loaded mile, 400 m, 140 m 100 lbs casualty), we observed the greater contribution to LBM (r2 = 0.0004, 0.04, and 0.16). TABLE III. Intercorrelation Matrix of the Anthropometric, Physical Performance Values (all subcomponent assessments), and the Three Composite Scores (MOPC, MOPC-LT, APFT)    HT  BM  % Fat  LBM  FM  PU  SU  2MR  3MR  MOB  BPPTS  BP REPWT  CADPU  SQPTS  SQ REPWT  ATB  SCET  MOPC  MOPC LT  APFT  HT  1.00                                        BM  0.16  1.00                                      %Fat  −0.16  0.72ab  1.00                                    LBM  0.27  0.96ab  0.50a  1.00                                  FM  −0.10  0.86ab  0.97ab  0.68ab  1.00                                PU  −0.26  −0.27  −0.37  −0.20  −0.32  1.00                              SU  0.15  −0.10  −0.15  −0.07  −0.12  0.58ab  1.00                            2MR  −0.29  0.53a  0.43  0.49a  0.50a  −0.41  −0.45a  1.00                          3MR  −0.32  0.33  0.42  0.24  0.42  −0.40  −0.36  0.75abc  1.00                        MOB  −0.20  −0.21  0.05  −0.27  −0.06  −0.45a  −0.64ab  0.19  0.49a  1.00                      BPPTS  −0.23  0.51a  0.24  0.53a  0.37  0.43  0.24  0.23  0.09  −0.41  1.00                    BP REPWT  −0.15  0.75abc  0.51a  0.72abc  0.63ab  0.12  −0.06  0.44  0.27  −0.30  0.64ab  1.00                  CADPU  −0.38  −0.43  −0.42  −0.37  −0.44  0.62ab  0.31  −0.39  −0.20  −0.15  0.29  0.05  1.00                SQPTS  −0.01  0.67ab  0.21  0.75abc  0.39  0.22  −0.09  0.31  0.04  −0.41  0.76abc  0.73abc  −0.03  1.00              SQ REPWT  −0.22  0.66ab  0.33  0.69abc  0.47a  −0.01  −0.28  0.59ab  0.20  −0.24  0.62ab  0.82abc  −0.02  0.76abc  1.00            ATB  −0.18  −0.49a  −0.66ab  −0.35  −0.64ab  0.67ab  0.53a  −0.38  −0.39  −0.38  0.22  −0.24  0.60ab  0.05  −0.12  1.00          SCET  −0.46a  −0.18  0.04  −0.26  −0.01  −0.07  −0.06  0.49a  0.59ab  0.35  −0.10  −0.07  0.01  −0.38  −0.12  −0.13  1.00        MOPC  0.12  0.13  −0.22  0.24  −0.10  0.64ab  0.46a  −0.34  −0.62ab  −0.80abc  0.63ab  0.34  0.36  0.63ab  0.36  0.55a  −0.55a  1.00      MOPC LT  0.09  0.13  −0.22  0.24  −0.10  0.66ab  0.48a  −0.31  −0.59ab  −0.81abc  0.66ab  0.36  0.37  0.63ab  0.37  0.56a  −0.49a  .997abc  1.00    APFT  0.09  −0.47a  −0.37  −0.45a  −0.41  0.72abc  0.80abc  −0.79abc  −0.57ab  −0.36  0.04  −0.24  0.55a  −0.27  −0.44  0.55a  −0.18  0.42  0.42  1.00     HT  BM  % Fat  LBM  FM  PU  SU  2MR  3MR  MOB  BPPTS  BP REPWT  CADPU  SQPTS  SQ REPWT  ATB  SCET  MOPC  MOPC LT  APFT  HT  1.00                                        BM  0.16  1.00                                      %Fat  −0.16  0.72ab  1.00                                    LBM  0.27  0.96ab  0.50a  1.00                                  FM  −0.10  0.86ab  0.97ab  0.68ab  1.00                                PU  −0.26  −0.27  −0.37  −0.20  −0.32  1.00                              SU  0.15  −0.10  −0.15  −0.07  −0.12  0.58ab  1.00                            2MR  −0.29  0.53a  0.43  0.49a  0.50a  −0.41  −0.45a  1.00                          3MR  −0.32  0.33  0.42  0.24  0.42  −0.40  −0.36  0.75abc  1.00                        MOB  −0.20  −0.21  0.05  −0.27  −0.06  −0.45a  −0.64ab  0.19  0.49a  1.00                      BPPTS  −0.23  0.51a  0.24  0.53a  0.37  0.43  0.24  0.23  0.09  −0.41  1.00                    BP REPWT  −0.15  0.75abc  0.51a  0.72abc  0.63ab  0.12  −0.06  0.44  0.27  −0.30  0.64ab  1.00                  CADPU  −0.38  −0.43  −0.42  −0.37  −0.44  0.62ab  0.31  −0.39  −0.20  −0.15  0.29  0.05  1.00                SQPTS  −0.01  0.67ab  0.21  0.75abc  0.39  0.22  −0.09  0.31  0.04  −0.41  0.76abc  0.73abc  −0.03  1.00              SQ REPWT  −0.22  0.66ab  0.33  0.69abc  0.47a  −0.01  −0.28  0.59ab  0.20  −0.24  0.62ab  0.82abc  −0.02  0.76abc  1.00            ATB  −0.18  −0.49a  −0.66ab  −0.35  −0.64ab  0.67ab  0.53a  −0.38  −0.39  −0.38  0.22  −0.24  0.60ab  0.05  −0.12  1.00          SCET  −0.46a  −0.18  0.04  −0.26  −0.01  −0.07  −0.06  0.49a  0.59ab  0.35  −0.10  −0.07  0.01  −0.38  −0.12  −0.13  1.00        MOPC  0.12  0.13  −0.22  0.24  −0.10  0.64ab  0.46a  −0.34  −0.62ab  −0.80abc  0.63ab  0.34  0.36  0.63ab  0.36  0.55a  −0.55a  1.00      MOPC LT  0.09  0.13  −0.22  0.24  −0.10  0.66ab  0.48a  −0.31  −0.59ab  −0.81abc  0.66ab  0.36  0.37  0.63ab  0.37  0.56a  −0.49a  .997abc  1.00    APFT  0.09  −0.47a  −0.37  −0.45a  −0.41  0.72abc  0.80abc  −0.79abc  −0.57ab  −0.36  0.04  −0.24  0.55a  −0.27  −0.44  0.55a  −0.18  0.42  0.42  1.00  n = 20. a p < 0.05. b p < 0.01. c p < 0.001. View Large TABLE III. Intercorrelation Matrix of the Anthropometric, Physical Performance Values (all subcomponent assessments), and the Three Composite Scores (MOPC, MOPC-LT, APFT)    HT  BM  % Fat  LBM  FM  PU  SU  2MR  3MR  MOB  BPPTS  BP REPWT  CADPU  SQPTS  SQ REPWT  ATB  SCET  MOPC  MOPC LT  APFT  HT  1.00                                        BM  0.16  1.00                                      %Fat  −0.16  0.72ab  1.00                                    LBM  0.27  0.96ab  0.50a  1.00                                  FM  −0.10  0.86ab  0.97ab  0.68ab  1.00                                PU  −0.26  −0.27  −0.37  −0.20  −0.32  1.00                              SU  0.15  −0.10  −0.15  −0.07  −0.12  0.58ab  1.00                            2MR  −0.29  0.53a  0.43  0.49a  0.50a  −0.41  −0.45a  1.00                          3MR  −0.32  0.33  0.42  0.24  0.42  −0.40  −0.36  0.75abc  1.00                        MOB  −0.20  −0.21  0.05  −0.27  −0.06  −0.45a  −0.64ab  0.19  0.49a  1.00                      BPPTS  −0.23  0.51a  0.24  0.53a  0.37  0.43  0.24  0.23  0.09  −0.41  1.00                    BP REPWT  −0.15  0.75abc  0.51a  0.72abc  0.63ab  0.12  −0.06  0.44  0.27  −0.30  0.64ab  1.00                  CADPU  −0.38  −0.43  −0.42  −0.37  −0.44  0.62ab  0.31  −0.39  −0.20  −0.15  0.29  0.05  1.00                SQPTS  −0.01  0.67ab  0.21  0.75abc  0.39  0.22  −0.09  0.31  0.04  −0.41  0.76abc  0.73abc  −0.03  1.00              SQ REPWT  −0.22  0.66ab  0.33  0.69abc  0.47a  −0.01  −0.28  0.59ab  0.20  −0.24  0.62ab  0.82abc  −0.02  0.76abc  1.00            ATB  −0.18  −0.49a  −0.66ab  −0.35  −0.64ab  0.67ab  0.53a  −0.38  −0.39  −0.38  0.22  −0.24  0.60ab  0.05  −0.12  1.00          SCET  −0.46a  −0.18  0.04  −0.26  −0.01  −0.07  −0.06  0.49a  0.59ab  0.35  −0.10  −0.07  0.01  −0.38  −0.12  −0.13  1.00        MOPC  0.12  0.13  −0.22  0.24  −0.10  0.64ab  0.46a  −0.34  −0.62ab  −0.80abc  0.63ab  0.34  0.36  0.63ab  0.36  0.55a  −0.55a  1.00      MOPC LT  0.09  0.13  −0.22  0.24  −0.10  0.66ab  0.48a  −0.31  −0.59ab  −0.81abc  0.66ab  0.36  0.37  0.63ab  0.37  0.56a  −0.49a  .997abc  1.00    APFT  0.09  −0.47a  −0.37  −0.45a  −0.41  0.72abc  0.80abc  −0.79abc  −0.57ab  −0.36  0.04  −0.24  0.55a  −0.27  −0.44  0.55a  −0.18  0.42  0.42  1.00     HT  BM  % Fat  LBM  FM  PU  SU  2MR  3MR  MOB  BPPTS  BP REPWT  CADPU  SQPTS  SQ REPWT  ATB  SCET  MOPC  MOPC LT  APFT  HT  1.00                                        BM  0.16  1.00                                      %Fat  −0.16  0.72ab  1.00                                    LBM  0.27  0.96ab  0.50a  1.00                                  FM  −0.10  0.86ab  0.97ab  0.68ab  1.00                                PU  −0.26  −0.27  −0.37  −0.20  −0.32  1.00                              SU  0.15  −0.10  −0.15  −0.07  −0.12  0.58ab  1.00                            2MR  −0.29  0.53a  0.43  0.49a  0.50a  −0.41  −0.45a  1.00                          3MR  −0.32  0.33  0.42  0.24  0.42  −0.40  −0.36  0.75abc  1.00                        MOB  −0.20  −0.21  0.05  −0.27  −0.06  −0.45a  −0.64ab  0.19  0.49a  1.00                      BPPTS  −0.23  0.51a  0.24  0.53a  0.37  0.43  0.24  0.23  0.09  −0.41  1.00                    BP REPWT  −0.15  0.75abc  0.51a  0.72abc  0.63ab  0.12  −0.06  0.44  0.27  −0.30  0.64ab  1.00                  CADPU  −0.38  −0.43  −0.42  −0.37  −0.44  0.62ab  0.31  −0.39  −0.20  −0.15  0.29  0.05  1.00                SQPTS  −0.01  0.67ab  0.21  0.75abc  0.39  0.22  −0.09  0.31  0.04  −0.41  0.76abc  0.73abc  −0.03  1.00              SQ REPWT  −0.22  0.66ab  0.33  0.69abc  0.47a  −0.01  −0.28  0.59ab  0.20  −0.24  0.62ab  0.82abc  −0.02  0.76abc  1.00            ATB  −0.18  −0.49a  −0.66ab  −0.35  −0.64ab  0.67ab  0.53a  −0.38  −0.39  −0.38  0.22  −0.24  0.60ab  0.05  −0.12  1.00          SCET  −0.46a  −0.18  0.04  −0.26  −0.01  −0.07  −0.06  0.49a  0.59ab  0.35  −0.10  −0.07  0.01  −0.38  −0.12  −0.13  1.00        MOPC  0.12  0.13  −0.22  0.24  −0.10  0.64ab  0.46a  −0.34  −0.62ab  −0.80abc  0.63ab  0.34  0.36  0.63ab  0.36  0.55a  −0.55a  1.00      MOPC LT  0.09  0.13  −0.22  0.24  −0.10  0.66ab  0.48a  −0.31  −0.59ab  −0.81abc  0.66ab  0.36  0.37  0.63ab  0.37  0.56a  −0.49a  .997abc  1.00    APFT  0.09  −0.47a  −0.37  −0.45a  −0.41  0.72abc  0.80abc  −0.79abc  −0.57ab  −0.36  0.04  −0.24  0.55a  −0.27  −0.44  0.55a  −0.18  0.42  0.42  1.00  n = 20. a p < 0.05. b p < 0.01. c p < 0.001. View Large TABLE IV. Body Composition Impact on Army Relevant and Physical Performance Factors Variable  BM  LBM  FM  Mile-Loaded SCET (21.5 lbs ± 5.7)  r = 0.11; r2 = 0.01; p = 0.64  r = −0.02; r2 = 0.0004; p = 0.93  r = 0.33; r2 = 0.11; p = 0.16  2MR Loaded Run (29–31 lbs; Vanderburgh)  r = 0.06; r2 = 0.004; p = 0.66  NA  NA  Full SCET  r = −0.18; r2 = 0.03; p = 0.44  r = −0.26; r2 = 0.07; p = 0.27  r = −0.01; r2 = 0.0002; p = 0.96  400-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs)  