TY - JOUR AU - Schnell, Uwe AB - Some results of P. McMullen on determinants of sublattices of Zd induced by rational subspaces are generalized to arbitrary lattices. As an application, we obtain an equality for the minimal determinants introduced by J. M. Wills, namely Dt(L) = Dd(L)Dd−1((L*). Using an inequality of Lagarias, Lenstra and Schnorr, we generalize two isoperimetric inequalities withlattice constraints by Bokowski, Hadwiger and Wills, and Hadwiger, respectively, to arbitrary lattices. TI - Minimal Determinants and Lattice Inequalities JF - Bulletin of the London Mathematical Society DO - 10.1112/blms/24.6.606 DA - 1992-11-01 UR - https://www.deepdyve.com/lp/wiley/minimal-determinants-and-lattice-inequalities-4UqpTSwVyL SP - 606 EP - 612 VL - 24 IS - 6 DP - DeepDyve ER -