r = 0.30; r2 = 0.09; p = 0.20  r = 0.19; r2 = 0.04; p = 0.42  r = 0.44; r2 = 0.19; p = 0.05  140-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs + 100 lbs ruck sack)  r = −0.43; r2 = 0.19; p = 0.06  r = −0.40; r2 = 0.16; p = 0.08  r = −0.40; r2 = 0.16; p = 0.08  2MR  r = 0.53; r2 = 0.28; p = 0.02  r = 0.49; r2 = 0.24; p = 0.03  r = 0.49; r2 = 0.25; p = 0.03  2MR (Vanderburgh)  r = 0.42; r2 = 0.18; p = 0.001  NA  NA  3MR  r = 0.33; r2 = 0.11; p = 0.16  r = 0.24; r2 = 0.06; p = 0.32  r = 0.42; r2 = 0.17; p = 0.07  Variable  BM  LBM  FM  Mile-Loaded SCET (21.5 lbs ± 5.7)  r = 0.11; r2 = 0.01; p = 0.64  r = −0.02; r2 = 0.0004; p = 0.93  r = 0.33; r2 = 0.11; p = 0.16  2MR Loaded Run (29–31 lbs; Vanderburgh)  r = 0.06; r2 = 0.004; p = 0.66  NA  NA  Full SCET  r = −0.18; r2 = 0.03; p = 0.44  r = −0.26; r2 = 0.07; p = 0.27  r = −0.01; r2 = 0.0002; p = 0.96  400-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs)  r = 0.30; r2 = 0.09; p = 0.20  r = 0.19; r2 = 0.04; p = 0.42  r = 0.44; r2 = 0.19; p = 0.05  140-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs + 100 lbs ruck sack)  r = −0.43; r2 = 0.19; p = 0.06  r = −0.40; r2 = 0.16; p = 0.08  r = −0.40; r2 = 0.16; p = 0.08  2MR  r = 0.53; r2 = 0.28; p = 0.02  r = 0.49; r2 = 0.24; p = 0.03  r = 0.49; r2 = 0.25; p = 0.03  2MR (Vanderburgh)  r = 0.42; r2 = 0.18; p = 0.001  NA  NA  3MR  r = 0.33; r2 = 0.11; p = 0.16  r = 0.24; r2 = 0.06; p = 0.32  r = 0.42; r2 = 0.17; p = 0.07  View Large TABLE IV. Body Composition Impact on Army Relevant and Physical Performance Factors Variable  BM  LBM  FM  Mile-Loaded SCET (21.5 lbs ± 5.7)  r = 0.11; r2 = 0.01; p = 0.64  r = −0.02; r2 = 0.0004; p = 0.93  r = 0.33; r2 = 0.11; p = 0.16  2MR Loaded Run (29–31 lbs; Vanderburgh)  r = 0.06; r2 = 0.004; p = 0.66  NA  NA  Full SCET  r = −0.18; r2 = 0.03; p = 0.44  r = −0.26; r2 = 0.07; p = 0.27  r = −0.01; r2 = 0.0002; p = 0.96  400-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs)  r = 0.30; r2 = 0.09; p = 0.20  r = 0.19; r2 = 0.04; p = 0.42  r = 0.44; r2 = 0.19; p = 0.05  140-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs + 100 lbs ruck sack)  r = −0.43; r2 = 0.19; p = 0.06  r = −0.40; r2 = 0.16; p = 0.08  r = −0.40; r2 = 0.16; p = 0.08  2MR  r = 0.53; r2 = 0.28; p = 0.02  r = 0.49; r2 = 0.24; p = 0.03  r = 0.49; r2 = 0.25; p = 0.03  2MR (Vanderburgh)  r = 0.42; r2 = 0.18; p = 0.001  NA  NA  3MR  r = 0.33; r2 = 0.11; p = 0.16  r = 0.24; r2 = 0.06; p = 0.32  r = 0.42; r2 = 0.17; p = 0.07  Variable  BM  LBM  FM  Mile-Loaded SCET (21.5 lbs ± 5.7)  r = 0.11; r2 = 0.01; p = 0.64  r = −0.02; r2 = 0.0004; p = 0.93  r = 0.33; r2 = 0.11; p = 0.16  2MR Loaded Run (29–31 lbs; Vanderburgh)  r = 0.06; r2 = 0.004; p = 0.66  NA  NA  Full SCET  r = −0.18; r2 = 0.03; p = 0.44  r = −0.26; r2 = 0.07; p = 0.27  r = −0.01; r2 = 0.0002; p = 0.96  400-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs)  r = 0.30; r2 = 0.09; p = 0.20  r = 0.19; r2 = 0.04; p = 0.42  r = 0.44; r2 = 0.19; p = 0.05  140-Meter Loaded SCET (21.5 lbs + weapon: 7.0 lbs + 100 lbs ruck sack)  r = −0.43; r2 = 0.19; p = 0.06  r = −0.40; r2 = 0.16; p = 0.08  r = −0.40; r2 = 0.16; p = 0.08  2MR  r = 0.53; r2 = 0.28; p = 0.02  r = 0.49; r2 = 0.24; p = 0.03  r = 0.49; r2 = 0.25; p = 0.03  2MR (Vanderburgh)  r = 0.42; r2 = 0.18; p = 0.001  NA  NA  3MR  r = 0.33; r2 = 0.11; p = 0.16  r = 0.24; r2 = 0.06; p = 0.32  r = 0.42; r2 = 0.17; p = 0.07  View Large Graphically, Figure 2 represented all 20 subjects (cases) and the %APFT and %MOPC found on the double y axes, respectively. All 11 subjects (Table V) achieved a MOPC score below 70% that indicated, perhaps, low military physical readiness. These 11 subjects as viewed by the APFT mean score achieved (84.2%); however, all the 11 subjects' mean score as %MOPC was <52% with %MOPC-LT even lower (43.3%). Conversely, also contained in Table V, the highest performing MOPC individual (232; 92.8%) had a relatively high APFT score (294; 98%). However, the lowest performing individual related to the MOPC (79; 31.6%) scored a high, moderate APFT score (236; 78.7%). FIGURE 2. View largeDownload slide Comparison of subject's %APFT and %MOPC. FIGURE 2. View largeDownload slide Comparison of subject's %APFT and %MOPC. TABLE V. Performance Characteristics and Specific Groups and Subjects    n  HT (in)  BM (lbs)  %FAT  FM (lbs)  LBM (lbs)  PU (n)  SU (n)  2MR (secs)  APFT (pts) %  >70%MOPC  9  70.2  179.1  10.5  19.9  159.2  68.2  71.6  816 (13:36)  266.3; 88.8  <70%MOPC  11  70.3  176.6  13.4  24.3  152.4  58.5  68.1  864.1 (14:24)  252.5; 84.2  p    0.97  0.85  0.15  0.37  0.44  0.017  0.53  0.26  0.27  APFT > 90%  8  70.5  170.9  10.5  18.9  151.9  70.7  79.3  809 (13:15)  281.6; 93.9  Lowest 5 of APFT  5  70.0  180.2  11.9  22.1  158.1  57.0  56.0  917.6 (15:17)  225.4; 75.1  Lowest 5 of MOPC  5  69.6  177.2  13.5  24.5  152.7  53.8  62.1  888.8 (14:49)  241.1; 80.4  Highest MOPC  1  70.0  155.0  8.6  13.3  141.7  70.0  82.0  680 (11:20)  294.0; 98  Lowest MOPC  1  68.0  140.0  10.5  14.7  125.3  57.0  46.0  934 (15:34)  236.0; 78.6       n  3MR (secs)  MOB (secs)  BP (wt × reps)  CPU (n)  SQ (wt × reps)  ATB (n)  SCET (secs)  MOPC (pts)  MOPC-LT (pts)    >70%MOPC  9  1265.4 (21.05)  88.4  179.4 × 9  10.1  200.6 × 12.9  11.9  701.6  197.0; 78.8  151.4; 75.7  <70%MOPC  11  1420 (23:40)  96.5  165 × 5.1  6.8  170.4 × 7.2  7.7  760.1  129.0; 51.6  86.6; 43.3  p    0.018  0.022  0.21  0.05  0.07  0.10  0.09  0.00005  0.00006  APFT > 90%  8  1291.4 (21:31)  88.5  172.5 × 8.4  9.5  187.5 × 9.1  13.0  735.5  184.3; 73.7  140.5; 70.3  Lowest 5 of APFT  5  1439.1 (23:59)  96.4  169 × 7.2  6.4  191 × 12  6.8  767.6  140.8; 56.3  98.6; 49.3  Lowest 5 of MOPC  5  1479.2 (24:39)  102.2  157 × 4.2  6.4  163 × 7  4.6  792.2  95.1; 38.0  54.1; 27.1  Highest MOPC  1  1084 (18:04)  79.0  185 × 2  15.0  205 × 4  17.0  603.0  232.0; 92.8  181.0; 90.5  Lowest MOPC  1  1492 (24:52)  110  155 × 1  7.0  135 × 7  2.0  883  79.0; 31.6  42.0; 21.0     n  HT (in)  BM (lbs)  %FAT  FM (lbs)  LBM (lbs)  PU (n)  SU (n)  2MR (secs)  APFT (pts) %  >70%MOPC  9  70.2  179.1  10.5  19.9  159.2  68.2  71.6  816 (13:36)  266.3; 88.8  <70%MOPC  11  70.3  176.6  13.4  24.3  152.4  58.5  68.1  864.1 (14:24)  252.5; 84.2  p    0.97  0.85  0.15  0.37  0.44  0.017  0.53  0.26  0.27  APFT > 90%  8  70.5  170.9  10.5  18.9  151.9  70.7  79.3  809 (13:15)  281.6; 93.9  Lowest 5 of APFT  5  70.0  180.2  11.9  22.1  158.1  57.0  56.0  917.6 (15:17)  225.4; 75.1  Lowest 5 of MOPC  5  69.6  177.2  13.5  24.5  152.7  53.8  62.1  888.8 (14:49)  241.1; 80.4  Highest MOPC  1  70.0  155.0  8.6  13.3  141.7  70.0  82.0  680 (11:20)  294.0; 98  Lowest MOPC  1  68.0  140.0  10.5  14.7  125.3  57.0  46.0  934 (15:34)  236.0; 78.6       n  3MR (secs)  MOB (secs)  BP (wt × reps)  CPU (n)  SQ (wt × reps)  ATB (n)  SCET (secs)  MOPC (pts)  MOPC-LT (pts)    >70%MOPC  9  1265.4 (21.05)  88.4  179.4 × 9  10.1  200.6 × 12.9  11.9  701.6  197.0; 78.8  151.4; 75.7  <70%MOPC  11  1420 (23:40)  96.5  165 × 5.1  6.8  170.4 × 7.2  7.7  760.1  129.0; 51.6  86.6; 43.3  p    0.018  0.022  0.21  0.05  0.07  0.10  0.09  0.00005  0.00006  APFT > 90%  8  1291.4 (21:31)  88.5  172.5 × 8.4  9.5  187.5 × 9.1  13.0  735.5  184.3; 73.7  140.5; 70.3  Lowest 5 of APFT  5  1439.1 (23:59)  96.4  169 × 7.2  6.4  191 × 12  6.8  767.6  140.8; 56.3  98.6; 49.3  Lowest 5 of MOPC  5  1479.2 (24:39)  102.2  157 × 4.2  6.4  163 × 7  4.6  792.2  95.1; 38.0  54.1; 27.1  Highest MOPC  1  1084 (18:04)  79.0  185 × 2  15.0  205 × 4  17.0  603.0  232.0; 92.8  181.0; 90.5  Lowest MOPC  1  1492 (24:52)  110  155 × 1  7.0  135 × 7  2.0  883  79.0; 31.6  42.0; 21.0  View Large TABLE V. Performance Characteristics and Specific Groups and Subjects    n  HT (in)  BM (lbs)  %FAT  FM (lbs)  LBM (lbs)  PU (n)  SU (n)  2MR (secs)  APFT (pts) %  >70%MOPC  9  70.2  179.1  10.5  19.9  159.2  68.2  71.6  816 (13:36)  266.3; 88.8  <70%MOPC  11  70.3  176.6  13.4  24.3  152.4  58.5  68.1  864.1 (14:24)  252.5; 84.2  p    0.97  0.85  0.15  0.37  0.44  0.017  0.53  0.26  0.27  APFT > 90%  8  70.5  170.9  10.5  18.9  151.9  70.7  79.3  809 (13:15)  281.6; 93.9  Lowest 5 of APFT  5  70.0  180.2  11.9  22.1  158.1  57.0  56.0  917.6 (15:17)  225.4; 75.1  Lowest 5 of MOPC  5  69.6  177.2  13.5  24.5  152.7  53.8  62.1  888.8 (14:49)  241.1; 80.4  Highest MOPC  1  70.0  155.0  8.6  13.3  141.7  70.0  82.0  680 (11:20)  294.0; 98  Lowest MOPC  1  68.0  140.0  10.5  14.7  125.3  57.0  46.0  934 (15:34)  236.0; 78.6       n  3MR (secs)  MOB (secs)  BP (wt × reps)  CPU (n)  SQ (wt × reps)  ATB (n)  SCET (secs)  MOPC (pts)  MOPC-LT (pts)    >70%MOPC  9  1265.4 (21.05)  88.4  179.4 × 9  10.1  200.6 × 12.9  11.9  701.6  197.0; 78.8  151.4; 75.7  <70%MOPC  11  1420 (23:40)  96.5  165 × 5.1  6.8  170.4 × 7.2  7.7  760.1  129.0; 51.6  86.6; 43.3  p    0.018  0.022  0.21  0.05  0.07  0.10  0.09  0.00005  0.00006  APFT > 90%  8  1291.4 (21:31)  88.5  172.5 × 8.4  9.5  187.5 × 9.1  13.0  735.5  184.3; 73.7  140.5; 70.3  Lowest 5 of APFT  5  1439.1 (23:59)  96.4  169 × 7.2  6.4  191 × 12  6.8  767.6  140.8; 56.3  98.6; 49.3  Lowest 5 of MOPC  5  1479.2 (24:39)  102.2  157 × 4.2  6.4  163 × 7  4.6  792.2  95.1; 38.0  54.1; 27.1  Highest MOPC  1  1084 (18:04)  79.0  185 × 2  15.0  205 × 4  17.0  603.0  232.0; 92.8  181.0; 90.5  Lowest MOPC  1  1492 (24:52)  110  155 × 1  7.0  135 × 7  2.0  883  79.0; 31.6  42.0; 21.0     n  HT (in)  BM (lbs)  %FAT  FM (lbs)  LBM (lbs)  PU (n)  SU (n)  2MR (secs)  APFT (pts) %  >70%MOPC  9  70.2  179.1  10.5  19.9  159.2  68.2  71.6  816 (13:36)  266.3; 88.8  <70%MOPC  11  70.3  176.6  13.4  24.3  152.4  58.5  68.1  864.1 (14:24)  252.5; 84.2  p    0.97  0.85  0.15  0.37  0.44  0.017  0.53  0.26  0.27  APFT > 90%  8  70.5  170.9  10.5  18.9  151.9  70.7  79.3  809 (13:15)  281.6; 93.9  Lowest 5 of APFT  5  70.0  180.2  11.9  22.1  158.1  57.0  56.0  917.6 (15:17)  225.4; 75.1  Lowest 5 of MOPC  5  69.6  177.2  13.5  24.5  152.7  53.8  62.1  888.8 (14:49)  241.1; 80.4  Highest MOPC  1  70.0  155.0  8.6  13.3  141.7  70.0  82.0  680 (11:20)  294.0; 98  Lowest MOPC  1  68.0  140.0  10.5  14.7  125.3  57.0  46.0  934 (15:34)  236.0; 78.6       n  3MR (secs)  MOB (secs)  BP (wt × reps)  CPU (n)  SQ (wt × reps)  ATB (n)  SCET (secs)  MOPC (pts)  MOPC-LT (pts)    >70%MOPC  9  1265.4 (21.05)  88.4  179.4 × 9  10.1  200.6 × 12.9  11.9  701.6  197.0; 78.8  151.4; 75.7  <70%MOPC  11  1420 (23:40)  96.5  165 × 5.1  6.8  170.4 × 7.2  7.7  760.1  129.0; 51.6  86.6; 43.3  p    0.018  0.022  0.21  0.05  0.07  0.10  0.09  0.00005  0.00006  APFT > 90%  8  1291.4 (21:31)  88.5  172.5 × 8.4  9.5  187.5 × 9.1  13.0  735.5  184.3; 73.7  140.5; 70.3  Lowest 5 of APFT  5  1439.1 (23:59)  96.4  169 × 7.2  6.4  191 × 12  6.8  767.6  140.8; 56.3  98.6; 49.3  Lowest 5 of MOPC  5  1479.2 (24:39)  102.2  157 × 4.2  6.4  163 × 7  4.6  792.2  95.1; 38.0  54.1; 27.1  Highest MOPC  1  1084 (18:04)  79.0  185 × 2  15.0  205 × 4  17.0  603.0  232.0; 92.8  181.0; 90.5  Lowest MOPC  1  1492 (24:52)  110  155 × 1  7.0  135 × 7  2.0  883  79.0; 31.6  42.0; 21.0  View Large Further, of interest was examining the top performing soldiers related to the APFT score. The highest MOPC performer mentioned above (232) was not included in this analysis because of his rank (officer) and his high output on the MOPC. Therefore eight enlisted soldiers averaged 93.9% on the APFT (281.6) and scored 184.3 (73.7%) on the more robust MOPC. To further assist in interpretation of the current data, our analysis examined two distinct cut points related to the MOPC; MOPC < 70%; (n = 11) and MOPC > 70% (n = 9) and found significant performance factors for several variables. As shown in Table V, there was no real difference in BM and height, with the >70% group slightly leaner and having more LBM (6.8 lbs, p = 0.44). PU, 3MR, MOB, and 5-second CPUs were all significantly different between the two groups (p ≤ 0.05) although back squat output, ATBs, and SCET showed trends of significance (p ≤ 0.10). Since these groups were formed based on MOPC score, both MOPC and MOPC-LT were significantly different between the two groups (p < 0.0001), yet APFT scores were not significantly different between the two groups (266.3 vs. 252.3; p = 0.27). Taking the results found in Table V, and focusing on trends of significance below the p = 0.10 level, the group scoring MOPC >70%, have the following attributes using the Army's doctrine of military readiness (endurance, strength, mobility): 21 minutes or less 3MR, 11:40 or less for SCET, back squat 200 lbs for 13 repetitions, perform 10.5 repetitions for both cadence pull-ups and ATB, 68 repetitions for PU, and MOB of 88 seconds. Further, these subjects averaged 266 on the APFT. Figure 3 examines the 2 groups (< or >70%MOPC) and supports the statement the %APFT score between the 2 groups was not significantly different (p = 0.27) yet the %MOPC was significantly different between the 2 groups (p = 0.00005). Figure 4 graphically represents the results of all subjects, in a repeated tests approach with the addition of MOPC-LT to clarify interpretation and additionally shows both %MOPC and %MOPC-LT are not statistically different in composite scores (p = 0.18), yet both are statistically different from %APFT (p = 0.0001). FIGURE 3. View largeDownload slide Group of subjects scoring <70% or >70% on MOPC and respective %score of APFT or MOPC (#p = 0.27, *p = 0.00005). FIGURE 3. View largeDownload slide Group of subjects scoring <70% or >70% on MOPC and respective %score of APFT or MOPC (#p = 0.27, *p = 0.00005). FIGURE 4. View largeDownload slide Group means of %APFT, MOPC, MOPC-LT (*p = 0.0001, #p = 0.18). FIGURE 4. View largeDownload slide Group means of %APFT, MOPC, MOPC-LT (*p = 0.0001, #p = 0.18). Factor analysis (Fig. 5) revealed 6 “clusters” of like activity with regard to empirical analysis. PU and SU factored closely to APFT, with the addition of other specific BM centric activities (ATBs, 5-second CPUs). MOPC and MOPC-LT collectively are in a different region than APFT suggesting they are measuring empirically, unique constructs compared to the composite APFT. Both the MOB and SCET were together in a cluster yet apart from both the cluster APFT and cluster MOPC, MOPC-LT areas again indicating unique constructs. The global constructs of endurance, strength, and mobility were distinctly represented leading to the creation of 6 unique clusters with a specific nomenclature description: Cluster 1 (Body Composition): BM, LBM, fat mass, %body fat; Cluster 2 (Endurance): 3MR, 2MR; Cluster 3 (Strength): back squat and bench press; Cluster 4 (Mobility): MOB and SCET; Cluster 5 (Body Mass-Gravity Centric Activities): cadence pull-ups, ATB, SU, PU, and APFT; Cluster 6 (Aggregate Military Readiness): MOPC and MOPC-LT. FIGURE 5. View largeDownload slide Factor loadings, factor 1 vs. factor 2. FIGURE 5. View largeDownload slide Factor loadings, factor 1 vs. factor 2. DISCUSSION The results of this research provided a suggested template in an approach to assess the more robust factors for military readiness and yet minimize the confounding influence of BM. The rigors of combat are unquestioned, couple this with unknown terrain, altitude and climate, and personnel need to be highly fit for a myriad of demanding encounters. We are in agreement with the Army's traditional PT and doctrine model of the need to train and enhance endurance, strength, mobility. If strength is such an important entity as viewed by the U.S. Army Training and Doctrine Command, why is there not an official strength test metric located within the official Army doctrine? Our current research offers two possibilities either a back squat or bench press to remedy this current limitation. Of important note, however, is to accurately address or account for BM while assessing the strength construct. The Bompa model of training23 characterized by the entities of strength, endurance, speed, and power serve as important reminders of physical attributes for high sustained performance. The Army's addition of mobility; the functional application of strength and endurance assist with focusing on the aspect indicating most military functional fitness involves some type of movement involving agility, change of direction, along with some ballistic output. Our results of the MOB with regard to BM influence (r = −0.21; p = 0.37) is different than both Harman et al4 and Bishop et al24 related to obstacle course performance and BM. Harman found a (0.35) correlation, whereas Bishop found (0.59) related to BM and obstacle course performance. Our data is a negative relationship, thus the higher BM translates to lower MOB time, whereas their data relate to a slower time with increasing BM. We believe this could be explained as both of their obstacle courses involve some type of climbing (Harman's climb over 1.4-m high sheer wooden wall, climb onto a 1.55-m sheer-faced platform; Bishop-mounted a 2.2-m shelf, climbed a 2.2-m wall, surmounted a smooth 2.1-m wall). Our modified obstacle course (MOB) did not contain any climbing events. Thus LBM could be summated into speed and power as opposed to when climbing events are involved, either BM or LBM appears to be a decrement for climbing performance.16,17 Thus, both BM and LBM offer a hindrance in events where one must lift this mass upwards. Our data along with Harman's and Bishop's would support the current Army doctrine in which states both on-ground and off-ground activities should be performed during PT activities. The concept of assessing an individual and mitigating the impact of BM, especially when promotion or pay grade raises may be involved, is paramount. Couple the previous fairness issue, with potential life and death demands on the battlefield, therefore indicating fair, functional military readiness assessments should be the goal. Our existing data is in agreement with Vanderburgh et al's13 work regarding the premise “loaded runs” minimize the influence of BM even though we had a lower amount of weight (21.5 vs. ∼30 lbs) and shorter distance (1 mile vs. 2 mile). In Vanderburgh's study, by placing 30 lbs on an individual and having the subject perform both a maximal effort 2MR and a 2-minute PU test, BM influence is minimized. In this configuration, BM had an r of −0.06, 0.06 (p = 0.661) for 2MR and PU, respectively. Our composite assessment of either 7 (MOPC) or 6 events (MOPC-LT) had events that were both influenced positively and negatively by BM. However, the net scores were not impacted by BM r = 0.13 (p = 0.58). We are in agreement with Harman et al4 when they state on the battlefield, there are activities other than casualty rescue that also involve manipulation of relatively heavy loads (setting up field artillery, hauling heavy weapons/ammunition). They further state these are activities at which larger soldiers, who may not excel at physical fitness tests, could also be at an advantage. We believe the “robustness” of our MOPC assessment whereby various specific events have both positive and negative relationships with BM is the strength of this research. Specifically stated, our efforts support other research,15,16 indicating BM impacts positively on the following factors: 3MR (increase BM; increase run time), bench press, and back squat output, whereas negatively on MOB, 5-second CPUs, ATB, and SCET. Thus, when the criterion scores are summed, the impact of BM is minimized. Compared to the APFT in this study, BM significantly impacts APFT performance (p < 0.05) in a negative fashion (r = −0.47) as indicated in Table II and supported by existing data.1,2 Thus, perhaps the very individuals who may assist in the manipulation of heavy loads during battlefield activities are being penalized in the only “screening” assessment for both military readiness and promotional-salary evaluation. Interestingly, both the PU and SU assessments provided the greatest number (4) of significant correlations with the other assessments. On one hand, this is a positive feature, in other words, if one test is significantly correlated with many other tests then the one test can stand as a single, surrogate measure for the others thereby reducing testing time and providing meaningful predictive value to military readiness. On the other hand, one should proceed cautiously, in paying particular attention to the assessments yielding the correlations. PU was significant with SU, MOB, CPU, ATB. SU was significant with PU, 2MR, MOB, ATB. Graphically this is easily observed in Figure 5. As indicated factor analysis yielded a cluster that would seem to be related to BM-gravity centric activities (PU, SU, CPU, ATB). Of note, the composite APFT score was in this cluster providing further evidence the APFT is significantly influenced by BM. If one takes the position of supporting the current Army doctrine of endurance, mobility, and strength, then one would expect to assess each of these respective entities. Further, because the global construct of endurance is unique and different from strength, one would not expect there to be a single measure, which would assess both and certainly PU and/or SU does not. If one deems a specific global construct to be important to military readiness (endurance, strength, mobility), then one should assess these variables. Multiconstruct aspects for military readiness are important concepts and supported by our research. As contained in Table V, the highest performing MOPC individual (232; 92.8%) had a relatively high APFT score (294; 98%) seemingly indicating a multicomponent, highly fit individual. However, the lowest performing individual related to the MOPC (79; 31.6%) scored a high, moderate APFT score (236; 78.7%) perhaps, indicating some fundamental weakness in valuable military physical components, namely strength and mobility, which are not tested in the current APFT scenario. This would seem to be supported by the results in finding the individual could only bench press 155 lbs for one repetition, back squat 135 lbs for seven repetitions and ran the MOB in 110 seconds, 31 seconds slower than the fastest performing soldier. Further, of interest was examining the top performing soldiers related to the APFT score. The highest MOPC performer mentioned above (232) was not included in this analysis because of his rank (officer) and his high output on the MOPC. Therefore, eight enlisted soldiers averaged 93.9% on the APFT (281.6), yet only scored 184.3 (73.7%) on the more robust MOPC. These scenarios are troubling in both past1,–3,5 and this present research indicated the current Army metric (APFT) for fitness is BM biased and further the APFT is not seemingly correctly classifying military readiness, at least as measured by the presently reported field friendly, robust MOPC. Because we know from history, the APFT was formed to assess baseline fitness and not military readiness, it is still troubling when many individuals still hold the APFT in such high regard related to some form of “fitness.” Because it assesses no muscular strength or mobility component it can hardly be a representative model for military readiness when one uses the current Army physical readiness doctrine (endurance, strength, mobility).18 In our study, examining the two distinct groups formed through MOPC/MOPC-LT scores (high, low; 70% cut points) we saw significant differences between the two groups (p < 0.0001) yet APFT scores were not significantly different between the two groups (266.3 vs. 252.3; p = 0.27). This provides further evidence APFT scores may not be as sensitive to military readiness if one deems military readiness can be reflected based more on our military performance factors (MOB, 3MR, CPU, SCET, etc). Injury prevention or “prehab” is an important concept in military readiness. Both running in our case (3 miles) and the SCET that demand a 1MR with ACUs, boots, vests, and protective armor plates are impact loading involving ground reaction forces. With repetitive running, ruck marching, or load-bearing running in our case, bone resorption in the lower extremities occurs before the bone remodels because of the training stimulus thus making the bone more susceptible to injury.22,25 Adoption of smart progression guidelines related to impact loading and a preconditioning, abdominal strengthening, and/or lower extremity strengthening program can reduce the incidence of injury.22 Further, volume or time exposure to both ground reaction forces and vertical loading rates can be reduced by introduction to machine-based aerobic training and high-quality periodic intensity interval training. Related to age and gender, since this data involved only younger adult men (22–36 years), one cannot speculate the relationships of field-relevant assessments and military readiness related to older-age men and women. Regardless to the age or gender, high physical military readiness is required in the profession of arms. Related to older age, a subject (age > 50) in this study was not included in data analysis, displayed high physical output (second overall after the officer) compared to the enlisted population. The older-age subject displayed the following: (300 [100%] vs. 256 [85.6%] APFT; 228 [91.2%] vs. 155.8 [62.3%] MOPC) compared to younger (22–36) aged enlisted soldiers. In this regard, further research is warranted related to both women and older individuals. However, it is our belief regardless of the constructs that may yield predictive capabilities to military readiness, there should be a “one scale fits all” related to military readiness. In other words, we believe that it is appropriate to have separate scales regarding gender and age with regard to, perhaps, promotion and financial remuneration. However, related to military/combat readiness, we believe in the one-scale ranking system. For example, on the 3MR, one would perform the event and then regardless of gender or age, all individuals would be ranked on one identified scale. Thus, specific performances could be judged based on the merit of performances only. In addition, we believe if one was then ranked accordingly as being military or combat ready, additional financial amounts could be accrued. This is similar to current procedures related to combat or aviation pay. One further concern related to the MOPC or MOPC-LT is the requirement of equipment. We believe in garrison, this will not be a concern. In combat, if existing strength equipment is not available, then our recommendation is that deployed soldiers have a creatively constructed “Deployed-Light” MOPC or not test on the MOPC or MOPC-LT. There might be some objections to soldiers not testing while deployed, because this could mean some soldiers might not test within a calendar year. However, it is the primary responsibility for soldiers to stay fit year round, regardless of whether they test or not, and not requiring deployed soldiers to test may have administrative, psychological, and logistic benefits to operations. In summary, these results suggest both the MOPC and MOPC-LT yield a composite military readiness score free of the confounding influences of BM by assessing critical entities the U.S. Army has deemed important to military readiness namely, endurance, mobility, and strength. Other organizations have certainly been researching and reporting the importance of task-specific tests related to military occupational performance5,10,–13,26 and cautioning about the weak relationship of the APFT and military readiness.3 We believe the MOPC and MOPC-LT can contribute a small piece to assessing military readiness and assist commanders with information to empirically determine, “fit for combat.” The MOPC is a unique assessment requiring a multitude of abilities to garner success and may assist in training for functional combat performance skills demanding high work capacities. ACKNOWLEDGMENTS Deep appreciation goes to our Hawaiian subjects, thank you for your tremendous maximal efforts and commitment to excellence in the profession of arms. Be safe. Personally, I thank my co-authors for providing insight, passion, real-world application, and warm hospitality on the North Shore, I appreciate both your efforts greatly. Appreciation also to soldiers, cadets, officers, and civilians who have provided inspiration and insight in many facets of our research. Finally, a sincere thanks to our reviewers who provided excellent comments and thus strengthened this research. Personal funding was used for the collection of this data at Schofield Barracks, Oahu, Hawaii. APPENDIX A MILITARY OPTIMAL PERFORMANCE CHALLENGE Purpose To provide soldiers with the opportunity to participate in a variety of physical performance challenges designed to assess warrior optimal performance PHYSICAL WORK CAPACITY: LOW INTENSITY ENDURANCE (50 scale points) 3-MILE RUN MOTOR WORK CAPACITY (50 scale points) INDOOR/OUTDOOR MOB PHYSICAL WORK CAPACITY: HIGH INTENSITY STENGTH UPPER BODY (Select one group from the tests listed below) (50 scale points) Repetitions Chest (Bench) Press (25 scale points) AND Cadence Pull-ups (25 scale points) OR 1 REP Chest (Bench) Press (25 scale points) AND Cadence Pull-ups (25 scale points) PHYSICAL WORK CAPACITY: HIGH INTENSITY STRENGTH LOWER BODY/SHOULDER-MIDSECTION (50 scale points) Repetitions Back Squat (25 scale points) AND Ankles to the Bar (25 scale points) WARRIOR OPTIMAL PERFORMANCE/MOBILITY (50 scale points) Simulated Casualty Evacuation Test (SCET) TOTAL “250 POINTS” The views and standards contained are the views of the author and do not constitute endorsement by the Department of Defense, Department of the Army, or the United States Military Academy. PHYSICAL WORK CAPACITY: LOW INTENSITY ENDURANCE (50 POINTS) A. Measure a set 3MR course. May be a down (1.5 miles) and back (1.5 miles). Flat terrain is highly encouraged with no more than 3% grade. If using an Olympic running track, these are 400 m in length. 1,609 m equals 1 mile. Thus, one would need to run 4827 m, which is 12 laps (4800 m) plus 27 m more. 27 Meters = 88.5 feet. Conversion is 1 m = 3.281 feet. Make sure the distance is correct, regardless of course. — Warm-up appropriately. — Begin watch and run 3 miles. — At the end of 3 miles, verify and record the time. — Conduct proper cool-down. — SAFETY NOTE: If running on streets, use a sidewalk wherever possible. — Criterion measure: Time in minutes to seconds ratio to complete the 3MR. MOTOR WORK CAPACITY (50 POINTS) A. Mobility for Battle (MOB): — Set up the MOB as per directions and the illustrations below. PURPOSE: Overall assessment of high-intensity motor work capacity SETUP: (Required Equipment) 20 cones or sand bags 2 five gallon filled water cans 1 18-lb medicine ball Stopwatch METHODS: The MOB provides a means to assess the current mobility of a soldier. The MOB consists of a series of obstacles and high intensity motor tasks that a soldier must successfully negotiate within a specified minimum time. The cones or sand bags must be setup as depicted in Figure 1, meeting all distance standards. The test surface can range from concrete, hard wood, grass, or dirt. Ensure that the soldiers will be able to obtain good footing when making turns. Grader Requirements: Two graders are optimal. The first grader stands at the finish line and controls the stopwatch. The second grader, without getting in the way, walks around the vicinity of the obstacle course to ensure that the soldier successfully negotiates all tasks. This includes ensuring that bear crawl and PU are done, the minimum distance is reached at the standing long jumps, and the 18-lb medicine ball touches the ground during the torso twists. If only 1 grader, run to various obstacles insuring standards and run to finish line ahead of runner. This original MOB was created in a year-long United States Military Academy Systems Engineering capstone project by CDTs Mike Castelli, Justin Koenig, Julius Myers, Dusty Turner, and Dr. Todd Crowder as part of a larger Army Warrior Readiness Test. Some slight modifications have been conducted to the MOB. The MOB is dedicated to those cadets/graduates—best of luck always, stay physically fit forever, and never stop asking the question why. A. MOB: — Warm-up appropriately. — All soldiers will receive a time. This time represents how long it takes the soldier to successfully negotiate all obstacles correctly. Precise movement is an important entity related to soldier readiness. — On the command “get set,” the soldier will assume the most comfortable starting position behind the start line. — At the command of “go,” the soldier will sprint to the line established by the cone and touch with his/her left hand. The soldier will then change direction and sprint back to the original start line, touch with his/her right hand. Again changing direction, the soldier will sprint to the right of the first 2 cones, make a “left diagonal” and then sprint to the left of the next cone. — The soldier will place the right hand down, circle the cone in a clockwise pivot turn fashion and then sprint to the line established by the next 2 cones. — At the line, the soldier will assume a PU position, correctly perform two PU, and side roll to his/her left. Once complete, the soldier will perform a bear crawl for 5 yards, stop, assume a PU position, correctly perform two push-ups, and side roll to his/her right. The soldier will then perform a bear crawl for 5 more yards, stop, assume a PU position, correctly perform two PU, and side roll to his/her left. — After the 10-yard bear-crawl push-up tasks, the soldier will jump to his/her feet, ensuring that the feet do not break the plane established by the cones. The soldier will then perform standing long jumps across the 10-yard span. Note that the soldier must cross the imaginary line formed by the cones, performing a standing long jump. — At the end of the standing long jump obstacle, the soldier will proceed to pick up the two water filled water cans, one in either hand. The soldier will carry the water cans around the designated cones, performing two laps. The soldier will return the water cans to their original starting position. Soldiers may place the water cans on the ground during the obstacle to re-grip. When carrying the water cans, the soldiers must cross the line established by the cones. Soldiers can run or walk during the water can carry. — After dropping the water cans, the soldier will sprint to the designated torso twist area. With his/her feet facing the finish line, the soldier must successfully do 20 torso twists (20 total) while sitting down with the 18-lb medicine ball being held in both hands. When twisting, the 18-lb medicine ball must touch the ground on each side of the soldier (20 touches total). Also, the soldier's knees must remain bent and heels must stay in contact with the ground. — After completing the torso twists, the soldier puts down the 18-lb medicine ball and then the soldier will run 3 continuous 25-yard sprints (down, back, down). The soldier attempts to run this distance as fast as possible. During the final 25-yard sprint the soldier will raise his/her arms 2 yards from the finish, yell “Time” and be given a time when they cross the finish line. — Criterion Measure: Total time in seconds to execute all events to standard. If an installation is unable to procure cones, sandbags, stop watch, and water cans, the following is an alternative to assess motor work capacity. The 300-yard shuttle run does not replace the MOB but serves as a useful training tool in assessing to a moderate degree, the overall parameter of warrior motor work capacity, and optimal performance mobility. A. Indoor/Outdoor 300-Yard Shuttle Run: — Go to a gym or some outside field that can be marked with 2 lines 25 yards apart. Warm-up appropriately. — Start with both feet behind the line. Start watch and begin running. — Make 6 round trips on the 25-yard course (Down and back = 50 yards). — Foot must make contact ON or OVER each line. — At the completion of the sixth trip, cross the start line and the partner will stop the watch, verify and record time. NOTE: This assessment is different than some sports teams' 300-yard shuttle. Their assessment is set up on a 50-yard course. (Down and back = 100 yards). Therefore, use appropriate distance and course for this test. — Criterion Measure: Time in seconds to complete 300 yards of a shuttle run. PHYSICAL WORK CAPACITY: HIGH INTENSITY STRENGTH-UPPER BODY (50 POINTS) NOTE: Both A1 and A2 or B1 and A2 have to be completed as a set. UPPER BODY A1. Repetition Chest (Bench) Press (25 SCALE points): — Find any “free-weight bench equipment” and warm-up appropriately. (Do not use a “Smith” or Hammer strength machine). — Insure the bar weighs 45 lbs, most standard bars weigh 45 lbs. Collars will be used but collar weight is not counted. — Men place 185 lbs (bar plus One 45 lbs and one 25 lbs plate on each side)—Examine alternative weight. — Women place 90 pounds (bar plus two 10 pound plates and one 2.5 pound plate on each side)—Examine alternative weight. — Have your partner serve as a spotter. Lift this weight as many times as possible. — Conduct full range of motion repetitions to include just slightly less than “full, lock-out” position. Additionally on descent, soldiers must use the “touch and go” method of the bar touching chest and then returning to start position. (NO BOUNCING) — Maintain 5 points of contact: Left foot, right food, buttocks, shoulders and head, and closed grip with thumb around bar. — The spotter may help you on the last repetition for safety, but this repetition will not count. — Once the spotter touches the bar, no more repetitions will be counted. — Criterion Measure: Number of correctly performed repetitions of the Chest (Bench) Press NOTE: This is a STRENGTH test. Correlates highly to 1-RM strength test (r = 0.96), because of the high “preload” of weight. A2. Cadence Pull-ups (25 SCALE points): — Find a standard pull-up bar and warm-up appropriately. Make sure your feet DO NOT touch the floor. — Jump up and grab pull-up bar, palms facing away from the performer's face (pronated grip), if medical issues related to the shoulders, the soldier may use a neutral grip (palms facing in). — At the same time, partner begins watch. — At 5 second intervals, partner instructs participant to conduct a pull-up. — Participant cannot execute a pull-up until the command “up.” — Pull-ups are conducted on running clock of 05, 10, 15, 20, and so on, until participant can no longer execute another pull-up. — The first pull-up begins at the 05 second mark, thus a soldier must hang before the test can begin. — Resting greater than 5 seconds is not allowed. — Participant must keep pace with the cadence. — If unable to maintain pace with the cadence, the test is terminated. — No kipping (CrossFit approach) or “circus pull-ups” are allowed. — Partner may place hand up and stop your swing while in extended position, attempt to maintain vertical alignment on own. — Participant needs to lift chin over the pull-up bar. — Repetitions are not counted if not executed to standard. — Verify and Record only the properly performed CADENCE pull-ups. — Criterion Measure: Number of correctly performed cadence pull-ups. B1. One Repetition Max Chest (Bench) Press (25 SCALE points): — Find any “free weight bench equipment,” and warm-up appropriately. (Do not use a “Smith” machine) — Insure the bar weighs 45 pounds, most standard bars weigh 45 pounds. Collars will be used but collar weight is not counted. — You will conduct a repetition max chest (bench) press. — The soldier lies on his/her back with the head, shoulders, and buttocks in contact with the bench surface. — The soldier's hands must grip the bar with a “thumbs-around” grip, locking the bar safely in the palms of the hands. — Shoes/feet must be flat on the floor during the lift. — The soldier removes the bar from the rack (a “lift” from the spotter(s) is permitted) and then holds the bar motionless for 1 second in the locked out position. — The soldier must then lower the bar to the chest, hold it motionless on the chest with a definite and visible pause, and then press upwards with an even extension of the arms to arms' length (complete arm extension). — The bar is again held motionless for 1 second, and then the soldier may rack the bar. — The soldier is NOT ALLOWED to stop, BOUNCE, shift the feet, change position of the hands, or unevenly extend the bar during the lift. — A weight belt but no other “supportive gear” (meaning elbow wraps, suits, etc.) is allowed. — The spotter may only assist for safety reasons. If the spotter touches the bar, the repetition will NOT be counted. — Criterion Measure: Weight correctly lifted of the Repetition Max Chest (Bench) Press. A2. Cadence Pull-ups (25 SCALE points): SEE A2 ABOVE FOR THE STANDARDS AND SCALE. PHYSICAL WORK CAPACITY: HIGH INTENSITY STRENGTH-LOWER BODY (50 POINTS) NOTE: A1 and A2 have to be completed as a set. LOWER BODY A1. Repetitions Back Squat (25 SCALE points): — Locate a “Squat Power Rack,” or an acceptable alternative. Warm-up appropriately. — The soldier then places the appropriate weight on the bar. Men place 205 lbs (1-45 lb plate, 1-25 lb plate, and 1-10 plate per side) and women place 145 lbs (45-lb plate + 5-lb plate per side) on bar. Collars will be used but collar weight is not counted. — IMPORTANT SAFETY NOTE: If unable to lift 205/145, use appropriate weight for ability, see chart below. — The soldier assumes an upright position under the bar, with the bar held horizontally across the shoulders with hands/fingers gripping the bar. — The soldier removes the bar from the rack and moves to the starting position. Within Hammer rack, spotter behind you situated with arms extended underneath soldiers arm pits, but not touching. — The soldier must remain motionless in the starting position (erect with knees almost locked). — The soldier then bends the knees and hips to lower the body until the upper leg is parallel to the ground. Upper torso is no less than a 45° angle from a line drawn parallel to floor, majority of weight is midfoot to back of heel. — The soldier then recovers from this point of the squat to an upright position with the knees almost locked as in the starting position; the soldier must pause, then begin next repetition. — The soldier must then attempt to execute as many correctly back squat repetitions as possible. — The soldier is NOT ALLOWED to stop, BOUNCE, shift the feet, or change position of the bar on the back. — After completing as many repetitions as possible, the soldier must then attempt to rack the bar; the spotter(s) may assist the soldier in re-racking the weight. — The spotter may ASSIST on the last repetition for safety, but this repetition will not be counted. — Once the spotter touches the bar, no more repetitions will be counted. — A weight belt and foam wrap on bar for the neck are allowed, but no other “supportive gear” (meaning knee wraps, suits, etc.) is allowed. — Verify and record the correct number of properly executed repetitions of the back squat. — Criterion Measure: Number of correctly performed repetitions of the Back Squat. A2. Ankles to the Bar (25 SCALE points): — Find a standard pull-up bar and warm-up. You may use the “Multi-Station” Unit, but your feet must go up and touch the bar as stated below. — Jump to a horizontal bar and come to a full dead hang. — A “multi” grip (palms facing away-pronated, palms facing in-supinated, or palms facing in-neutral) can be used. — The body is flexed and raised into a tuck until the shoe laces touch the horizontal bar. In this position, the upper heads of both femurs must be raised higher than the shoulders. — The soldier returns to a near dead hang (arms can be slightly bent) and attempts another repetition. — The arms may be bent or remain straight during the flex to the tuck. — The knees are together and do not rest against the inside of the arms in the up position. — Repetitions are not counted if not executed to standard. — Partner may place hand up and stop your swing while in extended position, attempt to maintain vertical alignment on own. — Verify and record the properly performed ATB. — Criterion Measure: Number of correctly performed ATB repetitions. WARRIOR OPTIMAL PERFORMANCE MOBILITY/CASUALTY EVAC (50 POINTS) A. Simulated Casualty Evacuation Test (SCET): — Set up the SCET as per directions and the illustrations below. PURPOSE: Overall assessment of High-Intensity Warrior Optimal Performance/Mobility SETUP: (Required Equipment) Dummy weapon 100-lb dummy or filled 100-lb ruck sack/sand bag Stopwatch *NOTE: Each Soldier will wear personal ACUs, boots, helmet, and body armor. METHODS: The SCET provides a means to assess the current optimal performance/mobility of a soldier to include simulated casualty evacuation. The SCET consists of a series of tasks designed to simulate high intensity motor tasks that a soldier may encounter on the battlefield to include, sustained running to mission (1 mile), high intensity physical work capacity (400 m), and then a simulated casualty evacuation through carry or drag method of 140 m. The test surface can range from concrete, hard wood, grass, or dirt. Ensure that the soldiers will be able to obtain good footing when making turns. Grader Requirements: Two graders are optimal. The first grader stands at the start/finish line and controls the stopwatch. The second grader, without getting in the way, monitors the mile, 400 m run and casualty evacuation to ensure that the soldier successfully negotiates all tasks and they are done to standard. If only one grader, oversee the various tasks insuring standards and run to finish line ahead of runner. A. SCET: — Warm up appropriately. — All soldiers will receive a time. This time represents how long it takes the soldier to successfully negotiate the SCET. — On the command “get set,” the soldier will assume the most comfortable starting position behind the start line. — At the command of “go,” the soldier will run 1-mile in ACUs, boots, helmet, and body armor. — The soldier will complete the 1-mile run and then picking up a dummy weapon will run as fast as possible 400 m. — At the end of 400 m, the soldier will keep their dummy weapon (cross sling is recommended if available) and then shoulder carry, drag or a combination of both move a 70 to 100 lbs dummy for 140 m. Rolling the dummy is not authorized. Short rests during the simulated casualty evacuation are authorized, but not encouraged. — After completing all the tasks to standard, the total time in minutes and seconds is recorded. — Criterion Measure: Total time in minutes to seconds ratio to execute all tasks to standard. APPENDIX B 3-MILE RUN MEN  AVE  POINTS TOTAL  AVE  WOMEN TOTAL  Mile Pace  TIME     Mile Pace  TIME    6:00  18:00  50  7:00  21:00    6:05  18:15  49  7:05  21:15    6:10  18:30  48  7:10  21:30    6:15  18:45  47  7:15  21:45    6:20  19:00  46  7:20  22:00    6:25  19:15  45  7:25  22:15    6:30  19:30  44  7:30  22:30    6:35  19:45  43  7:35  22:45    6:40  20:00  42  7:40  23:00    6:45  20:15  41  7:45  23:15    6:50  20:30  40a  7:50  23:30    6:55  20:45  39  7:55  23:45    7:00  21:00  38  8:00  24:00    7:05  21:15  37  8:05  24:15    7:10  21:30  36  8:10  24:30    7:15  21:45  35  8:15  24:45    7:20  22:00  34  8:20  25:00    7:25  22:15  33  8:25  25:15    7:30  22:30  32  8:30  25:30    7:45  23:15  31  8:45  26:15    8:00  24:00  30  9:00  27:00    8:00 + 8:30  <25:00  15  9:00 + 9:30  <28:00      25:30  7    28:30      >25:30  0    >28:30  MEN  AVE  POINTS TOTAL  AVE  WOMEN TOTAL  Mile Pace  TIME     Mile Pace  TIME    6:00  18:00  50  7:00  21:00    6:05  18:15  49  7:05  21:15    6:10  18:30  48  7:10  21:30    6:15  18:45  47  7:15  21:45    6:20  19:00  46  7:20  22:00    6:25  19:15  45  7:25  22:15    6:30  19:30  44  7:30  22:30    6:35  19:45  43  7:35  22:45    6:40  20:00  42  7:40  23:00    6:45  20:15  41  7:45  23:15    6:50  20:30  40a  7:50  23:30    6:55  20:45  39  7:55  23:45    7:00  21:00  38  8:00  24:00    7:05  21:15  37  8:05  24:15    7:10  21:30  36  8:10  24:30    7:15  21:45  35  8:15  24:45    7:20  22:00  34  8:20  25:00    7:25  22:15  33  8:25  25:15    7:30  22:30  32  8:30  25:30    7:45  23:15  31  8:45  26:15    8:00  24:00  30  9:00  27:00    8:00 + 8:30  <25:00  15  9:00 + 9:30  <28:00      25:30  7    28:30      >25:30  0    >28:30  a Goal: Have Soldiers meet the 80% solution of a 6:50/7:50 running pace during a 3MR. View Large MEN  AVE  POINTS TOTAL  AVE  WOMEN TOTAL  Mile Pace  TIME     Mile Pace  TIME    6:00  18:00  50  7:00  21:00    6:05  18:15  49  7:05  21:15    6:10  18:30  48  7:10  21:30    6:15  18:45  47  7:15  21:45    6:20  19:00  46  7:20  22:00    6:25  19:15  45  7:25  22:15    6:30  19:30  44  7:30  22:30    6:35  19:45  43  7:35  22:45    6:40  20:00  42  7:40  23:00    6:45  20:15  41  7:45  23:15    6:50  20:30  40a  7:50  23:30    6:55  20:45  39  7:55  23:45    7:00  21:00  38  8:00  24:00    7:05  21:15  37  8:05  24:15    7:10  21:30  36  8:10  24:30    7:15  21:45  35  8:15  24:45    7:20  22:00  34  8:20  25:00    7:25  22:15  33  8:25  25:15    7:30  22:30  32  8:30  25:30    7:45  23:15  31  8:45  26:15    8:00  24:00  30  9:00  27:00    8:00 + 8:30  <25:00  15  9:00 + 9:30  <28:00      25:30  7    28:30      >25:30  0    >28:30  MEN  AVE  POINTS TOTAL  AVE  WOMEN TOTAL  Mile Pace  TIME     Mile Pace  TIME    6:00  18:00  50  7:00  21:00    6:05  18:15  49  7:05  21:15    6:10  18:30  48  7:10  21:30    6:15  18:45  47  7:15  21:45    6:20  19:00  46  7:20  22:00    6:25  19:15  45  7:25  22:15    6:30  19:30  44  7:30  22:30    6:35  19:45  43  7:35  22:45    6:40  20:00  42  7:40  23:00    6:45  20:15  41  7:45  23:15    6:50  20:30  40a  7:50  23:30    6:55  20:45  39  7:55  23:45    7:00  21:00  38  8:00  24:00    7:05  21:15  37  8:05  24:15    7:10  21:30  36  8:10  24:30    7:15  21:45  35  8:15  24:45    7:20  22:00  34  8:20  25:00    7:25  22:15  33  8:25  25:15    7:30  22:30  32  8:30  25:30    7:45  23:15  31  8:45  26:15    8:00  24:00  30  9:00  27:00    8:00 + 8:30  <25:00  15  9:00 + 9:30  <28:00      25:30  7    28:30      >25:30  0    >28:30  a Goal: Have Soldiers meet the 80% solution of a 6:50/7:50 running pace during a 3MR. View Large MOB  MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    82  50  92      83  49  93      84  48  94      85  46  95      86  44  96      87  42  97      88  40a  98      89  39  99      90  38  100      91  37  101      92  36  102      93  35  103      94  34  104      95  32  105      96  30  106      98  15  108      100  7  110      >100  0  >110    MOB  MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    82  50  92      83  49  93      84  48  94      85  46  95      86  44  96      87  42  97      88  40a  98      89  39  99      90  38  100      91  37  101      92  36  102      93  35  103      94  34  104      95  32  105      96  30  106      98  15  108      100  7  110      >100  0  >110    a Goal: Have Soldiers meet the 80% solution of 88 or 98 seconds during the MOB. View Large MOB  MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    82  50  92      83  49  93      84  48  94      85  46  95      86  44  96      87  42  97      88  40a  98      89  39  99      90  38  100      91  37  101      92  36  102      93  35  103      94  34  104      95  32  105      96  30  106      98  15  108      100  7  110      >100  0  >110    MOB  MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    82  50  92      83  49  93      84  48  94      85  46  95      86  44  96      87  42  97      88  40a  98      89  39  99      90  38  100      91  37  101      92  36  102      93  35  103      94  34  104      95  32  105      96  30  106      98  15  108      100  7  110      >100  0  >110    a Goal: Have Soldiers meet the 80% solution of 88 or 98 seconds during the MOB. View Large UPPER BODY REPETITIONS CHEST (BENCH) PRESS (185# for Men, 90# for Women) MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          175#  6  7  6  80#  155#  10  5  10  65#  135#  >20  4  >10  45#  135#  <20  2  <10  45#  MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          175#  6  7  6  80#  155#  10  5  10  65#  135#  >20  4  >10  45#  135#  <20  2  <10  45#  a Goal: Have the Soldiers meet the 80% solution of 12 repetitions during a prescribed Chest (Bench) Press lift. View Large UPPER BODY REPETITIONS CHEST (BENCH) PRESS (185# for Men, 90# for Women) MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          175#  6  7  6  80#  155#  10  5  10  65#  135#  >20  4  >10  45#  135#  <20  2  <10  45#  MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          175#  6  7  6  80#  155#  10  5  10  65#  135#  >20  4  >10  45#  135#  <20  2  <10  45#  a Goal: Have the Soldiers meet the 80% solution of 12 repetitions during a prescribed Chest (Bench) Press lift. View Large UPPER BODY-CADENCE PULL-UPS MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    a Goal: Have Soldiers meet the 80% solution of 14 or 4 repetitions during a cadence pull-up. View Large UPPER BODY-CADENCE PULL-UPS MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    a Goal: Have Soldiers meet the 80% solution of 14 or 4 repetitions during a cadence pull-up. View Large UPPER BODY-One Repetition Max CHEST (Bench) PRESS MEN  WEIGHT  POINTS  WEIGHT  WOMEN    300  25  155      285  24.5  150      275  24  140      255  23  135      245  22  125      235  21  120      225  20a  115      215  19  110      210  18  105      205  17  100      200  16  97.5      195  15.5  95      185  15  90      <185  0  <90    MEN  WEIGHT  POINTS  WEIGHT  WOMEN    300  25  155      285  24.5  150      275  24  140      255  23  135      245  22  125      235  21  120      225  20a  115      215  19  110      210  18  105      205  17  100      200  16  97.5      195  15.5  95      185  15  90      <185  0  <90    a GOAL: Have the Soldiers meet the 80% solution of 225/115 pounds for 1RM during a prescribed Repetition Max Chest (Bench) Press lift. View Large UPPER BODY-One Repetition Max CHEST (Bench) PRESS MEN  WEIGHT  POINTS  WEIGHT  WOMEN    300  25  155      285  24.5  150      275  24  140      255  23  135      245  22  125      235  21  120      225  20a  115      215  19  110      210  18  105      205  17  100      200  16  97.5      195  15.5  95      185  15  90      <185  0  <90    MEN  WEIGHT  POINTS  WEIGHT  WOMEN    300  25  155      285  24.5  150      275  24  140      255  23  135      245  22  125      235  21  120      225  20a  115      215  19  110      210  18  105      205  17  100      200  16  97.5      195  15.5  95      185  15  90      <185  0  <90    a GOAL: Have the Soldiers meet the 80% solution of 225/115 pounds for 1RM during a prescribed Repetition Max Chest (Bench) Press lift. View Large LOWER BODY REPETITIONS BACK SQUAT (205# for Men, 145# for Women) MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          185#  6  7  6  125#  165#  10  5  10  105#  135#  >20  4  10  90#  135#  <20  2  <10  45#  MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          185#  6  7  6  125#  165#  10  5  10  105#  135#  >20  4  10  90#  135#  <20  2  <10  45#  a Goal: Have the Soldiers meet the 80% solution of 12 repetitions during a prescribed Back Squat lift. View Large LOWER BODY REPETITIONS BACK SQUAT (205# for Men, 145# for Women) MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          185#  6  7  6  125#  165#  10  5  10  105#  135#  >20  4  10  90#  135#  <20  2  <10  45#  MEN  REPS  POINTS  REPS  WOMEN    24  25  24      22  24.5  22      20  24  20      18  23  18      16  22  16      14  21  14      12  20a  12      10  19  10      8  18  8      6  17  6      4  16  4      2  15.5  2      1  15  1    WT CHANGE          185#  6  7  6  125#  165#  10  5  10  105#  135#  >20  4  10  90#  135#  <20  2  <10  45#  a Goal: Have the Soldiers meet the 80% solution of 12 repetitions during a prescribed Back Squat lift. View Large SHOULDER/MIDSECTION ANKLES TO THE BAR MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    a Goal: Have the Soldiers meet the 85% solution of 14 or 4 repetitions during Ankles to the Bar test. View Large SHOULDER/MIDSECTION ANKLES TO THE BAR MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    MEN  REPS  POINTS  REPS  WOMEN    17  25  7      16  24  6      15  22  5      14  20a  4      12  19        10  18  3      8  17        6  16  2      4  15.5        3  15  1      2  7        1  2        0  0  0    a Goal: Have the Soldiers meet the 85% solution of 14 or 4 repetitions during Ankles to the Bar test. View Large Simulated Casualty Evacuation Test (SCET) MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    10:30  50  12:30      10:45  49  12:45      11:00  48  13:00      11:15  47  13:15      11:30  46  13:30      11:45  45  13:45      12:00  44  14:00      12:30  43  14:30      13:00  42  15:00      13:30  41  15:30      14:00  40a  16:00      14:20  39  16:20      14:40  38  16:40      15:00  37  17:00      15:20  36  17:20      15:40  35  17:40      16:00  34  18:00      16:20  33  18:20      16:40  32  18:40      17:00  31  19:00      17:30  30  19:30      18:00  15  20:00      18:30  7  20:30      >18:30  0  >20:30    MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    10:30  50  12:30      10:45  49  12:45      11:00  48  13:00      11:15  47  13:15      11:30  46  13:30      11:45  45  13:45      12:00  44  14:00      12:30  43  14:30      13:00  42  15:00      13:30  41  15:30      14:00  40a  16:00      14:20  39  16:20      14:40  38  16:40      15:00  37  17:00      15:20  36  17:20      15:40  35  17:40      16:00  34  18:00      16:20  33  18:20      16:40  32  18:40      17:00  31  19:00      17:30  30  19:30      18:00  15  20:00      18:30  7  20:30      >18:30  0  >20:30    a Goal: Have Soldiers meet the 80% solution of 14:00 and 16:00 during the SCET. NOTE: A top score of 10:30 for men equates to ∼6:50 mile in ACUs, boots, helmet, and IBA, a 120 second 400 m run with dummy weapon, and a 100 second 140 m dummy carry. A top score for women equates to ∼7:50 mile in ACUs, boots, helmet, and IBA, a 144 second 400 m run with dummy weapon, and a 136 second 140 m dummy carry. View Large Simulated Casualty Evacuation Test (SCET) MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    10:30  50  12:30      10:45  49  12:45      11:00  48  13:00      11:15  47  13:15      11:30  46  13:30      11:45  45  13:45      12:00  44  14:00      12:30  43  14:30      13:00  42  15:00      13:30  41  15:30      14:00  40a  16:00      14:20  39  16:20      14:40  38  16:40      15:00  37  17:00      15:20  36  17:20      15:40  35  17:40      16:00  34  18:00      16:20  33  18:20      16:40  32  18:40      17:00  31  19:00      17:30  30  19:30      18:00  15  20:00      18:30  7  20:30      >18:30  0  >20:30    MEN  TOTAL TIME  POINTS  TOTAL TIME  WOMEN    10:30  50  12:30      10:45  49  12:45      11:00  48  13:00      11:15  47  13:15      11:30  46  13:30      11:45  45  13:45      12:00  44  14:00      12:30  43  14:30      13:00  42  15:00      13:30  41  15:30      14:00  40a  16:00      14:20  39  16:20      14:40  38  16:40      15:00  37  17:00      15:20  36  17:20      15:40  35  17:40      16:00  34  18:00      16:20  33  18:20      16:40  32  18:40      17:00  31  19:00      17:30  30  19:30      18:00  15  20:00      18:30  7  20:30      >18:30  0  >20:30    a Goal: Have Soldiers meet the 80% solution of 14:00 and 16:00 during the SCET. NOTE: A top score of 10:30 for men equates to ∼6:50 mile in ACUs, boots, helmet, and IBA, a 120 second 400 m run with dummy weapon, and a 100 second 140 m dummy carry. A top score for women equates to ∼7:50 mile in ACUs, boots, helmet, and IBA, a 144 second 400 m run with dummy weapon, and a 136 second 140 m dummy carry. View Large REFERENCES 1. Vanderburg PM, Crowder TA Body weight penalties in the physical fitness tests of the Army, Air Force, and Navy. Mil Med  2006; 171: 753– 6. Google Scholar CrossRef Search ADS PubMed  2. Vanderburg PM Occupational relevance and body mass bias in military physical fitness tests. Med Sci Sports Exerc  2008; 40: 1538– 45. Google Scholar CrossRef Search ADS PubMed  3. Teplitzky ML Physical performance predictors of success in Special Forces assessment and selection. Technical Report, DTIC Accession No. ADA245729 . Alexandria, VA, Army Research Institute for the Behavioral and Social Sciences, 1991. Available at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA245729&Location=U2&doc=GetTRDoc.pdf; accessed December 6, 2012. 4. Harman EA, Gutekunst DJ, Frykman PN, et al.   Prediction of simulated battlefield physical performance from field-expedient tests. Mil Med  2008; 173: 36– 41. Google Scholar CrossRef Search ADS PubMed  5. Harman EA, Frykman PN The relationship of body size and composition to the performance of physical demanding military tasks. In: Body Composition and Physical Performance , pp 105– 18. Washington, DC, National Press, 1992. Available at http://www.nap.edu/openbook.php?record-id=2031&page=105; accessed December 6, 2012. 6. Crowder TA, Beekley MD, Sturdivant RX, Johnson CA, Lumpkin A Metabolic effects of soldier performance on a simulated graded road march while wearing two functionally equivalent military ensembles. Mil Med  2007; 172: 596– 602. Google Scholar CrossRef Search ADS PubMed  7. Beekley MD, Alt J, Buckley CM, Duffey MJ, Crowder TA Effect of heavy loads during constant-speed, simulated road marching. Mil Med  2007; 172: 592– 95. Google Scholar CrossRef Search ADS PubMed  8. Knapik JJ, Ang P, Meiselman H, et al.   Soldier performance and strenuous road marching: influence of load mass and load distribution. Mil Med  1997; 162: 62– 7. Google Scholar PubMed  9. Walker TB, Lennemann LM, Harrison CR, Klein R, Doczy EF The influence of agility training on physiological and cognitive performance. J Strength Cond Res  2011; 25( 1): S104– 5. 10. U.S. Marine Corps Order 6100.13 Marine Corps Physical Fitness Program . Department of the Navy, Headquarters United States Marine Corps. Available at http://navyrotc.berkeley.edu/docs/MCO6100.pdf; accessed December 6, 2012. 11. Worden T, White ED III Modifying the US Air Force fitness test to reflect physical combat fitness: one study's perspective. Mil Med  2012; 177( 9): 1090– 94. Google Scholar CrossRef Search ADS PubMed  12. Whitehead PN, Schilling BK, Peterson DD, Weiss LW Possible new modalities for the Navy physical readiness test. Mil Med  2012; 177( 11): 1417– 25. Google Scholar CrossRef Search ADS PubMed  13. Vanderburgh PM, Mickley NS, Anloague PA, Lucius K Load-carriage distance run and push-ups tests: no body mass bias and occupationally relevant. Mil Med  2011; 176: 1032– 36. Google Scholar CrossRef Search ADS PubMed  14. Crowder TA Pre-Fatigue simulated casualty evacuation task: the role of body composition, fitness and physical performance grades. Med Sci Sports Exerc  2012; 44( 5): S91. 15. Baumgartner TA, Jackson AS Measurement for Evaluation in Physical Education and Exercise Science , Ed 4. Dubuque, IA, Wm. C. Brown, 1991. 16. Jaric S, Radosavljevic-Jaric S, Johansson H Muscle force and muscle torque may require different methods when adjusting for body size. Eur J Appl Physiol  2002; 87: 304– 07. Google Scholar CrossRef Search ADS PubMed  17. Jaric S, Mirkov D, Markovic G Normalizing physical performance tests for body size: a proposal for standardization. J Strength Cond Res  2005; 19: 467– 74. Google Scholar PubMed  18. U.S. Army Field Manual (FM 7-22) Army Physical Readiness Training . Department of the Army, Available at http://armypubs.army.mil/doctrine/DR_pubs/dr_a/pdf/fm7_22.pdf; accessed December 6, 2012. 19. Crowder T, Leth A, Fenske B, Park R, Bryan J A “field-expedient” upper body muscular strength-endurance assessment which mitigates body mass influence in college-age men. Med Sci Sports Exerc  2008; 40( 5): S427. Google Scholar CrossRef Search ADS   20. Vaara JP, Kyrolainen H, Niemi J, et al.   Associations of maximal strength and muscular endurance test scores with cardiorespiratory fitness and body composition. J Strength Cond Res  2012; 26( 8): 2078– 86. Google Scholar CrossRef Search ADS PubMed  21. Jackson AS, Pollock ML Generalized equations for predicting body density of men. Brit J Nutr  1978; 40: 497– 504. Google Scholar CrossRef Search ADS PubMed  22. Knapik JJ, Reynolds KL, Harman EA Soldier load carriage: historical, physiological, biomechanical, and medical aspects. Mil Med  2004; 169: 45– 56. Google Scholar CrossRef Search ADS PubMed  23. Bompa TO Periodization Training for Sports  1999. Champaign, IL, Human Kinetics. 24. Bishop PA, Fielitz LR, Crowder TA, Anderson CL, Smith JH, Derrick KR Physiological determinants of performance on an indoor military obstacle course test. Mil Med  1999; 164: 891– 6. Google Scholar PubMed  25. Zadpoor AA, Nikooyan AA The relationship between lower-extremity stress fractures and ground reaction force: a systematic review. Clin Biomech  2010; 26: 23– 8. Google Scholar CrossRef Search ADS   26. Rayson M, Holliman D, Belyavin A Development of physical selection procedures for the British Army: phase 2. Relationship between physical performance tests and criterion tasks. Ergonomics  2000; 43: 73– 105. Google Scholar CrossRef Search ADS PubMed  Reprint & Copyright © Association of Military Surgeons of the U.S. TI - Creation of a Criterion-Referenced Military Optimal Performance Challenge JF - Military Medicine DO - 10.7205/MILMED-D-13-00081 DA - 2013-10-01 UR - https://www.deepdyve.com/lp/oxford-university-press/creation-of-a-criterion-referenced-military-optimal-performance-4iLIIk8RYE SP - 1085 EP - 1101 VL - 178 IS - 10 DP - DeepDyve ER -